
Title: Adaptive foraging behavior increases vulnerability to climate change 1 

Authors: Benoit Gauzens1,2,*, Benjamin Rosenbaum1,2, Gregor Kalinkat3, Thomas Boy1,2, 2 

Malte Jochum4,5, Susanne Kortsch6, Eoin J. O’Gorman7, Ulrich Brose1,2.  3 

1 EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-4 

Leipzig, Leipzig, Germany 5 

2 Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany 6 

3 Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater 7 

Ecology and Inland Fisheries (IGB), Berlin, Germany 8 

4 Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research 9 

(iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany 10 

5 Leipzig University, Institute of Biology, Leipzig, Germany 11 

6 Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of 12 

Helsinki, Finland 13 

7 School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK 14 

* Corresponding author: benoit.gauzens@idiv.de 15 

 16 

Abstract:  17 

Adaptative foraging behavior should promote species coexistence and biodiversity under climate 18 

change as predators are expected to maximize their energy intake, according to principles of optimal 19 

foraging theory. We test these assumptions using a dataset comprising 2,487 stomach contents of fish 20 

species across functional groups, feeding strategies, and prey availability in the environment over 12 21 

years. Our results show that foraging shifts from trait-dependent prey selectivity to density 22 

dependence in warmer and more productive environments. This behavioral change leads to lower 23 

consumption efficiency as species shift away from their optimal trophic niche, undermining species 24 

persistence and biodiversity. By integrating this adaptive behavior into dynamic models, our study 25 

reveals that adaptive foraging yields higher risk profiles for ecosystems under global warming.  26 
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 27 

 28 

Main text: 29 

 30 

Ecosystems are experiencing abrupt changes in climatic conditions, making it ever more important to 31 

predict and understand how they will respond to future changes. Global warming will affect various 32 

levels of biological organization; from physiological processes occurring at the individual level1 to 33 

patterns at macroecological scales2. Warming impacts will cascade through these different 34 

organizational levels, changing species composition3 as well as community and food web structure4. 35 

By scaling up temperature effects from species physiology to food webs5, trophic interactions play a 36 

key role in the response of ecosystems to global warming6. 37 

 38 

To assess the future of ecological communities, food web models that build on biological processes 39 

observed at the level of individual organisms can be used to translate mechanisms and predictions to 40 

the ecosystem level. For example, Allometric Trophic Networks7 (ATN) quantify effects of body 41 

mass and temperature on the biological rates of consumers and resources to predict species biomass 42 

changes over time and across environmental conditions7–9. Thus, ATNs facilitate understanding of 43 

how physiological responses to warming translate into species coexistence and biodiversity10. 44 

However, the ability of ATNs to derive sound predictions for large communities under changing 45 

environmental conditions has been challenged, stressing the need for more biological realism6,11. 46 

Indeed, a strong limitation of these models is that species are characterized by a set of biological rates 47 

that respond to temperature, such as metabolic or attack rates. Therefore, species are limited to 48 

physiological responses to warming, whereas the behavioral component is largely ignored. However, 49 

it is well established that species also respond to warming by changing their behavior12,13, which helps 50 

to support species coexistence, and thus needs to be incorporated into food web models to improve 51 

their predictive power14–18.  52 

 53 

Energetic demands increase with temperature, but species can offset this by adopting various 54 

strategies to increase their energy intake. Species can actively forage on more rewarding 55 
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resources13,19, typically prey that are close to the maximum body mass that consumers can feed on20. 56 

Therefore, we expect that predators consume larger prey individuals (trait-based selectivity) at higher 57 

temperatures, reducing predator-prey body mass ratios (H1). Alternatively, individuals under high 58 

energetic stress may be driven by their increased demand for food and accept less rewarding (smaller, 59 

but more abundant) prey upon random encounter (H2) leading to a lower trait-based selectivity, and a 60 

trophic niche driven more by neutral processes (random encounter probability). These two hypotheses 61 

would lead to contrasting effects on communities. Trait-based selectivity (H1) may increase the 62 

strength of interactions between predators and larger prey, depleting the latter’s biomass. 63 

