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Abstract

When an action potential arrives at a synapse there is a large probability that no
neurotransmitter is released. Surprisingly, simple computational models suggest that these
synaptic failures enable information processing at lower metabolic costs. However, these
models only consider information transmission at single synapses ignoring the remainder
of the neural network as well as its overall computational goal. Here, we investigate how
synaptic failures affect the energy efficiency of models of entire neural networks that solve
a goal-driven task. We find that presynaptic stochasticity and plasticity improve energy
efficiency and show that the network allocates most energy to a sparse subset of important
synapses. We demonstrate that stabilising these synapses helps to alleviate the stability-
plasticity dilemma, thus connecting a presynaptic notion of importance to a computational
role in lifelong learning. Overall, our findings present a set of hypotheses for how presynaptic
plasticity and stochasticity contribute to sparsity, energy efficiency and improved trade-offs
in the stability-plasticity dilemma.

1 Introduction

It has long been known that synaptic signal transmission is stochastic (del Castillo and Katz,
1954). When an action potential arrives at the presynapse, there is a high probability that
no neurotransmitter is released – a phenomenon observed across species and brain regions
(Branco and Staras, 2009). From a computational perspective, synaptic stochasticity seems
to place unnecessary burdens on information processing. Large amounts of noise hinder reli-
able and efficient computation (Shannon, 1948; Faisal et al., 2005) and synaptic failures appear
to contradict the fundamental evolutionary principle of energy-efficient processing (Niven and
Laughlin, 2008). The brain, and specifically action potential propagation consume a dispro-
portionately large fraction of energy (Attwell and Laughlin, 2001; Harris et al., 2012) – so why
propagate action potentials all the way to the synapse only to ignore the incoming signal there?

To answer this neurocomputational enigma various theories have been put forward, see
Llera-Montero et al. (2019) for a review. One important line of work proposes that individ-
ual synapses do not merely maximise information transmission, but rather take into account
metabolic costs, maximising the information transmitted per unit of energy (Levy and Bax-
ter, 1996). This approach has proven fruitful to explain synaptic failures (Levy and Baxter,
2002; Harris et al., 2012), low average firing rates (Levy and Baxter, 1996) as well as excitation-
inhibition balance (Sengupta et al., 2013) and is supported by fascinating experimental evidence
suggesting that both presynaptic glutamate release (Savtchenko et al., 2013) and postsynaptic
channel properties (Harris et al., 2015, 2019) are tuned to maximise information transmission
per energy.
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However, so far information-theoretic approaches have been limited to signal transmission
at single synapses, ignoring the context and goals in which the larger network operates. As
soon as context and goals guide network computation certain pieces of information become
more relevant than others. For instance, when reading a news article the textual information is
more important than the colourful ad blinking next to it – even when the latter contains more
information in a purely information-theoretic sense.

Here, we study presynaptic stochasticity on the network level rather than on the level of
single synapses. We investigate its effect on (1) energy efficiency and (2) the stability-plasticity
dilemma in model neural networks that learn to selectively extract information from complex
inputs.

We find that presynaptic stochasticity in combination with presynaptic plasticity allows net-
works to extract information at lower metabolic cost by sparsely allocating energy to synapses
that are important for processing the given stimulus. As a result, presynaptic release proba-
bilities encode synaptic importance. We show that this notion of importance is related to the
Fisher Information, a theoretical measure for the network’s sensitivity to synaptic changes.

Building on this finding and previous work (Kirkpatrick et al., 2017) we explore a potential
role of presynaptic stochasticity in the stability-plasticity dilemma. In line with experimen-
tal evidence (Yang et al., 2009; Hayashi-Takagi et al., 2015), we demonstrate that selectively
stabilising important synapses improves lifelong learning. Furthermore, these experiments link
presynaptically induced sparsity to improved memory.

2 Model

Our goal is to understand how information processing and energy consumption are affected by
stochasticity in synaptic signal transmission. While there are various sources of stochasticity in
synapses, here, we focus on modelling synaptic failures where action potentials at the presynapse
fail to trigger any postsynaptic depolarisation. The probability of such failures is substantial
(Branco and Staras, 2009; Hardingham et al., 2010; Sakamoto et al., 2018) and, arguably,
due to its all-or-nothing-characteristic has the largest effect on both energy consumption and
information transmission.

As a growing body of literature suggests, artificial neural networks (ANNs) match several
aspects of biological neuronal networks in various goal-driven situations (Kriegeskorte, 2015;
Yamins and DiCarlo, 2016; Kell et al., 2018; Banino et al., 2018; Cueva and Wei, 2018; Mattar
and Daw, 2018). Crucially, they are the only known model to solve complex vision and rein-
forcement learning tasks comparably well as humans. We therefore choose to extend this class
of models by explicitly incorporating synaptic failures and study their properties in a number
of complex visual tasks.

2.1 Model Details

The basic building blocks of ANNs are neurons that combine their inputs a1, . . . , an through a
weighted sum w1a1 + . . . wnan and apply a nonlinear activation function σ(·). The weights wi
naturally correspond to synaptic strengths between presynaptic neuron i and the postsynaptic
neuron. Although synaptic transmission is classically described as a binomial process (del
Castillo and Katz, 1954) most previous modelling studies assume the synaptic strengths to be
deterministic. This neglects a key characteristic of synaptic transmission: the possibility of
synaptic failures where no communication between pre- and postsynapse occurs at all.

