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Abstract 

Background 

Cancer somatic mutations are the product of multiple mutational and repair processes, which are 

tightly associated with DNA replication. Distinctive patterns of somatic mutations accumulation 

in tumors, termed mutational signatures, are indicative of processes the tumors underwent. While 

tumor mutational load is correlated with late replicating regions and spatial genome organization, 

much is unknown about the association of many different mutational processes and replication 

timing, and the interplay with chromatin structure remains an open question.  

Methods 

We systematically analyzed the mutational landscape of 2,787 WGS tumors from 32 different 

tumor types separately for early and late replicating regions. We used sequence context 

normalization and chromatin data to account for sequence and chromatin accessibility 

differences between early and late replicating regions. Moreover, we expanded the signature 

analyses to doublet base substitutions and small insertions and deletions by developing an 

artificial genomes-based approach to account for sequence differences between various genomic 

regions. 

Results 

We revealed the replication timing (RT) association of single base, doublet base and small 

insertions and deletions mutational signatures. The association is signature specific: some are 

associated with early or late replication (such as UV-exposure signatures SBS7b and SBS7a, 

respectively) and others have no association. Most associations exist even after normalizing for 

genome accessibility. We further developed a focused mutational signature identification 

approach, which uses RT information to improve signature identification, and found that SBS16, 

which is biased towards early replication, is strongly associated with better survival rates in liver 

cancer.  

Conclusions 

Our comprehensive analyses enabled a more robust classification of RT association of single 

base, doublet base and indels signatures. By doing so, we demonstrated a variation in the 
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association with RT, as many mutational processes biased towards either early or late replication 

timing, and others have an equal RT distribution. These associations were independent from 

chromatin accessibility in most cases. This work highlights that restricting signatures analyses to 

concise genomic regions improves identification of signatures, such as SBS16, and demonstrates 

its clinically relevance as a predictor of improved survival of liver cancer patients. 

 

Introduction 

Somatic mutations in cancer genomes are accumulated along all stages of the cell lineage and are 

the summation of multiple mutational processes1. Different mutational processes generate unique 

combinations of mutation types, termed “Mutational Signatures”. Systematic analysis of the 

frequency of somatic mutations in its immediate genomic context is indicative of the mutational 

processes that were active in the tumor cells2,3. Such analysis of mutations frequency revealed 

many mutational signatures that are indicative of various mutagenesis processes4. Some of the 

signatures (such as single base substitution (SBS) signature 1) are found in all tumor types, 

indicating that they stem from a very general mutagenesis process, whereas others (such as 

SBS7a-d) are characteristic of a single type of cancer due to a tissue-specific mutagenesis 

process (in this case UV damage in skin cancer). In recent years, analyses of mutational 

signatures were expanded from single base substitutions (SBS) to include also doublet base 

substitutions (DBS) and small insertions and deletions (indels)5. 

The DNA replication procedure plays an important role in mutagenesis6, as mismatches can be 

introduced and DNA damage may be fixed into mutations. Indeed, several replication features 

(such as fork rate and direction) are known to be associated with certain types of mutation 

loads7,8. Moreover, replication timing (herein called RT), the relative time in S phase that each 

genomic region is replicated9, is found to be associated with mutation load. The RT of a region 

reflects a higher order of genomic organization as it correlates with basic chromosomal features 

such as the regional GC content, Giemsa banding and gene density. In addition, early replicating 

regions are packed in more accessible chromatin and are more involved in transcription10. RT is 

strongly associated with mutation rates of both germ line and somatic mutations, which are much 

higher in genomic regions that replicate later in S phase (reviewed in11), suggesting that either 

mutagenesis or repair occurs in different intensities in early and late replicating regions. Analysis 
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of somatic mutations in early and late replicating regions showed that the higher mutation rate in 

late replicating regions disappears in tumors with defects in either mismatch repair (MMR) or 

global genome nucleotide excision repair (GG-NER) mechanisms12,13. These results suggest that 

the higher mutation rates in late replicating regions are due to less efficient repair in those 

regions. Interestingly, analysis of the association between different mutational signatures and 

replication properties revealed that most of the detected mutational signatures are significantly 

correlated with the timing or direction of DNA replication8, suggesting that the association 

between replication and mutagenesis is broad and involves many cellular mechanisms. 

Moreover, analysis of the association of RT with mutational signatures both in breast cancer14
 

and in multiple cancer samples8, revealed that some mutational processes are mainly associated 

with late RT.   

It remains to be determined which mechanisms in late replication cause a higher load of 

mutations. Is the increased mutational load related directly to replication or is it a consequence of 

packaging in closed/less accessible chromatin? A recent paper addressed this issue and suggested 

that the association between mutation rates and RT is actually driven by the association between 

mutation rates and chromatin accessibility15. In contrast, it is clear that the replication process 

itself contributes to mutation rates, since there are several signatures that are associated with 

either replication rate7 or with replication fork direction8, two replication features that are not 

directly associated with chromatin structure.  