Alternatively, if neutral processes are driving selectivity (H2), predators will mostly forage on more 64 

abundant species, leading to a stronger control of their biomass, which could prevent competitive 65 

exclusion and therefore enhance species coexistence17,21. To test these hypotheses, we compiled a 66 

database of 22,185 stomach contents from six demersal fish species and analyzed their behavioral 67 

response to changes in temperature and productivity. Subsequently, we addressed the consequences of 68 

these empirical relationships by integrating them into a population-dynamical model to predict how 69 

species coexistence changes with warming. 70 

 71 

Response of fish to temperature and productivity gradients 72 

We used our database to document how consumer foraging behavior responds to temperature and 73 

productivity. The six fish species considered belong to two functional groups differing in body shape 74 

and foraging behavior (flat, sit-and-wait predators versus fusiform, active hunters). We used empirical 75 

means and standard deviations to describe the prey body mass distributions observed in fish stomachs 76 

(hereafter called the realized distribution) and in the environment (hereafter called the environmental 77 

distribution) (Fig. 1). The environmental distribution defines what is expected if neutral processes 78 

drive fish diets: it represents the expected body mass distribution of prey in fish stomachs if 79 

consumption was driven by density-based encounter rates only. However, the size distributions of 80 

prey in the environment and in consumer diets are usually not identical because consumers actively 81 

select prey individuals with specific body masses. We used the ratio of realized and environmental 82 

distributions to calculate fish selectivity with respect to these different prey body masses to obtain a 83 
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preference distribution (Fig. 1), which describes consumer selectivity based on traits and consumer 84 

behavioral decisions. Traits define the fundamental trophic niche of a species (what a consumer can 85 

eat), while behavioral decisions define which parts of this fundamental niche the consumer will focus 86 

on. Therefore, a shift in behavior does not necessarily imply a shift in the identity of prey species, but 87 

can simply lead to a shift in the individual traits that are selected, within or across different species.  88 

 89 

We first described how the body mass distributions in consumer stomachs were changing with 90 

predator body mass and foraging strategy, as well as environmental conditions (temperature and 91 

productivity) using a linear model to predict the median of the realized distribution. We selected the 92 

most parsimonious model based on AIC. As expected22, we observed that the median of prey body 93 

mass in consumer guts increased with predator body mass in a similar way for the two different 94 

predator body shapes and foraging strategies(Fig. 2(A), Table 1). The body mass of consumed prey 95 

decreased with temperature, with a stronger effect in fusiform fish (Fig. 2(B), Table 1).  96 

These effects alone are insufficient to describe a change in fish behavior as the distribution of prey 97 

body masses in the environment also changes with environmental temperature and productivity (SI I). 98 

To disentangle the effect of prey availability (neutral processes) from the fish behavioral response, we 99 

estimated the preference distribution that depicts consumer selectivity independent of the 100 

environmental prey distribution and analyzed its response to test our two hypotheses. To do so, we 101 

built a Bayesian linear model with temperature, productivity, fish functional group, and consumer 102 

body mass as main effects, and interactive effects corresponding to our hypotheses: between 103 

temperature and productivity and between temperature and fish functional group (see Methods). 104 

Comparison of models with and without consumer fish functional group as a covariate with a “Leave 105 

One Out cross” validation approach23  indicated that the behavioral responses to temperature and 106 

productivity were similar for fish species with different body shapes and foraging strategies. We 107 

therefore excluded this variable from the final model. Our results confirm the importance of species 108 

traits for structuring trophic interactions, as larger fish are foraging on larger prey (Fig. 3(A)). They 109 

also emphasize that ecosystem productivity alters the temperature-dependence of fish foraging 110 

behavior with a significant interaction between temperature and productivity (Fig 3(B), Table 2). The 111 
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temperature effect was negative only in high productive environments (SI II), indicating that fish only 112 

adapted their feeding behavior to temperature by foraging on smaller prey in warmer conditions when 113 

resources were plentiful.  114 

 115 

The energetic stress that warming imposes on individuals through increased metabolic rates should be 116 

mitigated by higher feeding rates at higher prey availability in more productive environments. Thus, 117 

because the effects of temperature and productivity should cancel each other out, we expected a 118 

stronger adaptive response at low productivity, where consumers must cope with maximum energetic 119 