In the present study, we explicitly model presynaptic stochasticity by introducing a random
variable ri ∼ Bernoulli(pi), whose outcome corresponds to whether or not neurotransmitter is
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released. Formally, each synapse wi is activated stochastically according to

wi = ri︸︷︷︸
stochastic

release

· mi︸︷︷︸
synaptic
strength

, where ri ∼ Bernoulli(pi︸︷︷︸
release

probability

) (1)

so that it has expected synaptic strength w̄i = pimi. The postsynaptic neuron calculates a
stochastic weighted sum of its inputs with a nonlinear activation

apost

︸ ︷︷ ︸
postsynaptic
activation

= σ

(
n∑
i=1

wi a
pre
i︸ ︷︷ ︸

i-th presynaptic
input

)
. (2)

During learning, synapses are updated and both synaptic strength and release probability are
changed. We resort to standard learning rules to change the expected synaptic strength. For
the multilayer perceptron, this update is based on stochastic gradient descent with respect to a
loss function L(w̄, p), which in our case is the standard cross-entropy loss. Concretely, we have

w̄
(t+1)
i = w̄

(t)
i − ηgi, where gi =

∂L(w̄(t), p)

∂w̄
(t)
i

(3)

where the superscript corresponds to time steps. Note that this update is applied to the
expected synaptic strength w̄i, requiring communication between pre- and postsynape, see
also Discussion. For the explicit update rule of the synaptic strength mi see Materials and
Methods, equation (8). For the standard perceptron model, gi is given by its standard learning
rule (Rosenblatt, 1958). Based on the intuition that synapses which receive larger updates are
more important for solving a given task, we update pi using the update direction gi according
to the following simple scheme

p
(t+1)
i =

{
p

(t)
i + pup, if |gi| > glim,

p
(t)
i − pdown, if |gi| ≤ glim.

(4)

Here, pup, pdown, glim are three metaplasticity parameters shared between all synapses.1 To
prevent overfitting and to test robustness, we tune them using one learning scenario and keep
them fixed for all other scenarios, see Materials and Methods. To avoid inactivated synapses
with release probability pi = 0 we clamp pi to stay above 0.25, which we also use as the initial
value of pi before learning.

On top of the above intuitive motivation, we give a theoretical justification for this learning
rule in Materials and Methods, showing that synapses with larger Fisher Information obtain
high release probabilities, also see Figure 2d.

2.2 Measuring Energy Consumption

For our experiments, we would like to quantify the energy consumption of the neural network.
Harris et al. (2012) find that the main constituent of neural energy demand is synaptic signal
transmission and that the cost of synaptic signal transmission is dominated by the energy
needed to reverse postsynaptic ion fluxes. In our model, the component most closely matching
the size of the postsynaptic current is the expected synaptic strength, which we therefore take
as measure for the model’s energy consumption. In the Supplementary, we also measure the
metabolic cost incurred by the activity of neurons by calculating their average rate of activity.

1We point out that in a noisy learning setting the gradient g does not decay to 0, so that the learning rule in
(4) will maintain network function by keeping certain release probabilities high. See also Material and Methods
for a theoretical analysis.
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Box 1: Mutual Information

The Mutual Information I(Y ;Z) of two jointly distributed random variables Y,Z is a
common measure of their dependence (Shannon, 1948). Intuitively, mutual informa-
tion captures how much information about Y can be obtained from Z, or vice versa.
Formally, it is defined as

I(Y ;Z) ≡ H(Y )−H(Y |Z) = H(Z)−H(Z|Y )

where H(Y ) is the entropy of Y and H(Y |Z) is the conditional entropy of Y given Z.
In our case, we want to measure how much task-relevant information Y is contained
in the neural network output Z. For example, the neural network might receive as
input a picture of a digit with the goal of predicting the identity of the digit. Both
the ground-truth digit identity Y and the network’s prediction Z are random variables
depending on the random image X. The measure I(Y ;Z) quantifies how much of
the behaviourally relevant information Y is contained in the network’s prediction Z
ignoring irrelevant information also present in the complex, high-entropy image X.

2.3 Measuring Information Transmission

We would like to measure how well the neural network transmits information relevant to its
behavioural goal. In particular, we are interested in the setting where the complexity of the
stimulus is high relative to the amount of information that is relevant for the behavioural goal.
To this end, we present complex visual inputs with high information content to the network and
teach it to recognise the object present in the image. We then measure the mutual information
between network output and object identity, see Feature Box 1.

3 Results

3.1 Presynaptic Stochasticity Enables Energy-Efficient Information Process-
ing

We now investigate the energy efficiency of a network that learns to classify digits from the
MNIST handwritten digit dataset (LeCun, 1998). The inputs are high-dimensional with high
entropy, but the relevant information is simply the identity of the digit. We compare the
model with plastic, stochastic release to two controls. A standard ANN with deterministic
synapses is included to investigate the combined effect of presynaptic stochasticity and plasticity.
In addition, to isolate the effect of presynaptic plasticity, we introduce a control which has
stochastic release, but with a fixed probability. In this control, the release probability is identical
across synapses and chosen to match the average release probability of the model with plastic
release after it has learned the task.

All models are encouraged to find low-energy solutions by penalising large synaptic weights
through standard `2-regularisation. Figure 1a shows that different magnitudes of `2-regularisation
induce different information-energy trade-offs for all models, and that the model with plastic,
stochastic release finds considerably more energy-efficient solutions than both controls, while
the model with non-plastic release requires more energy then the deterministic model. Together,
this supports the view that a combination of presynaptic stochasticity and plasticity promotes
energy-efficient information extraction.
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Figure 1: Energy Efficiency of Model with Stochastic and Plastic Release. (a) Dif-
ferent trade-offs between mutual information and energy are achievable in all network models.
Generally, stochastic synapses with learned release probabilities are more energy-efficient than
deterministic synapses or stochastic synapses with fixed release probability. The fixed release
probabilities model was chosen to have the same average release probability as the model with
learned probabilities. (b) Best achievable ratio of information per energy for the three models
from (a). Error bars in (a) and (b) denote the standard error for three repetitions of the exper-
iment.

In addition, we investigate how stochastic release helps the network to lower metabolic
costs. Intuitively, a natural way to save energy is to assign high release probabilities to synapses
that are important to extract relevant information and to keep remaining synapses at a low
release probability. Figure 2a shows that after learning, there are indeed few synapses with
high release probabilities, while most release probabilities are kept low. We confirm that this
sparsity develops independently of the initial value of release probabilities before learning, see
Supplementary Figure 6d. To test whether the synapses with high release probabilities are
most relevant for solving the task we perform a lesion experiment. We successively remove
synapses with low release probability and measure how well the lesioned network still solves the
given task, see Figure 2b. As a control, we remove synapses in a random order independent
of their release probability. We find that maintaining synapses with high release probabilities
is significantly more important to network function than maintaining random ones. Moreover,
we find, as expected, that synapses with high release probabilities consume considerably more
energy than synapses with low release probability, see Figure 2c. This supports the hypothesis
that the model identifies important synapses for the task at hand and spends more energy on
these synapses while saving energy on irrelevant ones.