Here we readdressed the contribution of RT to mutational distribution by performing a 

systematic analysis of the association between RT and mutational signatures using 2,787 Whole 

Genome Sequenced (WGS) tumors which are available from the PCAWG16. Our analysis is 

more comprehensive than previous analyses in several aspects. First, it expands previous 

analyses to the newest version of COSMIC SBS signatures (v3)5 which includes newly 

discovered signatures. Second, by developing a new context normalization method, we were able 

to expand our analysis to doublet base substitution (DBS) and small insertions and deletions 

(indels) signatures, which their RT association has not yet evaluated. Third, it analyzes both pan 

cancer and tissue specific signatures. Fourth, it distinguishes between the contribution of RT and 

of chromatin accessibility to mutagenesis. Taken together, our novel and comprehensive 

approach revealed that the association of late replication with higher mutation rate was an 
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oversimplification, since many mutational processes are more frequent in early RT. This 

realization is important for better understanding of the etiology of many mutational signatures, 

which may lead to better prevention, diagnosis and treatment of cancer17-19. Indeed, improving 

signature identification by focusing on genomic regions in which each signature is more 

dominant, enabled us to better identify liver tumors harboring SBS16, and to reveal that it is a 

signature with potential clinical implications. 

  

Results  

Mutational profiles of tumors are different between early and late replication timing 

regions 

In order to explore the relation between mutational processes and replication timing (RT), we 

compared mutation types in early vs. late replicating portions of the genome. To avoid variations 

of RT between tissues we restricted our analyses to the constitutive RT portions of the genome, 

which have a similar RT across a panel of 26 distinct human tissues20, and are similar also in 

cancer cells (Supplementary Figure 1). In total, 706Mb and 583Mb were analyzed as 

constitutive early and late regions, respectively (Methods). Somatic single nucleotide variants 

(SNV) of 2,787 WGS samples from the PCAWG project were analyzed for mutational 

signatures, separately for constitutive early replicating regions (ERR) and constitutive late 

replicating regions (LRR). Trinucleotide counts of each region were normalized relative to the 

trinucleotide distribution of the entire genome to account for differences in the trinucleotide 

distribution of ERR and LRR. Pan cancer analysis of 66 single base substitution (SBS) 

signatures across all tumors allowed testing for association of each signature with RT. The test is 

based on the mean difference (delta) between relative contribution of each SBS signature in ERR 

and LRR, across tumor samples, corrected for trinucleotide distribution (Methods; Figure 1a). 

As expected8,11, we found many mutational signatures enriched in LRR (e.g. SBS signatures 1, 4, 

8). Surprisingly, we also found many signatures enriched in ERR (e.g. SBSs 5, 16, 40). We 

repeated the analysis for each cancer project separately (see examples in Figure 1b). In almost 

all cases the RT bias was similar across cancer types (in which the signature exists), suggesting 

that the difference in SBS exposure in different RT regions does not depend on cancer type 

(Figure 1c). SBS signatures such as SBS8, and to a lesser extent SBSs 2+13 (APOBEC-related), 
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5, 39, 40 and several others, demonstrated RT association in numerous cancer types. 

Furthermore, the cancer-type specific analyses emphasize the association between RT and 

mutational signatures of many tumor type specific signatures: SBS7a+b in melanoma, which are 

correlated with LRR and ERR respectively; SBS9 with LRR in lymphomas and Chronic 

Lymphocytic Leukemia (CLL); and SBS17a+b with LRR in gastric and esophageal cancer 

(Figure 1b-c). 

Artificial genomes-based method for sequence-context correction 

Since early and late replicating regions differ in their trinucleotide compositions and GC 

content10, differences in mutation distributions may stem from differences in the normal 

sequence context in those regions. Normalizing RT regions by trinucleotide counts compared to 

that of the genome counts addresses this issue, however it is difficult to apply it for more 

complex nucleotide context mutational events, as with indels. To this end, we developed an 

alternative normalization method which is based on the creation of an artificial sample for each 

tumor sample, in which the nucleotide context of each mutation is maintained but its genomic 

position is randomly chosen (Methods). These artificial genomes can be used for distinguishing 

between sequence context (which is maintained) and other biological processes that affect 

mutations distribution (that are active only in the original tumors). To validate this method, we 

compared the context-controlled RT bias, calculated by subtracting the bias in the artificial 

genomes from the bias in the un-normalized tumors, with the bias calculated using the 

trinucleotide normalization method. Overall, the results are highly similar (R = 0.960, p < 10-16, 

Pearson’s correlation test; Figure 2a-b, Supplementary Figure 2). This was true also when 

comparing the two normalization methodologies in the cancer-type specific analyses. The mean 

Euclidean distance between the ERR-LRR deltas of signatures between the two methods within 

the same project is 0.049, with an interquartile range of 0.040, significantly lower than the 

distances between different projects (mean distance of 0.145, p < 10-16, two-sided Student’s t-

test; Figure 2c).  