stress. Surprisingly, we did not find a significant effect of temperature on preference for prey sizes in 120 

the least productive environments (Fig. 3(B), SI III). At very low productivity, fish are experiencing 121 

high energetic stress (regardless of temperature) because resource density is low and they cannot 122 

afford to miss a prey upon encountering it, even if it is much smaller than preferred. Under such 123 

stressful conditions, there may be no scope for predators to adapt their feeding behavior as 124 

temperature increases. In more productive environments, feeding behavior may be less constrained, 125 

increasing the adaptive capacity of the fish. Thus, high resource availability and the low energetic 126 

demands of a cool environment result in low energetic stress, allowing fish to select prey based on 127 

traits, whereas warming increases energetic stress because demands rise even though resource 128 

availability is the same, forcing fish to become less selective in their feeding behavior. 129 

 130 

Therefore, our results support hypothesis 2 that fish become less selective for prey size as temperature 131 

increases in productive environments so they do not miss a foraging opportunity, which is consistent 132 

with what happens at any temperature when productivity is low. This density driven feeding behavior, 133 

which lowers trait-based selectivity, imposes several disadvantages on consumers. We observed a 134 

weak negative effect of temperature on the width of consumer trophic niches at high productivity 135 

levels (SI III), indicating that consumers miss out on larger and thus energetically more rewarding 136 

prey individuals, which can be critical to satisfy their energetic needs24, while handling the more 137 

abundant smaller prey. This observation tends to mitigate our assumption that adaptive behavior 138 

leading to more neutral-driven consumption should increase species coexistence in the face of 139 
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warming. Indeed, fish metabolic rates increase with warming over large temperature gradients25 and 140 

do so faster than feeding rates, leading to the extinction of top predators due to starvation26,27. 141 

Combining this physiological starvation effect with our observed behavioral response indicates that 142 

consuming outside of the most efficient predator-prey body mass ratio should reduce energy flux 143 

through food webs, limiting the coexistence of consumer species24,28. The combination of direct and 144 

indirect effects of warming could thus increase the likelihood of extinction of top predators in food 145 

webs, which are usually considered key species for maintaining biodiversity and ecosystem 146 

functioning29.  147 

 148 

Consequences for species coexistence under global warming 149 

Adaptive foraging in response to varying local conditions is often considered to foster species 150 

coexistence17,18,30. The general assumption behind this conclusion is that consumer species will adapt 151 

their foraging strategies in order to maximize their energetic gains31. However, our results, based on 152 

an allometric framework, suggest that consumers tend to depart from this optimal behavior under 153 

stressful conditions. We explored the consequences of this behavior using a population dynamic 154 

model, parameterized with species body masses and temperature, which predicts the temporal 155 

dynamics and coexistence of species in food webs (see Methods). We ran two versions of this model: 156 

one including adaptation of species diets to local temperature and productivity conditions as informed 157 

by our empirical results, and one without this adaptation, corresponding to the classical modelling 158 

approach. We simulated the dynamics for synthetic food webs of 50 species (30 consumers and 20 159 

basal species) over a temperature gradient spanning from 0°C to 26°C to predict the number of 160 

extinctions at different temperatures. Overall, we observed that models incorporating adaptive 161 

foraging were more sensitive to warming, with more species extinctions over the temperature gradient 162 

(Fig. 4). These results were not affected by the functional response type, which are free parameters in 163 

our model (SI IV) but tended to weaken at very low levels of nutrient availability (i.e. productivity), 164 

consistently with our empirical results. 165 

 166 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2022. ; https://doi.org/10.1101/2021.05.05.442768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442768
http://creativecommons.org/licenses/by-nc/4.0/


The effects of warming on the trait structure of communities and the distribution of trophic 167 

interactions32 are well documented, but a framework for integrating changes in feeding behavior with 168 

a general modelling approach has been lacking. Our results stress the importance of accounting for 169 

foraging behavior to better understand and predict community responses to climate change, and 170 

challenge previous conclusions on this topic. Indeed, the discrepancies between the models with and 171 

without adaptive foraging suggest that the classical approach, which only accounts for changes in 172 

species physiology6,10, may have overlooked a significant portion of species responses to warming. 173 