We have seen that the network relies on a sparse subset of synapses to solve the task
efficiently. However, sparsity is usually thought of on a neuronal level, with few neurons rather
than few synapses encoding a given stimulus. Therefore, we quantify sparsity of our model on a
neuronal level. For each neuron we count the number of ‘important’ input- and output synapses,
where we define ‘important’ to correspond to a release probability of at least p = 0.9. Note
that the findings are robust with respect to the precise value of p, see Figure 2a. We find that
the distribution of important synapses per neuron is inhomogeneous and significantly different
from a randomly shuffled baseline with a uniform distribution of active synapses (Kolmogorov-
Smirnoff test, D = 0.505, p < 0.01), see Figure 3a. Thus, some neurons have disproportionately
many important inputs, while others have very few, suggesting sparsity on a neuronal level.
As additional quantification of this effect, we count the number of highly important neurons,
where we define a neuron to be highly important if its number of active inputs is two standard
deviations below or above the mean (mean and standard deviation from shuffled baseline).
We find that our model network with presynaptic stochasticity has disproportionate numbers
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Figure 2: Importance of Synapses with High Release Probability for Network Func-
tion. (a) Histogram of release probabilities before and after learning, showing that the network
relies on a sparse subset of synapses to find an energy-efficient solution. Dashed line at p = 0.9
indicates our boundary for defining a release probability as ‘low’ or ‘high’. We confirmed that
results are independent of initial value of release probabilities before learning (see Supplemen-
tary, Figure 6d). (b) Accuracy after performing the lesion experiment either removing synapses
with low release probabilities first or removing weights randomly, suggesting that synapses with
high release probability are most important for solving the task. (c) Distribution of synaptic
energy demand for high and low release probability synapses. (d) Distribution of the Fisher
information for high and low release probability synapses. It confirms the theoretical prediction
that high release probability corresponds to high Fisher Information. All panels show accumu-
lated data for three repetitions of the experiment. Shaded regions in (b) show standard error.

of highly important and unimportant neurons, see Figure 3b. Moreover, we check whether
neurons with many important inputs tend to have many important outputs, indeed finding a
correlation of r = 0.93, see Figure 3c. These analyses all support the claim that the network is
sparse not only on a synaptic but also on a neuronal level.

Finally, we investigate how release probabilities evolve from a theoretical viewpoint under
the proposed learning rule. Note that the evolution of release probabilities is a random process,
since it depends on the random input to the network. Under mild assumptions, we show
(Materials and Methods) that release probabilities are more likely to increase for synapses with
large Fisher Information2. Thus, synapses with large release probabilities will tend to have high
Fisher Information. We validate this theoretical prediction empirically, see Figure 2d.

3.2 Presynaptically Driven Consolidation Helps Alleviate the Stability-Plasticity
Dilemma

While the biological mechanisms addressing the stability-plasticity dilemma are diverse and not
fully understood, it has been demonstrated experimentally that preserving memories requires

2In this context, the Fisher Information is a measure of sensitivity of the network to changes in synapses,
measuring how important preserving a given synapse is for network function.
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Figure 3: Neuron-Level Sparsity of Network after Learning. (a) Histogram of the frac-
tion of important input synapses per neuron for second layer neurons after learning for true and
randomly shuffled connectivity (see Supplementary, Figure 7a for other layers). (b) Same data
as (a), showing number of low/medium/high importance neurons, where high/low importance
neurons have at least two standard deviations more/less important inputs than the mean of
random connectivity. (c) Scatter plot of first layer neurons showing the number of important
input and output synapses after learning on MNIST, Pearson correlation is r = 0.9390 (see
Supplementary, Figure 7b for other layers). Data in (a) and (c) are from one representative
run, error bars in (b) show standard error over three repetitions.

maintaining the synapses which encode these memories (Yang et al., 2009; Hayashi-Takagi
et al., 2015; Cichon and Gan, 2015). In this context, theoretical work suggests that the Fisher
Information is a useful way to quantify which synapses should be maintained (Kirkpatrick
et al., 2017). Inspired by these insights, we hypothesise that the synaptic importance encoded
in release probabilities can be used to improve the network’s memory retention by selectively
stabilising important synapses.

We formalise this hypothesis in our model by lowering the learning rate (plasticity) of
synapses according to their importance (release probability). Concretely, the learning rate
η = η(pi) used in (3) is scaled as follows

η(pi) = η0 · (1− pi). (5)

such that the learning rate is smallest for important synapses with high release probability. η0

denotes a base learning rate that is shared by all synapses. We complement this consolida-
tion mechanism by freezing the presynaptic release probabilities pi once they have surpassed a
predefined threshold pfreeze. This ensures that a synapse whose presynaptic release probability
was high for a previous task retains its release probability even when unused during consecutive
tasks. In other words, the effects of presynaptic long-term depression (LTD) are assumed to act
on a slower timescale than learning single tasks. Note that the freezing mechanism ensures that
all synaptic strengths w̄i retain a small degree of plasticity, since the learning rate modulation
factor (1− pi) remains greater than 0.

To test our hypothesis that presynaptically driven consolidation allows the network to make
improved stability-plasticity trade-offs, we sequentially present a number of tasks and investigate
the networks behaviour. We mainly focus our analysis on a variation of the MNIST handwritten
digit dataset, in which the network has to successively learn the parity of pairs of digits, see
Figure 4a. Additional experiments are reported in the Supplementary Material, see Table 1.