Doublet base substitution and indels signatures 

In addition to SBS there are two other types of small mutations – doublet base substitutions 

(DBS) and small insertions and deletions (indels) for which signatures were recently determined. 

DBS are less common events than SBS and indels, but were shown to be indicative of commonly 
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occurring, single mutagenic events5. Our artificial genomes-based methodology for sequence 

correction allowed expanding our research to DBS and indels, whose association with RT has 

not been evaluated comprehensively thus far.  

DBS signatures are based on the classification of 78 possible doublet-based mutation types. 

Overall, 11 DBS signatures were introduced by COSMIC, of which 8 were first reported 

recently5. Because of their rarity, only 163 tumor samples from ICGC and 139 samples from 

TCGA met our inclusion criteria for the RT analysis (i.e. at least 20 mutations in ERR and in 

LRR, and 90% success of reconstruction by the DBS signatures - see Methods). These 302 

samples were mainly from three cancer types (83 melanomas; 123 liver cancers and 67 lung 

cancers). We applied our signatures analysis approach using the artificial genomes correction for 

ERR and LRR and found three signatures with RT bias (Figure 3a). DBS1 and DBS4 were 

enriched in ERR whereas DBS2 was enriched in LRR. The project specific analyses confirmed 

pan-cancer results and added two signatures enriched in ERR – DBS7 and DBS9 in liver and 

lung cancer, respectively. Finally, DBS11 showed surprising results since it is enriched in LRR 

in melanoma samples and in ERR in lung squamous cell carcinoma samples (Figure 3a-b). 

The classification of small insertions and deletions signatures (ID signatures) is based on 83 

subtypes of indels events. In total, we analyzed 891 samples that met the inclusion criteria (i.e. at 

least 100 indels in ERR and in LRR, and 90% success of reconstruction by the ID signatures - 

see Methods). Pan-cancer analysis revealed a few signatures with strong RT biases, including 

ID2, ID3, ID9 and ID1 in LRR; and ID8, ID10, ID4 and ID5 in ERR (Figure 3a-b). Cancer type 

specific analyses confirmed these results and revealed the association of ID13 with LRR in skin 

cancers (Figure 3b).  

These results are consistent with the single substitutions results (Figure 3c). SBS4, DBS2 and 

ID3 are associated with tobacco damage and found enriched in LRR. Similarly, APOBEC related 

signatures (SBS2, SBS13 and DBS11) are associated with ERR, as have been recently 

suggested21. Both DBS1 and ID13 are associated with UV damage but they differ in their 

enrichments. While DBS1 resembles SBS7b in its enrichment in ERR, ID13 resembles SBS7a in 

its association with LRR. This can be explained by the type of pyrimidine dimer characteristic of 

each signature. In ID13 and SBS7a the first residue in the dimer is T (TT and TC, respectively) 

and the bias is toward LRR, whereas in DBS1 and SBS7b the first residue is C (CC and CT, 
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respectively) and the bias is toward ERR (Figure 3c). Further studies are needed to understand 

the repair mechanisms that are responsible for these differences.  

We found that all three DNA double strand break (DSB) associated signatures (SBS3, ID6 and 

ID8) are enriched in ERR (Figures 1a, 3a-c). This finding goes along with the higher prevalence 

of chromosomal rearrangements (which are the consequence of unrepaired DSBs) in ERR 

(reviewed in11), and by the analysis of End-seq data22, which revealed significantly more DSBs 

in ERR than in LRR (Supplementary Figure 3). 

Taken together, the consistent association between replication timing bias of related mutational 

signatures (SBS, DBS and indels) and the variable association between the processes, further 

support the realization that different mutational processes vary in their association with RT.   

 

The tangled relationship between RT and chromatin activity 

We have shown a clear association between RT and many mutational signatures, which goes 

beyond the differences in sequence distribution between ERR and LRR. RT is associated with 

chromatin structure - ERR are usually more accessible and active than LRR10. Thus, it is possible 

that RT is just a proxy for chromatin structure, which affects mutation by modulating DNA 

accessibility and the RT itself may not contribute to mutational processes. Indeed, a recent 

publication suggests that mutation rates and distributions are mainly associated with chromatin 

structure and less with RT15. In order to directly address this question, we wanted to define four 

relatively uniform genomics regions: ERR-active, ERR-inactive, LRR-active and LRR-inactive 

and compare the contribution of mutational signatures in each of those regions. To this end, we 

took advantage of a recent annotation that used an entropy-based approach to assign a chromatin 

state to each genomic region across all cell types profiled in the Roadmap Epigenome 

Consortium15. In order to get sufficient genome coverage, we profiled the RT of several cancer 

cell lines (Methods). Together, the profiled cancer cell lines cover most of the signatures with a 

clear RT bias (|delta|>0.05 in at least one project; Figure 1b). Intersecting active and inactive 

domains with RT data allows us to create the 4 genomic categories (Figure 4a; Supplementary 

Table 2; Methods). Using these categories, we repeated our signatures analyses. 
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We found that RT contributes to the creation of UV-related mutational signatures independently 

of chromatin activity, as both SBS7a and SBS7b showed significantly different contribution in 

LRR and ERR, even when the domain activity was controlled for (all p-values < 10-4, FDR 

corrected Wilcoxon’s rank sum test; Figure 4b). Interestingly, the opposite was true as well – 

domain type contributes to UV related mutagenesis even when RT was controlled for (all p-

values < 10-5).  