Importantly, our results show that, contrary to common expectation, behavioral adaptations in 174 

response to climatic stress reduce the likelihood of species coexistence and community biodiversity. 175 

The similarity in responses between the two feeding strategies of our consumer species (sit-and-wait 176 

and active foraging) indicates some generality of our results, but it is now important to investigate a 177 

wider range of species and ecosystem types. For instance, metabolic type has an important effect on 178 

the response of species to temperature33 and endotherms could respond differently to ectotherms such 179 

as fish.  180 

 181 

Generally, food web models incorporating foraging behavior are based on optimal foraging theory 182 

and thus miss a data-driven description of how the selectivity of consumer diets changes in a natural 183 

context. To address this, we developed a trait-based framework to document the response of foraging 184 

behavior to temperature, which can be incorporated into predictive models of food web structure and 185 

species coexistence. Our approach can be generalized to other ecological variables that affect food 186 

webs and foraging behavior, such as fear of predators34 or habitat complexity35. Finally, the effects 187 

documented here come from data sampled at rather low levels of temperature and productivity. 188 

Therefore, it is crucial to extend our regression models to warmer and more productive ecosystems to 189 

assess whether very high levels of productivity could balance the energetic stress related to rising 190 

temperatures, limiting adaptive responses in eutrophic environments.  191 

 192 

Conclusion 193 
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It is generally assumed that consumers respond to environmental conditions by making choices that 194 

maximize their energy intake18,36. This assumption has been used to derive several predictions in 195 

ecology about community structure and species coexistence, and is often considered as a solution to 196 

May’s paradox37 of the mathematical infeasibility of complex communities despite empirical 197 

observations of ecosystem complexity. It is therefore usually assumed that behavior is a strong driver 198 

of community organization and supports species coexistence. We challenge this optimistic view of 199 

nature by demonstrating how consumer species can depart from their optimal behavior under stressful 200 

conditions, for instance when resources are scarce and they face energetic stress due to warming. 201 

Therefore, the ecological conclusions built into the assumptions that adaptive behavior favors 202 

coexistence do not necessarily hold in the context of global warming. Our mechanistic modelling 203 

demonstrates the consequences of this observation, with more species extinctions in response to 204 

warming when adaptive foraging is considered. This indicates that global warming may lead to a 205 

greater reduction in species coexistence than predicted by classical ecological models. Our findings 206 

also challenge the general paradigm that adaptive foraging should mitigate the consequences of global 207 

warming for natural ecosystems and call for a general data-driven theory-approach to forecasting 208 

biodiversity and functioning in future ecosystems.  209 

 210 

Methods 211 

 212 

The Kiel Bay database  213 

Kiel Bay is located in the Baltic Sea, which is a marginal sea connected to the North Atlantic and 214 

considered the largest brackish sea in the world. It is a rather low productivity ecosystem with low 215 

biodiversity due to its glacial history and the strong salinity gradients that only a few species can 216 

tolerate38,39. The core of the Kiel Bay database comprises detailed dietary information based on 217 

stomach contents from 22,185 fish individuals of six species. These species were classified into two 218 

functional groups based on their body shape and habitat use: fusiform and benthopelagic species 219 

(Gadus morhua, Merlangius merlangius) versus flat and demersal species (Limanda limanda, 220 
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Pleuronectes platessa, Platichthys flesus, and Hippoglossoides platessoides). This shape characteristic 221 

also corresponds to specific foraging behaviour40. 222 

 223 

The fish individuals were sampled using systematic and standardised bottom trawls. The trawls were 224 

carried out year-round between 1968 and 1978. The body lengths of fish were measured and rounded 225 

to the nearest integer (in cm). Species-specific regressions were used to estimate fish body masses. 226 