First, we investigate whether presynaptic consolidation improves the model’s ability to re-
member old tasks. To this end, we track the accuracy on the first task over the course of learning,
see Figure 4b. As a control, we include a model without consolidation and with deterministic
synapses. While both models learn the first task, the model without consolidation forgets more
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Figure 4: Lifelong Learning in a Model with Presynaptically Driven Consolidation.
(a) Schematic of the lifelong learning task Split MNIST. In the first task the model network
is presented 0s and 1s, in the second task it is presented 2s and 3s, etc. For each task the
model has to classify the inputs as even or odd. At the end of learning, it should be able
to correctly classify the parity of all digits, even if a digit has been learned in an early task.
(b) Accuracy of the first task when learning new tasks. Consolidation leads to improved
memory preservation. (c) Average accuracies of all learned tasks. The presynaptic consolidation
model is compared to a model without consolidation and two state-of-the-art machine learning
algorithms. Differences to these models are significant in independent t-tests with either p <
0.05 (marked with *) or with p < 0.01 (marked with **). Dashed line indicates an upper bound
for the network’s performance, obtained by training on all tasks simultaneously. Panels (b) and
(c) show accumulated data for three repetitions of the experiment. Shaded regions in (b) and
error bars in (c) show standard error.

quickly, suggesting that the presynaptic consolidation mechanism does indeed improve memory.
Next, we ask how increased stability interacts with the network’s ability to remain plastic

and learn new tasks. To assess the overall trade-off between stability and plasticity we report
the average accuracy over all five tasks, see Figure 4c.

We find that the presynaptic consolidation model performs better than a standard model
with deterministic synapses and without consolidation. In addition, we compare performance
to two state-of-the art machine learning algorithms: The well-known algorithm Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017) explicitly relies on the Fisher Information and
performs a separate consolidation phase after each task. Bayesian Gradient Descent (BGD)
(Zeno et al., 2018) is a Bayesian approach that models synapses as distributions, but does not
capture the discrete nature of synaptic transmission. The presynaptic consolidation mechanism
performs better than both these state-of-the-art machine learning algorithms, see Figure 4c.
Additional experiments in the Supplementary suggest overall similar performance of Presynaptic
Consolidation to BGD and similar or better performance than EWC.

To determine which components of our model contribute to its lifelong learning capabilities,
we perform an ablation study, see Figure 5a. We aim to separate the effect of (1) consolidation
mechanisms and (2) presynaptic plasticity.

First, we remove the two consolidation mechanisms, learning rate modulation and freezing
release probabilities, from the model with stochastic synapses. This yields a noticeable decrease
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Figure 5: Model Ablation and Lifelong Learning in a Standard Perceptron. (a) Ab-
lation of the Presynaptic Consolidation model on two different lifelong learning tasks, see full
text for detailed description. Both presynaptic plasticity and synaptic stabilisation significantly
improve memory. (b)+(c) Lifelong Learning in a Standard Perceptron akin to Figure 4b, 4c,
showing the accuracy of the first task when learning consecutive tasks in (b) as well as the
average over all five tasks after learning all tasks in (c). Error bars and shaded regions show
standard error of three respectively ten repetitions, in (a) respectively (b+c). All pair-wise
comparisons are significant, independent t-tests with p < 0.01 (denoted by **) or with p < 0.05
(denoted by *).

in performance during lifelong learning, thus supporting the view that stabilising important
synapses contributes to addressing the stability-plasticity dilemma.

Second, we aim to disentangle the effect of presynaptic plasticity from the consolidation
mechanisms. We therefore introduce a control in which presynaptic plasticity but not consoli-
dation is blocked. Concretely, the control has ‘ghost release probabilities’ p̃i evolving according
to equation (4) and modulating plasticity according to equation (5); but the synaptic release
probability is fixed at 0.5. We see that this control performs worse than the original model
with a drop in accuracy of 1.4% on Split MNIST (t = 3.44, p < 0.05) and a drop of accuracy
of 5.6% on Permuted MNIST (t = 6.72, p < 0.01). This suggests that presynaptic plasticity,
on top of consolidation, helps to stabilise the network. We believe that this can be attributed
to the sparsity induced by the presynaptic plasticity which decreases overlap between different
tasks.

The above experiments rely on a gradient-based learning rule for multilayer perceptrons. To
test whether presynaptic consolidation can also alleviate stability-plasticity trade-offs in other
settings, we study its effects on learning in a standard perceptron (Rosenblatt, 1958). We train
the perceptron sequentially on five pattern memorisation tasks, see Materials and Methods for
full details. We find that the presynaptically consolidated perceptron maintains a more stable
memory of the first task, see Figure 5b. In addition, this leads to an overall improved stability-
plasticity trade-off, see Figure 5c and shows that the effects of presynaptic consolidation in our
model extend beyond gradient-based learning.

4 Discussion

4.1 Main Contribution

Information transmission in synapses is stochastic. While previous work has suggested that
stochasticity allows to maximise the amount of information transmitted per unit of energy
spent, this analysis has been restricted to single synapses. We argue that the relevant quantity
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to be considered is task-dependent information transmitted by entire networks. Introducing a
simple model of the all-or-nothing nature of synaptic transmission, we show that presynaptic
stochasticity enables networks to allocate energy more efficiently. We find theoretically as well
as empirically that learned release probabilities encode the importance of weights for network
function according to the Fisher Information. Based on this finding, we suggest a novel compu-
tational role for presynaptic stochasticity in lifelong learning. Our experiments provide evidence
that coupling information encoded in the release probabilities with modulated plasticity can
help alleviate the stability-plasticity dilemma.

4.2 Modelling Assumptions and Biological Plausibility

4.2.1 Stochastic Synaptic Transmission

Our model captures the occurrence of synaptic failures by introducing a Bernoulli random
variable governing whether or not neurotransmitter is released. Compared to classical models
assuming deterministic transmission, this is one step closer to experimentally observed binomial
transmission patterns, which are caused by multiple, rather than one, release sites between a
given neuron and dendritic branch. Importantly, our simplified model accounts for the event
that there is no postsynaptic depolarisation at all. Even in the presence of multiple release sites,
this event has non negligible probability: Data from cultured hippocampal neurons (Branco
et al., 2008, Figure 2D) and the neocortex (Hardingham et al., 2010, Figure 7C) shows that the
probability (1− p)N that none of N release sites with release probability p is active, is around
0.3-0.4 even for N as large as 10. More recent evidence suggests an even wider range of values
depending on the extracellular calcium concentration (Sakamoto et al., 2018).