Overall, this phenomenon was repeated in various signatures. SBSs 16, 2+13, 3, 5 and 40 

showed highest enrichment in early-active regions in liver, lung, breast and pancreatic cancers 

respectively, statistically significant more than when one factor was controlled, i.e. in late-active 

or early-inactive regions (Figure 4b). Similarly, SBS8 and to a lesser extent also SBS4 showed 

highest enrichment in late-inactive regions in lung and breast cancer, respectively, statistically 

significant more than when one factor is controlled (Figure 4b). In contrast, other signatures 

show higher dependency on chromatin accessibility than on RT. This is true for example for 

SBS39 in breast cancer that its association with ERR (Figure 1) is actually association with 

accessible chromatin (Figure 4b).  Similarly, the association of SBS1 to LRR in pancreatic 

cancer can be mainly explained by association with the inactive parts of the genome (Figure 4b). 

Taken together, our results clearly demonstrate that both RT and chromatin accessibility 

contribute independently to mutagenesis with different effects on different mutational processes.  

 

Focused signatures analysis approach reveals association of SBS16 and 

survival rates  

Finding the uneven genomic distribution of many signatures (summarized in Supplementary 

Table 1), suggests that taking RT information into account may improve mutational signatures 

identification. We therefore developed a focused signature analysis approach, and demonstrated 

its power by studying the contribution of SBS16 to liver cancer.  

SBS16 is a signature of unknown etiology, found mainly in liver cancer5. It was shown to be 

associated with male gender, alcohol use and tobacco consumption23. Here, we showed that 

SBS16 is highly enriched in early replicating regions (Figures 1a, 1c, 5a). In light of our 

findings, we explored the contribution of SBS16 in liver cancer, using either the entire genome 
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or focusing on ERR only. Out of 257 samples in the LIRI-JP project we found only 58 samples 

with a significant (>10%) relative contribution of SBS16 using the entire genome for signature 

identification, while almost three times more samples (170 samples) were found with SBS16 

signature analysis focused only on ERR (Figures 5b-c). Since our approach nearly tripled the 

number of tumors harboring SBS16, we further characterized those tumors and designated three 

groups: i) SBS16 positive in both analyses (N=58); ii) SBS16 positive only in ERR-focused 

analysis (N=122); and iii) SBS16 negative (less than 10% contribution) (N=69). Gender analysis 

of the three groups revealed that the two SBS16 positive groups are mainly composed of males 

(53/58 in whole genome group, 99/122 in ERR only group), a statistically significant indication 

that both groups are indeed SBS16 positive (in a cohort of 190/257 = 74% males, the likelihood 

that randomly chosen 122 samples will contain 99 males is p < 0.05, one-sided exact binomial 

test). In contrast, in the SBS16 negative group there are 52% females and 48% males.  

Survival analysis of male patients revealed that both SBS16 positive groups have similar survival 

times, which are significantly longer compared to the survival rates of the SBS16 negative group 

(P = 0.64 and P = 0.0048, respectively, Cox proportional-hazards regression model; Figure 5d). 

This difference in survival cannot be identified using the classical entire genome approach, since 

99 tumors, which are SBS16 positive only in ERR-focused approach and thus have better 

survival rates, are considered SBS16 negative while exploring all genome (Supplementary 

Figure 4a; p = 0.25). Males survive longer than females in LIRI-JP project (Supplementary 

Figure 4b). However, we observed that the better survival is restricted only to individuals 

harboring SBS16, whereas for individuals without SBS16 the survival was similar between 

males and females (P=0.66, Cox proportional-hazards regression model; Supplementary Figure 

4b). Taken together, focusing signature analysis to the relevant parts of the genome improved the 

identification of SBS16 and discovered its association with better survival. These results were 

not a consequence of the threshold we chose (10% contribution), since similar results were 

obtained for a large range of thresholds (Supplementary Figure 5).  

As expected, applying the focused signature analysis approach to many other signatures with 

clear association with RT increased the number of tumors harboring each signature 

(Supplementary Figure 6). 

 

Discussion 
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A great deal of evidence shows higher mutation rates in late replicating regions11, however the 

mutational processes that lead to this bias are not yet clear. By using mutational signature 

analyses separately on genomic regions that replicate at either early or late S phase we were able 

to identify many mutational processes that are differentially associated with RT (Supplementary 

Table 1).  