Stomach contents were identified to the highest taxonomic resolution possible and wet mass 227 

determined when possible. Hence, the database includes body size data for all fish (i.e. predators) but 228 

also for prey items from the stomach contents41. In addition, we were able to add independently-229 

sampled abundance and body mass information on the benthic invertebrate (i.e. prey) fauna to the 230 

database. These data on prey abundances and body masses were sampled independently at the 231 

trawling locations using classical 0.1 m² van Veen grabs42 (see 43 for detailed procedure). We have 232 

enriched the database with climatic (i.e. temperature) and oceanographic (i.e. salinity) data and 233 

geographical information on the distances between the sampling (trawling) sites. So far, the stomach 234 

content data have been published only partially and in German language41 while parts of the 235 

invertebrate abundance data were treated and published separately43. The food web mainly consists of 236 

six demersal fish species and more than a dozen benthic invertebrate species from different groups 237 

(see Table SI V 2).  238 

 239 

Filtering data 240 

To make comparisons between the distributions of prey observed in fish stomachs and the ones 241 

observed in the environment, we only used a subset of the database for which we were able to (i) 242 

associate information about a fish to information about its environment and (ii) have a body mass 243 

estimate of prey found in the stomach. We considered this association between fish and environment 244 

possible, when they were sampled in the same area and within less than 31 days. This first filter 245 

reduced the number of fish used in our analysis to 2,487.  246 

 247 
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From this subset, we pooled all individuals from the same functional group occurring at the same 248 

place on the same date with the same body mass into a unique entity for statistical analysis, which we 249 

hereafter call “statistical fish”. This choice is led by the allometric approach used in our analysis, 250 

where all individuals from the same species and with the same body mass are considered identical. 251 

This aggregation increases the quality of the estimation of the prey body mass distribution in 252 

stomachs at the cost of a lower statistical power for the analyses done on the shape of these 253 

distributions. For instance, with a high aggregation level, fewer data points are available to consider 254 

the effect of temperature on the average body mass of prey. This approach is therefore conservative as 255 

it reduces the probability of type 1 error. Lastly, we removed 26 statistical fish where less than 90% of 256 

the prey biomass found in the diet was also found in the environment. This resulted in a final dataset 257 

of 290 statistical fish, underpinned by 2,487 individuals. For our statistical analysis, we used fish body 258 

shape as a covariate instead of fish species, as models based on fish body shape were always found to 259 

be more parsimonious (based on AIC).  260 

 261 

Fitting of gut content and environmental distributions 262 

We used empirical means and standard deviations to describe all environmental distributions of log10 263 

body masses and realised distributions of each predator identity. Taxon-specific characteristics of the 264 

prey, such as body toughness, could bias the dietary distributions towards prey containing shells or 265 

skeletons. We assumed that prey with hard body parts are more likely to be detected in stomach 266 

contents than species composed of soft tissues (due to their higher digestion time) and weighted their 267 

occurrence by a correction factor of 0.844. Overall, the trends and effects observed when including this 268 

correction were similar to those observed without correction, thus suggesting an absence of systematic 269 

biases (SI V).  270 

 271 

Determining allometric species’ preferences 272 

We assumed that a feeding event is defined by two independent probabilities: the probability for a 273 

consumer to encounter a prey of a certain body size x (defined by the environmental distribution E(x)) 274 
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and the probability for a consumer to consume the prey when encountered (given by the preference 275 

distribution P(x)). Then, the realised distribution is proportional to their product  276 

𝑅(𝑥) ∼ 𝐸(𝑥) ⋅ 𝑃(𝑥)  277 

The preference distribution can therefore be expressed by the departure of the realised niche from the 278 

environmental distribution, or by filtering out the effect of species environmental availability from the 279 

realised distribution: 280 

𝑃(𝑥) ~ 
𝑅(𝑥)

𝐸(𝑥)
   281 

Theoretically, it is possible to compute continuous distributions R and E from observed body masses 282 

ri  (i=1…n) and ei  (i=1…m), respectively, with e.g. kernel density estimation, and compute 283 

𝑃(𝑥) =
𝑅(𝑥)

𝐸(𝑥)
/ ∫

𝑅(𝑥)

𝐸(𝑥)
𝑑𝑥  284 

We chose, however, a more conservative approach that requires just a kernel density estimate for the 285 

environmental distribution E(x): Moments of P(x) can be computed as weighted moments of the 286 

observed realised body masses ri with weights wi=1/E(ri) as the inverse of environmental abundances. 287 

Thus, realised body masses that are highly abundant in the environment contribute less to the 288 

preference distribution, while those that are rare contribute more. Following45 and assuming 𝑊 =289 