4.2.2 Presynaptic Long-Term Plasticity

A central property of our model builds on the observation that the locus of expression for long-
term plasticity can both be presynaptic and postsynaptic (Larkman et al., 1992; Lisman and
Raghavachari, 2006; Bayazitov et al., 2007; Sjöström et al., 2007; Bliss and Collingridge, 2013;
Costa et al., 2017). The mechanisms to change either are distinct and synapse-specific (Yang
and Calakos, 2013; Castillo, 2012), but how exactly pre- and postsynaptic forms of long-term
potentiation (LTP) and LTD interact is not yet fully understood (Monday et al., 2018). The
induction of long-term plasticity is thought to be triggered postsynaptically for both presynaptic
and postsynaptic changes (Yang and Calakos, 2013; Padamsey and Emptage, 2014) and several
forms of presynaptic plasticity are known to require retrograde signalling (Monday et al., 2018),
for example through nitric oxide or endocannabinoids (Heifets and Castillo, 2009; Andrade-
Talavera et al., 2016; Costa et al., 2017). This interaction between pre- and postsynaptic sites
is reflected by our learning rule, in which both pre- and postsynaptic changes are governed by
postsynaptic updates and require communication between pre- and postsynapse. The proposed
presynaptic updates rely on both presynaptic LTP and presynaptic LTD. At least one form
of presynaptic long-term plasticity is known to be bidirectional switching from potentiation to
depression depending on endocannabinoid transients (Cui et al., 2015, 2016).

4.2.3 Link between Presynaptic Release and Synaptic Stability

Our model suggests that increasing the stability of synapses with large release probability
improves memory. Qualitatively, this is in line with observations that presynaptic boutons,
which contain stationary mitochondria (Chang et al., 2006; Obashi and Okabe, 2013), are more
stable than those which do not, both on short (Sun et al., 2013) and long timescales of at least
weeks (Lees et al., 2020). Quantitatively, we find evidence for such a link by re-analysing data3

3Data was made publicly available in Costa et al. (2017).
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from Sjöström et al. (2001) for a spike-timing-dependent plasticity protocol in the rat primary
visual cortex: Figure 9 of the supplementary material shows that synapses with higher initial
release probability are more stable than those with low release probabilities for both LTP and
LTD.

4.2.4 Credit Assignment

In our multilayer perceptron model, updates are computed using backpropagated gradients.
Whether credit assignment in the brain relies on backpropagation – or more generally gradients
– remains an active area of research, but several alternatives aiming to increase biological
plausibility exist and are compatible with our model (Sacramento et al., 2018; Lillicrap et al.,
2016; Lee et al., 2015). To check that the proposed mechanism can also operate without gradient
information, we include an experiment with a standard perceptron and its gradient-free learning
rule (Rosenblatt, 1958), see Figure 5b and 5c.

4.2.5 Correspondence to Biological Networks

We study general rate-based neural networks raising the question in which biological networks
or contexts one might expect the proposed mechanisms to be at work. Our experiments suggest
that improved energy efficiency can at least partly be attributed to the sparsification induced
by presynaptic stochasticity (cf. Olshausen and Field, 2004). Networks which are known to
rely on sparse representations are thus natural candidates for the dynamics investigated here.
This includes a wide range of sensory networks (Perez-Orive et al., 2002; Hahnloser et al., 2002;
Crochet et al., 2011; Quiroga et al., 2005) as well as areas in the hippocampus (Wixted et al.,
2014; Lodge and Bischofberger, 2019).

In the context of lifelong learning, our learning rule provides a potential mechanism that
helps to slowly incorporate new knowledge into a network with preexisting memories. Generally,
the introduced consolidation mechanism could benefit the slow part of a complementary learning
system as proposed by McClelland et al. (1995); Kumaran et al. (2016). Sensory networks in
particular might utilize such a mechanism as they require to learn new stimuli while retaining
the ability to recognise previous ones (Buonomano and Merzenich, 1998; Gilbert et al., 2009;
Moczulska et al., 2013). Indeed, in line with the hypothesis that synapses with larger release
probability are more stable, it has been observed that larger spines in the mouse barrel cortex
are more stable. Moreover, novel experiences lead to the formation of new, stable spines, similar
to our findings reported in Figure 8b.

4.3 Related Synapse Models

4.3.1 Probabilistic Synapse Models

The goal of incorporating and interpreting noise in models of neural computation is shared by
many computational studies. Inspired by a Bayesian perspective, neural variability is often
interpreted as representing uncertainty (Ma et al., 2006; Fiser et al., 2010; Kappel et al., 2015;
Haefner et al., 2016), or as a means to prevent overfitting (Wan et al., 2013). The Bayesian
paradigm has been applied directly to variability of individual synapses in neuroscience (Aitchi-
son et al., 2014; Aitchison and Latham, 2015; Aitchison et al., 2021) and machine learning (Zeno
et al., 2018). It prescribes decreasing the plasticity of synapses with low posterior variance. A
similiar relationship can be shown to hold for our model as described in the Material and Meth-
ods. In contrast to common Bayesian interpretations (Zeno et al., 2018; Aitchison and Latham,
2015; Kappel et al., 2015) which model release statistics as Gaussians and optimize complex
objectives (see also Llera-Montero et al., 2019) our simple proposal represents the inherently
discrete nature of synaptic transmission more faithfully.
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4.3.2 Complex Synapse Models

In the context of lifelong learning, our model’s consolidation mechanism is similar to EWC
(Kirkpatrick et al., 2017), which explicitly relies on the Fisher Information to consolidate
synapses. Unlike EWC, our learning rule does not require a task switch signal and does not
need a separate consolidation phase. Moreover, our model can be interpreted as using distinct
states of plasticity to protect memories. This general idea is formalised and analysed thoroughly
by theoretical work on cascade models of plasticity (Fusi et al., 2005; Roxin and Fusi, 2013;
Benna and Fusi, 2016). The resulting model (Benna and Fusi, 2016) has also been shown to be
effective in lifelong learning settings (Kaplanis et al., 2018).