The association between RT and mutational processes has been previously addressed – 

perturbation either to the mismatch repair (MMR) or to the global genome nucleotide excision 

repair (GG-NER) mechanisms abolishes the differences between LRR and ERR, suggesting that 

both these repair processes are more efficient in ERRs12,13. This specific mechanism probably 

stems from the fact that ERR genomic regions are packed in open chromatin that allows better 

accessibility to the repair proteins. More recently, a systematic analysis of mutations distribution 

revealed that many mutational signatures are associated with RT, suggesting that additional 

processes (beside MMR and GG-NER) show differential efficiencies in different genomic 

locations8. This comprehensive study found that most of the signatures that show association 

with RT were enriched in LRR, and only two signatures - SBS5 and SBS16, were enriched in 

ERR. Recently it was shown that another mutational process - APOBEC3 mutagenesis, is 

enriched in ERR21.  

These findings encouraged us to readdress the possibility that certain mutational processes are 

enriched in the ERRs and that the association between mutation rate and RT is more complex 

than just having a greater mutation load in the late replicating and closed portions of the genome. 

We improved previous analyses in several ways. First, we restricted our analyses to genomic 

regions in which the replication timing was found to be constitutive20, minimizing the effect of 

variation in RT between tumor types. Second, we used relative contribution in order to control 

for different mutation rates in different tumors and tumor types. Third, we used the latest version 

of COSMIC mutational signatures (version 3), which is much more precise then previous 

versions regarding contamination between different signatures and increased the number of 

known SBS signatures substantially5. Fourth, we expanded the analysis to DBSs and indels 

related signatures. Fifth, we performed pan-cancer analysis as well as cancer type specific 

analysis. This identified pan cancer mutational processes as well as cancer specific processes and 

thus enabled identification of the RT association of rare signatures. Finally, we corrected for 
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differential sequence distributions in ERR and LRR both by normalizing for trinucleotide 

frequencies and by developing an artificial genomes-based approach, which is crucial for 

considering differential nucleotides sequence distribution for DBS and indels.  

Taken together our results revealed the RT association of each mutational signature. We found 

that in contrast to the previous perception of general preferences for mutagenesis in late 

replicating regions7,8,11,12, the actual picture is more subtle with different mutational processes 

showing preferences to either ERR, LRR or no association with RT. The most obvious example 

of this new perception is the difference between SBS7a and SBS7b. Both signatures are caused 

by UV damage but differ in their actual signatures most probably due to differences in yet 

unknown repair mechanisms, still 7a is enriched in LRR whereas 7b in ERR. The generation of 

artificial genomes allowed us to delineate context-bias of signatures, as well as to determine the 

RT bias of DBS and indels (Figure 2). We demonstrated that knowledge of the mutation 

distribution bias across genomic regions can improve the sensitivity of signature analyses by 

focusing on the more relevant parts of the genome. This realization allowed us to better identify 

liver tumors with SBS16 and to show for the first time a strong association between SBS16 and 

improved survival rates.  

What causes the non-uniform distribution of mutational signatures along the genome? One 

possibility is that mutations are derived by sequence distribution (for example one expects to find 

more APOBEC related signature SBS13 in genomic regions rich with TCT or TCA 

trinucleotides). The other possibility is that the distribution of either the damage or the repair 

processes is not uniform and certain genomic regions are more susceptible to these specific 

processes. For example, as has been shown before, both MMR and NER are more efficient in 

ERR12,13,21. Our analyses support all three possibilities – some mutational signatures show 

association with RT mainly due to sequence distribution (SBS3 and 12, Supplementary Figure 

2a). Other cases, such as the UV response signatures 7a and 7b show opposite association with 

RT, in spite of relative uniform distribution of UV damage24, suggesting that they differ in the 

cellular response to the damaged DNA. SBS7a (and ID13 as well) shows higher contribution in 

LRR, whereas SBS7b and DBS1 are enriched in ERR. These different preferences are probably 

attributed to different repair mechanisms active in ERR and LRR. Indeed, trans-lesion synthesis 

polymerases show differential activity throughout the cell cycle25
, raising the possibility that 
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different TLS polymerases are active during early and late S. Finally, the higher association of 

both ID6 and ID8 to ERR is probably due to higher frequency of DSBs in ERR, which was 

directly observed by the End-seq methodology that provides a landscape of DNA double-strand 

breaks prior to DNA repair (Supplementary Figure 3).  

RT is strongly associated with chromatin structure - ERR are gene rich, arranged in an open 

chromatin and have higher transcription rates, whereas LRR are enriched within the closed and 

silenced portions of the genome10. Thus, our findings of the association between RT and 

mutational signatures do not necessarily imply a direct association between replication and 

mutagenesis and it may be actually an association between the chromatin structure and the 

mutagenesis processes. Indeed, a recent paper suggests that the association between mutation 

rates and RT is actually an association between mutation rates and chromatin accessibility15. On 

the other hand, the contribution of the replication process itself to mutation accumulation is clear 

since several signatures are directly associated with replication rate7 or with replication fork 

direction8. These two options are not mutually exclusive and there are probably some signatures 

that are affected by accessibility whereas other signatures are associated with actual replication 

processes that are different between early and late S phase. We directly addressed this issue by 

dividing the genome into four regions with relatively uniform RT and chromatin accessibility. 