4.4 Synaptic Importance May Govern Energy-Information Trade-offs

Energy constraints are widely believed to be a main driver of evolution (Niven and Laughlin,
2008). From brain size (Isler and van Schaik, 2009; Navarrete et al., 2011), to wiring cost
(Chen et al., 2006), down to ion channel properties (Alle et al., 2009; Sengupta et al., 2010),
presynaptic transmitter release (Savtchenko et al., 2013) and postsynaptic conductance (Harris
et al., 2015, 2019), various components of the nervous system have been shown to be optimal in
terms of their total metabolic cost or their metabolic cost per bit of information transmitted.

Crucially, there is evidence that the central nervous system operates in varying regimes,
making different trade-offs between synaptic energy demand and information transmission:
Perge et al. (2009); Carter and Bean (2009); Hu and Jonas (2014) all find properties of the
axon (thickness, sodium channel properties), which are suboptimal in terms of energy per bit of
information. They suggest that these inefficiencies occur to ensure fast transmission of highly
relevant information.

We propose that a similar energy/information trade-off could govern network dynamics
preferentially allocating more energy to the most relevant synapses for a given task. Our model
relies on a simple, theoretically justified learning rule to achieve this goal and leads to overall
energy savings. Neither the trade-off nor the overall savings can be accounted for by previous
frameworks for energy-efficient information transmission at synapses (Levy and Baxter, 2002;
Harris et al., 2012).

This view of release probabilities and related metabolic cost provides a way to make the
informal notion of “synaptic importance” concrete by measuring how much energy is spent on
a synapse. Interestingly, our model suggests that this notion is helpful beyond purely energetic
considerations and can in fact help to maintain memories during lifelong learning.

5 Materials and Methods

5.1 Summary of Learning Rule

Our learning rule has two components, an update for the presynaptic release probability pi and
an update for the postsynaptic strength mi. The update of the synaptic strength mi is defined
implicitly through updating the expected synaptic strength w̄

w̄
(t+1)
i = w̄

(t)
i − ηgi, where gi =

∂L(w̄(t), p(t))

∂w̄
(t)
i

(6)

and the presynaptic update is given by

p
(t+1)
i =

{
p

(t)
i + pup, if |gi| > glim,

p
(t)
i − pdown, if |gi| ≤ glim.

(7)
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This leads to the following explicit update rule for the synaptic strength mi = w̄i
pi

m
(t+1)
i =

1

p
(t+1)
i

(
p

(t)
i m

(t)
i − ηgi

)
(8)

=
p

(t)
i

p
(t+1)
i

m
(t)
i −

η

p
(t+1)
i p

(t)
i

∂L(m(t), p(t))

∂m
(t)
i

(9)

where we used the chain rule to rewrite gi = ∂L
∂w̄i

= ∂L
∂mi
· ∂mi∂w̄i

= ∂L
∂mi
· 1
pi
.

For the lifelong learning experiment, we additionally stabilise high release probability synapses
by multiplying the learning rate by (1−pi) for each synapse and by freezing release probabilities
(but not strengths) when they surpass a predefined threshold pfreeze.

5.2 Theoretical Analysis of Presynaptic Learning Rule

As indicated in the results section the release probability pi is more likely to be large when the
Fisher Information of the synaptic strength wi is large as well. This provides a theoretical ex-
planation to the intuitive correspondence between release probability and synaptic importance.
Here, we formalise this link starting with a brief review of the Fisher Information.

5.2.1 Fisher Information

The Fisher Information is a measure for the networks sensitivity to changes in parameters.
Under additional assumptions it is equal to the Hessian of the loss function (Pascanu and Bengio,
2013; Martens, 2014), giving an intuitive reason why synapses with high Fisher Information
should not be changed much if network function is to be preserved.

Formally, for a model with parameter vector θ predicting a probability distribution fθ(X, y)
for inputs X and labels y drawn from a joint distribution D, the Fisher Information matrix is
defined as

EX∼DEy∼fθ(y|X)

[(∂ ln fθ(X, y)

∂θ

)(
∂ ln fθ(X, y)

∂θ

)T ]
.

Note that this expression is independent of the actual labels y of the dataset and that instead
we sample labels from the model’s predictions. If the model makes correct predictions, we
can replace the second expectation, which is over y ∼ fθ(y | X), by the empirical labels y
of the dataset for an approximation called the Empirical Fisher Information. If we further
only consider the diagonal entries – corresponding to a mean-field approximation – and write
gi(X, y) = ∂ ln fθ(X,y)

∂θi
we obtain the following expression for the i-th entry of the diagonal

Empirical Fisher Information:
Fi = EX,y∼D[gi(X, y)2].

Note that this version of the Fisher Information relies on the same gradients that are used to
update the parameters of the multilayer perceptron, see equations (3), (4).

Under the assumption that the learned probability distribution f(· | X, θ) equals the real
probability distribution, the Fisher Information equals the Hessian of the cross entropy loss
(i.e. the negative log-probabilities) with respect to the model parameters (Pascanu and Bengio,
2013; Martens, 2014). The Fisher Information was previously used in machine learning to
enable lifelong learning (Kirkpatrick et al., 2017; Huszár, 2018) and it has been shown that
other popular lifelong learning methods implicitly rely on the Fisher Information (Benzing,
2020).
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5.2.2 Link between Release Probabilities and Fisher Information

We now explain how our learning rule for the release probability is related to the Fisher Infor-
mation. For simplicity of exposition, we focus our analysis on a particular sampled subnetwork
with deterministic synaptic strengths. Recall that update rule (4) for release probabilities
increases the release probability, if the gradient magnitude |gi| is above a certain threshold,
gi > |glim|, and decreases them otherwise. Let us denote by p+

i the probability that the i-th
release probability is increased. Then

p+
i := Pr[|gi| > glim] = Pr[g2

i > g2
lim], (10)

where the probability space corresponds to sampling training examples. Note that E[g2
i ] = Fi

by definition of the Empirical Fisher Information Fi. So if we assume that Pr[g2
i > g2

lim] depends
monotonically on E[g2

i ] , then we already see that p+
i depends monotonically on Fi. This in turn

implies that synapses with a larger Fisher Information are more likely to have a large release
probability, which is what we claimed. We now discuss the assumption made above.