This stratification allowed us to test separately the effects of RT and chromatin accessibility on 

mutation rates for many mutational signatures. We found that for many signatures (such as SBSs 

3, 2+13, 7a, 7b, 16, 5, 40, 8 and 4) both chromatin accessibility and RT contribute separately to 

the mutational activities. On the other hand, in other signatures (such as SBSs 1 and 39) the 

contribution of chromatin accessibility was much higher (Figure 4). Our results suggest that the 

interplay between RT and chromatin structure is tangled, and one genomic feature cannot fully 

explain the mutational landscape of the other. We showed that RT contributes to mutational rates 

of different mutational processes independently of chromatin accessibility, and vice versa. 

Our findings have possible clinical implications. Focusing on specific genomic regions based on 

RT can lead to higher sensitivity to detect mutational signatures. As an example, we have shown 

that analysis focused on ERR more than tripled the number of samples identified with SBS16. 

Importantly – the patients with SBS16 detected only in an ERR-focused analysis had better 

survival, which is comparable to the survival of patients with SBS16 detected in whole genome 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2021. ; https://doi.org/10.1101/2021.05.05.442736doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442736
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

analysis. This shows that not only more patients were detected with SBS16 signatures but that 

the clinical implication of ERR focused SBS16 detection is similar to whole genome 

identification of SBS16. 

Taken together, the present study shows that replication timing is associated with many 

mutational signatures and that at least some of this association is specific to RT related 

processes. We showed clinical implication of these findings. We believe that as genomic data 

from more tumors is accumulated, more associations will be identified and that this might lead to 

better use of signature information to treat cancer patients. 

 

Methods 

Data sources. We downloaded somatic mutation calls (VCF files) from the Pan-Caner Analysis 

of Whole Genomes (PCAWG) consortium release of 2,787 whole-cancer genomes and their 

matching normal tissue across 38 tumor types16. The data consists of two sources: The 

International Cancer Genome Consortium (ICGC) - 1,902 samples, and The Cancer Genome 

Atlas (TCGA) - 885 samples. Each source utilized its standard variant call pipeline (Consensus 

calls for ICGC, and the Broad institute variant calling pipeline for TCGA). The somatic mutation 

profile of the two consortiums were very similar both in terms of 96 trinucleotide context 

(Supplementary Figure 7a), and in terms of mutational signatures (Supplementary Figure 

7b). Accordingly, we combined the mutation calls data for all analyses.  

Replication timing regions and chromatin annotations. In order to minimize the effect of 

variation in RT between cell types, we used only the constitutive RT regions for most of our 

analyses, which constitute approximately 40% of the human genome that have the same RT in 26 

tissues examined 20 and are also similar in cancer (Supplementary Figure 1). We used the 

median RT of the genome to separate between early and late replication (Supplementary Figure 

8). Among the constitutive RT regions 706Mb are defined as ERR and 583Mb as LRR. For the 

stratification of melanoma, liver HCC, breast cancer, lung cancer and pancreatic carcinoma 

samples by chromatin activity, we used RT data of the entire genome (and not only the 

constitutive regions) of a cell line derived from the relevant cancer type. These RT profiles were 

intersected with chromatin annotation from a recent publication15. Regions annotated as either 

“active” or “active2” were defined as active chromatin whereas the “inactive” regions were 
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defined as inactive chromatin. The use of the full genome RT profiles for these analyses was 

crucial, since early-inactive and late-active groups are small (80Mb and 17Mb out of 706Mb and 

583Mb of constitutive RT regions respectively). Replicating timing of four cell lines was 

produced by us: melanoma cell line FM-55-P, breast cancer cell line BT-549, lung cancer cell 

line A549 and pancreatic carcinoma cell line PANC-1. RT data of liver HCC cell line HepG2 

was downloaded from https://www2.replicationdomain.com/database.php#. In total, 860-950Mb 

were classified as early-active, 200-433Mb as early-inactive, 113-197Mb as late-active and 865-

1,024Mb as late-inactive (Supplementary Table 2).  

Mutational signatures analysis. To measure resemblance between different regions in the same 

sample, we used cosine similarity:  
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The cosine similarity values range between 0 (completely different) and 1 (identical). 

Mutational profiles of SBS, DBS and indels were extracted using SigProfilerMatrixGenerator26. 

We excluded tumors with too few mutations (< 200 SBS, < 100 indels, < 20 DBS)27. Unless 

stated otherwise, for each region used in the paper aside for when using the method of 

comparison to artificial genomes, we normalized the mutation counts by the abundance of the 

trinucleotide context relative to that of the whole genome. SBS, DBS and indels signatures 

referred to in this article are all from the COSMIC database v328. Overall, we used 66 SBS 

signatures, 11 DBS signatures and 17 indels signatures. Mutational signatures were detected for 

each sample and each region independently, by solving the Non-Negative Least Squares (NNLS) 

algorithm using MutationalPatterns R package29, fitting known COSMIC mutational signatures 

to the given mutational profile. This approach has been proposed for assessing signatures in 

well-studied cancer samples and when not aimed to discover new signatures as described5,30,31. 

The fitting approach may falsely assign too many signatures to a sample (signature “bleeding”). 

Thus, we used a-priori knowledge from the gold-standard COSMIC database for excluding non-

relevant signatures as described in Alexandrov et al. and in Maura et al.5,31. Samples in which the 

similarity between the original mutational profile and the reconstructed mutational profile (given 

by the fitting algorithm results) were < 0.9 (cosine similarity) were excluded from further 
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analyses. The contribution of each signature to the mutations in each tumor can be measured in 

absolute terms (counting the number of mutations attributed to each signature) or in relative 

terms (assessing the percentage of mutations attributed to each signature). We preferred the 

relative methodology, since it controls for different mutation rates in different tumors and tumor 

types. 

Artificial genomes. For each of the tumor samples, we generated 10 artificial genomes using 

SigProfilerSimulator26. The artificial genomes carry the exact same mutational profile (classified 

by 96 SBS subtypes, 78 DBS subtypes and 83 ID subtypes, including microhomology deletions) 

as the original sample (cosine similarity = 1). The simulated mutations are randomly distributed 

across the genome in an unbiased fashion. These artificial genomes were analyzed for signatures. 

The mean of the 10 ERR and LRR mutational signature profiles was used for the comparison 

with the samples’ actual signatures profiles. 

Delta analysis. The delta is the relative contribution of each signature in ERR minus its relative 

contribution in LRR. Relative contribution of each signature in each sample was calculated as 

number of mutations attributed for a specific signature in a specific sample, divided by the sum 

of mutations in that sample. Delta was calculated only if the contribution of a specific signature 

was more than 5% in at least one region (ERR or LRR). A signature was considered pan-cancer 

if it appeared significantly associated with RT (p < 0.05 for a specific signature in a specific 

cancer project, FDR corrected Wilcoxon rank-sum test), in at least 50% of projects included in 

the analysis. The delta analysis was performed in the same way for artificial genomes. 

Differences of deltas were calculated between real genomes and artificial genomes’ signatures 

deltas (i.e., signatures’ delta of the original genomes minus signatures’ delta of the artificial 

genomes). Only projects with at least 15 tumors, after applying the inclusion criteria (see above), 

were included in cancer type specific analyses.   

SBS16 detection and survival analysis for LIRI-JP project. Clinical data of patients from 

LIRI-JP project were obtained from the ICGC data portal. Since only few cases of female’s liver 

tumors contain SBS16, we restricted our survival analysis to males. Survival analysis was 

performed using R packages ‘Survival’ and ‘Survminer’. In Cosmic v3 SBS16 is a liver-specific 

well-defined signature5. Thus, one can reliably use a relatively low threshold for identifying 

SBS16 positive samples in liver cancer samples. We performed the survival analyses with a 
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range of thresholds (8% to 12%). For each analysis, a sample was considered SBS16 

positive/negative if SBS16’s relative contribution was above/below the specific threshold, 

respectively (Supplementary Figure 5).  

Statistics. Statistical analyses were performed using R version 4.0.3. If not stated otherwise, the 

comparison of two distributions of continuous values was tested with a paired Wilcoxon rank 

sum test. For multiple comparisons, P-values were corrected by false discovery rate (FDR). All 

box plots are presented according to the standard box plot notation in R (ggplot2 package).  
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Figure 1 | Replication timing contribution to single base substitution mutational signatures. a, Average replication-timing biases 3 

across all SBS signatures in 2,519 tumors. Shown is the delta between ERR and LRR. Positive value implies higher contribution in 4 

ERR, negative value implies higher contribution in LRR. Color of bars indicate in how many cancer projects the bias was found 5 

statistically significant (p < 0.05, FDR corrected Wilcoxon rank sum test). Signatures with RT bias in more than 50% of cancer-6 

projects were considered as pan-cancer. Small histograms illustrate the distribution of the delta for three signatures. b, Scatter plots 7 

showing the contribution of the indicated signatures in ERR (orange) and LRR (blue) for individual cancer samples (X axis) in 8 

different cancer projects: melanoma MELA-AU and SKCM-US (SBS7a and SBS7b, left upper), CLL CLLE-ES (SBS8 and SBS9, 9 

right upper), lung LUSC-US (SBS4 and SBS2+13, left lower) and ovarian cancer OV-AU and OV-US (SBS3 and SBS40, right 10 

lower). X axis are tumors. c, Heatmap showing each SBS signature’s RT bias (p < 0.05, FDR corrected Wilcoxon rank sum test), or 11 

no bias (white), stratified by cancer types. Red and blue indicate positive and negative delta respectively. The projects were ordered 12 

using hierarchical clustering. Signatures with no bias in any project are not shown.  13 
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Figure 2 | Artificial genomes-based method for sequence-context correction. a, Bar plot showing average replication-timing biases 15 

in normalization-based correction (blue) compared to the artificial genomes-based correction (orange) methods in SBS signatures 16 

across 2,519 tumors. Positive value implies higher contribution in ERR, negative value implies higher contribution in LRR. Heatmaps 17 

comparing all signatures, including many with delta of ~0, are available in the supplementary information (Supplementary Figure 18 