Assumption: Pr[g2
i > g2

lim] depends monotonically on E[g2
i ]. While this assumption is

not true for arbitrary distributions of g, it holds for many commonly studied parametric families
and seems likely to hold (approximately) for realistic, non-adversarially chosen distributions.
For example, if each gi follows a normal distribution gi ∼ N (µi, σ

2
i ) with varying σi and σi � µi,

then
Fi = E[g2

i ] ≈ σ2
i

and
p+
i = Pr[g2

i > g2
lim] ≈ erfc

(
glim

σi
√

2

)
so that p+

i is indeed monotonically increasing in Fi. Similar arguments can be made for example
for a Laplace distribution, with scale larger than mean.

Link between Learning Rate Modulation and Bayesian Updating Recall that we
multiply the learning rate of each synapse by (1 − pi), see equation (5). This learning rate
modulation can be related to the update prescribed by Bayesian modelling. As shown before,
synapses with large Fisher Information tend to have large release probability, which results
in a decrease of the plasticity of synapses with large Fisher Information. We can treat the
(diagonal) Fisher Information as an approximation of the posterior precision based on a Laplace
approximation of the posterior likelihood (Kirkpatrick et al., 2017) which exploits that the
Fisher Information approaches the Hessian of the loss as the task gets learned (Martens, 2014).
Using this relationship, our learning rate modulation tends to lower the learning rate of synapses
with low posterior variance as prescribed by Bayesian modelling.

Practical Approximation The derivation above assumes that each gradient g is computed
using a single input, so that E[g2] equals the Fisher Information. While this may be the
biologically more plausible setting, in standard ANN training the gradient is averaged across
several inputs (mini-batches). Despite this modification, g2 remains a good, and commonly
used, approximation of the Fisher, see e.g. (Khan et al., 2018; Benzing, 2020).

5.3 Perceptron for Lifelong Learning

To demonstrate that our findings on presynaptic stochasticity and plasticity are applicable to
other models and learning rules, we include experiments for the standard perceptron (Rosen-
blatt, 1958) in a lifelong learning setting.
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5.3.1 Model

The perceptron is a classical model for a neuron with multiple inputs and threshold activation
function. It is used to memorise the binary labels of a number of input patterns where input
patterns are sampled uniformly from {−1, 1}N and their labels are sampled uniformly from
{−1, 1}. Like in ANNs, the output neuron of a perceptron computes a weighted sum of its
inputs followed by nonlinear activation σ(·):

apost

︸ ︷︷ ︸
postsynaptic
activation

= σ

(
n∑
i=1

wi a
pre
i︸ ︷︷ ︸

i-th presynaptic
input

)
. (11)

The only difference to the ANN model is that the nonlinearity is the sign function and that there
is only one layer. We model each synapse wi as a Bernoulli variable ri with synaptic strengthmi

and release probability pi just as before, see equation (1). The expected strengths w̄i are learned
according to the standard perceptron learning rule (Rosenblatt, 1958). The only modification
we make is averaging weight updates across 5 inputs, rather than applying an update after
each input. Without this modification, the update size gi for each weight wi would be constant
according to the perceptron learning rule. Consequently, our update rule for pi would not be
applicable. However, after averaging across 5 patterns we can apply the same update rule for pi
as previously, see equation (4), and also use the same learning rate modification, see equation
(5). We clarify that gi now refers to the update of expected strength w̄i. In the case of ANN
this is proportional to the gradient, while in the case of the non-differentiable perceptron it has
no additional interpretation.

5.3.2 Experiments

For the lifelong learning experiments, we used 5 tasks, each consisting of 100 randomly sampled
and labelled patterns of size N = 1000. We compared the perceptron with learned stochastic
weights to a standard perceptron. For the standard perceptron, we also averaged updates across
5 patterns. Both models were sequentially trained on 5 tasks, using 25 passes through the data
for each task.

We note that for more patterns, when the perceptron gets closer to its maximum capacity
of 2N , the average accuracies of the stochastic and standard perceptron become more similar,
suggesting that the benefits of stochastic synapses occur when model capacity is not fully used.

As metaplasticity parameters we used glim = 0.1, pup = pdown = 0.2 and pmin = 0.25, pfreeze =
0.9. These were coarsely tuned on an analogous experiment with only two tasks instead of five.

5.4 Experimental Setup

5.4.1 Code Availability

Code for all experiments is publicly available at github.com/smonsays/presynaptic-stochasticity.

5.4.2 Metaplasticity Parameters

Our method has a number of metaplasticity parameters, namely pup, pdown, glim and the learning
rate η. For the lifelong learning experiments, there is an additional parameter pfreeze.
For the energy experiments we fix pup = pdown = 0.07, glim = 0.001 and choose η = 0.05 based
on coarse, manual tuning. For the lifelong learning experiments we choose η0 ∈ {0.01, 0.001}
and optimise the remaining metaplasticity parameters through a random search on one task,
namely Permuted MNIST, resulting in pup = 0.0516, pdown = 0.0520 and glim = 0.001. We
use the same fixed parametrisation for all other tasks, namely Permuted Fashion MNIST, Split
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MNIST and Split Fashion MNIST (see below for detailed task descriptions).
For the ablation experiment in Figure 5a, metaplasticity parameters were re-optimised for each
ablation in a random search to ensure a fair, meaningful comparison.

5.4.3 Model Robustness

We confirmed that the model is robust with respect to the exact choice of parameters. For the
energy experiments, de- or increasing pup, pdown by 25% does not qualitatively change results.
For the lifelong learning experiment, the chosen tuning method is a strong indicator of robust-
ness: The metaplasticitiy parameters are tuned on one setup (Permuted MNIST) and then
transferred to others (Split MNIST, Permuted & Split Fashion MNIST). The results presented
in Table 1 show that the parameters found in one scenario are robust and carry over to several
other settings. We emphasise that the differences between these scenarios are considerable. For
example, for permuted MNIST consecutive input distributions are essentially uncorrelated by
design, while for Split (Fashion) MNIST input distributions are strongly correlated. In addition,
from MNIST to Fashion MNIST the number of "informative" pixels changes drastically.

5.4.4 Lifelong Learning Tasks

For the lifelong learning experiments we tested our method as well as baselines in several
scenarios on top of the Split MNIST protocol described in the main text.

Permuted MNIST In the Permuted MNIST benchmark, each task consists of a random
but fixed permutation of the input pixels of all MNIST images (Goodfellow et al., 2013). We
generate 10 tasks using this procedure and present them sequentially without any indication of
task boundaries during training. A main reason to consider the Permuted MNIST protocol is
that it generates tasks of equal difficulty.

Permuted & Split Fashion MNIST Both the Split and Permuted protocol can be applied
to other datasets. We use them on the Fashion MNIST dataset (Xiao et al., 2017) consisting
of 60, 000 greyscale images of 10 different fashion items with 28× 28 pixels.

Continuous Permuted MNIST We carry out an additional experiment on the continuous
Permuted MNIST dataset (Zeno et al., 2018). This is a modified version of the Permuted
MNIST dataset which introduces a smooth transition period between individual tasks where
data from both distributions is mixed. It removes the abrupt change between tasks and allows
us to investigate if our method depends on such an implicit task switch signal. We observe a
mean accuracy over all tasks of 0.8539±0.006 comparable to the non-continuous case suggesting
that our method does not require abrupt changes from one task to another.

5.4.5 Neural Network Training

Our neural network architecture consists of two fully connected hidden layers of 200 neurons
without biases with rectified linear unit activation functions σ(x). The final layer uses a softmax
and cross-entropy loss. Network weights were initialised according to the PyTorch default for
fully connected layers, which is similar to Kaiming uniform initialisation (Glorot and Bengio,
2010; He et al., 2015) but divides weights by an additional factor of

√
6. We use standard

stochastic gradient descent to update the average weight w̄i only altered by the learning rate
modulation described for the lifelong learning experiments. We use a batch size of 100 and train
each task for 10 epochs in the lifelong learning setting. In the energy-information experiments
we train the model for 50 epochs.
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Figure 6: Additional Results on Energy Efficiency of Model with Stochastic and
Plastic Release. (a) Mutual information per energy analogous to Figure 1b, but showing
results for different regularisation strengths rather than the best result for each model. As
described in the main part, energy is measured via its synaptic contribution. (b) Same experi-
ment as in (a) but energy is measured as the metabolic cost incurred by the activity of neurons
by calculating their average rate of activity. (c) Maximum mutual information per energy for
a multilayer perceptron with fixed release probability and constant regularisation strength of
0.01. This is the same model as "Stochastic Release (Fixed)" in (a), but for a range of different
values for the release probability. This is in line with the single synapse analysis in Harris et al.
(2012). For each model, we searched over different learning rates and report the best result.
(d) Analogous to Figure 2a, but release probabilities were initialised independently, uniformly
at random in the interval [0.25, 1] rather than with a fixed value of 0.25. Error bars in (a)
and (b) denote the standard error for three repetitions of the experiment. (c) shows the best
performing model for each release probability after a grid search over the learning rate. (d)
shows aggregated data over three repetitions of the experiment.
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Figure 7: Additional Results on Neuron-Level Sparsity of Network after Learning.
(a) Number of important synapses per neuron for all layers after learning on MNIST. The i-th
row shows data from the i-th weight matrix of the network and we compare true connectivity
to random connectivity. Two-sample Kolmogorov-Smirnov tests comparing the distribution of
important synapses in the shuffled and unaltered condition are significant for all layers (p < 0.01)
except for the output neurons in the last layer (lower-left panel) (p = 0.41). This is to be
expected as all 10 output neurons in the last layer should be equally active and thus receive
similar numbers of active inputs. (b) Scatter plot showing the number of important input and
output synapses per neuron for both hidden layers after learning on MNIST. First hidden layer
(left) has a Pearson correlation coefficient of r = 0.9390. Second hidden layer (right) has a
Pearson correlation coefficient of r = 0.7999. Data is from one run of the experiment.
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Table 1: Lifelong Learning Comparison on Additional Datasets. Average test accuracies
(%, higher is better, average over all sequentially presented tasks) and standard errors for
three repetitions of each experiment on four different lifelong learning tasks for the Presynaptic
Consolidation mechanism, BGD (Zeno et al., 2018) and EWC (Kirkpatrick et al., 2017). For
the control “Joint Training” the network is trained on all tasks simultaneously serving as an
upper bound of practically achievable performance.

Split MNIST Split Fashion Perm. MNIST Perm. Fashion

Presynaptic Consolidation 82.90±0.01 91.98±0.12 86.14±0.67 75.92±0.37

No Consolidation 77.68±0.31 88.76±0.45 79.60±0.43 72.13±0.75

Bayesian Gradient Descent 80.44±0.45 89.54±0.88 89.73±0.52 78.45±0.15

Elastic Weight Consolidation 70.41±4.20 76.89±1.05 89.58±0.53 77.44±0.41

Joint Training 98.55±0.10 97.67±0.09 97.33±0.08 87.33±0.07
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Figure 8: Additional Results on Lifelong Learning in a Model with Presynaptically
Driven Consolidation. (a) Detailed lifelong-learning results of various methods on Split
MNIST, same underlying experiment as in Figure 4c. We report the test accuracy on each
task of the final model (after learning all tasks). Error bars denote the standard error for three
repetitions of the experiment. (b) Mean release probability and percentage of frozen weights
over the course of learning ten permuted MNIST tasks. Error bars in (a) and shaded regions
in (b) show standard error over three repetitions of the experiment.
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Figure 9: Biological Evidence for Stability of Synapses with High Release Probabil-
ity.
To test whether synapses with high release probability are more stable than synapses with low
release probability as prescribed by our model, we re-analysed data of Sjöström et al. (2001) from
a set of spike-timing-dependent plasticity protocols. The protocols induce both LTP and LTD
depending on their precise timing. The figure shows that synapses with higher release prob-
abilities undergo smaller relative changes in expected strength (Pearson Corr. r = −0.4416,
p < 0.01) . This suggests that synapses with high release probability are more stable than
synapses with low release probability, matching our learning rule.
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