2b). Small histogram illustrates the distribution of the differences between the deltas of the 2 methods. b, Scatter plot showing the 19 

correlation (R = 0.96, p < 10-16, Pearson’s correlation) between the deltas in the two methods. Each point marks SBS signature’s 20 

deltas. Regression line was calculated using ‘lm’ method in ggplot2. The grey shade area represents the 95% confidence interval.  c, 21 

Euclidean distances heatmap between deltas’ distribution in cancer projects in the different methods. The diagonal represents the 22 

distances between same project in two methods. Lower values mean greater similarity. Projects are ordered by hierarchical clustering 23 

of the artificial-genomes method deltas. The deltas of each method separately are shown in Supplementary Figure 2b.    24 
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Figure 3 | Replication timing contribution to doublet base substitution and indels mutational signatures. a, Bar graphs showing 27 

the RT bias (tumor RT delta – artificial genome RT delta) in relative contribution of relevant signatures for DBS (left) and indels 28 

(right) signatures. b, Heatmap delineating RT biases by different cancer types. Positive (Red) and negative (blue) values indicate ERR 29 

bias and LRR bias, respectively. All colored cells have p < 0.05, FDR corrected Wilcoxon rank sum test. Upper: DBS signatures; 30 

Lower: indels signatures. c, Distribution of the contribution of RT (tumor RT delta – artificial genome RT delta) for selected SBS, 31 

DBS and indels signatures clustered by etiology. Each point marks the difference between tumor delta and artificial genome delta of a 32 

given sample. Points are colored by cancer type and a specific etiology. Cancer projects presented are those in which we anticipate to 33 

find the selected signatures5. In boxplots: the center line marks the median value, upper and lower limits mark first and third quartiles 34 

and the whiskers cover data within 1.5× the IQR from the box. 35 
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Figure 4 | Impact of replication timing and chromatin activity on different mutational processes. a, RT and chromatin activity 37 

regions distributed across 100Mb in chromosome 1 (left) and 50Mb in chromosome 2 (right) in a melanoma cell line. Upper bar 38 

illustrates chromatin activity annotations taken from15. Y-axis represents the replication timing score of each area. The colors capture 39 

the four categories used for the analysis and regions excluded from the analysis (black). b, Relative contribution of selected signatures, 40 

stratified by RT and chromatin regions. All p-values derived from FDR corrected Wilcoxon’s rank sum test. NS, not significant; *, p < 41 

0.05; **, P < 0.01; ***, p < 0.001. Red and dark-blue font colors indicate RT regions comparisons (i.e., ERR vs LRR) and chromatin 42 

accessibility comparisons (i.e., active vs inactive) respectively. In boxplots: the center line marks the median value, upper and lower 43 

limits mark first and third quartiles and the whiskers cover data within 1.5× the IQR from the box. Each dot represents a single tumor. 44 

Left upper: SBS7a/b in melanoma samples (n=108); Middle upper: SBSs 12 and 16 in liver hepatocellular carcinoma (n=257); Right 45 

upper: SBS2+13 (APOBEC related) and SBS4 in lung adenocarcinoma and squamous cell carcinoma (n=84); Left lower: SBSs 3, 8 46 

and 39 in breast invasive carcinoma (n=57); Right lower: SBSs 1, 5 and 40 in pancreatic carcinoma (n=176).  47 
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Figure 5 | Better survival of liver patients harboring SBS16 revealed by focused signatures analysis identification. a, Histogram 50 

of SBS16 delta (ERR – LRR contribution). Positive values indicate higher contribution in ERR. b, Pie charts illustrating the changes 51 

of SBS signatures contribution in entire genome, ERR only, and LRR only. The average contribution of each signature in the LIRI-JP 52 

project is presented. c, Scatter plots showing the contribution of the SBS16 in ERR (red), whole genome (cyan) and LRR (black) in 53 

individual cancer samples. X axis are tumors. d, Survival analysis for three groups of males with liver hepatocellular-carcinoma from 54 

LIRI-JP project: green – harboring the SBS16 signature in entire genome analysis (n=53); blue - harboring the SBS16 signature only 55 

in ERR analysis (n=99); magenta – does not contain the SBS16 signature (n=33). P-values demarcate SBS16 in ERR only vs. SBS16 56 

in whole genome (upper, p=0.64) and combined SBS16 positive group (ERR only + whole genome, n=152) vs. no SBS16 group 57 

(lower, p=0.0048). P-values derived from Cox proportional-hazards regression model.  58 
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