∑ 𝑤𝑖𝑖 , the mean μ, variance σ² and skewness γ of the preference distribution P(x) are: 290 

𝜇 =
1

𝑊
∑ 𝑤𝑖𝑟𝑖

𝑖

, 291 

𝜎2 =
1

𝑊
∑ 𝑤𝑖(𝑟𝑖 − 𝜇)2

𝑖

 292 

𝛾 =
1

𝑊𝜎3
∑ 𝑤𝑖(𝑟𝑖 − 𝜇)3

𝑖

 293 

To assess changes in the distributions and how they depart from each other, we used variations in the 294 

point estimates (median and standard deviation).  295 

 296 

Statistical analyses 297 

To fit the parameters associated to the environmental and dietary (i.e. realised) distributions, we used 298 

an exploratory approach without a priori hypotheses, as the goal was to obtain a description of the 299 
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different environmental conditions for fishes. To do so, we selected the most parsimonious models 300 

(based on AIC) within all the possible sub models deriving from the complete model with all 301 

covariates and their interactions. For the environmental distribution, the complete model was defined 302 

as a linear model including temperature and productivity (estimated from prey availability, grams log 303 

transformed) and their interactions as covariates. For the gut distribution, the complete model was 304 

defined as a linear model including temperature, productivity (log transformed), fish body shape and 305 

fish body mass (log transformed), as well as all possible interactions.  306 

For the preference distributions, we used a Bayesian framework to explicitly test our hypotheses and 307 

started our analysis considering temperature, productivity, fish body shape, and fish body mass as 308 

covariates, as well as interactions between temperature and shape and temperature and productivity to 309 

answer to hypotheses H1 and H2. We first checked if fish body shape was an important predictor in 310 

our model using a “Leave-one-out” cross validation23, and finally simplified our model by removing 311 

fish body shape from the covariates (see SI VI for a more comprehensive comparison of the different 312 

models).  313 

 314 

Dynamic model 315 

To simulate the population dynamics, we used a previously published model46, based on the Yodzis 316 

and Innes framework47. The growth of consumer species Bi is determined by the balance between its 317 

energetic income (predation) and its energetic losses (predation metabolism) 318 

 319 

𝑑𝐵𝑖

𝑑𝑡
= 𝑒𝑃𝐵𝑖 ∑ 𝐹𝑖𝑗𝑗 + 𝑒𝐴𝐵𝑖 ∑ 𝐹𝑖𝑗𝑗 − ∑ 𝐵𝑙𝐹𝑗𝑖𝑗 − 𝑥𝑖𝐵𝑖,  320 

where ep = 0.545 and ea = 0.906 represent the assimilation efficiency of a consumer foraging on plants 321 

and animals, respectively48. xi defines the metabolic rate of species i, which scales allometrically with 322 

body mass:  323 

𝑥𝑖 = 𝑥0𝑚𝑖
−0.25𝑒

𝐸𝑥
𝑇0−𝑇

𝑘𝑇0𝑇,  324 

where x0 = 0.314 is the scaling constant 46, Ex = -0.69 is the activation energy of metabolic rate 325 

(Binzer et al. 2015), k the Boltzmann constant, T0 = 293.15 the reference temperature in Kelvin and T 326 
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the temperature at which the simulation is performed. The trophic interactions are determined using a 327 

functional response Fij that describes the feeding rate of consumer i over resource j:  328 

𝐹𝑖𝑗 =
𝜔𝑖𝑗𝑏𝑖𝑗𝐵𝑗

1+𝑞

1+𝑐𝐵𝑖+𝜔𝑖𝑗 ∑ ℎ𝑖𝑏𝑖𝑘𝐵𝑘
1+𝑞

𝑘
∙

1

𝑚𝑥
.  329 

 330 

bij represent the species-specific capture and is determined by predator and prey body masses: 331 

𝑏𝑖𝑗 = 𝑃𝑖𝑗𝐿𝑖𝑗.  332 

It corresponds to the product of encounter probabilities Pij by the probability that an encounter leads 333 

to a realised predation event Lij. As such, the parameters encode neutral processes (encounter 334 

probabilities) and trait-based selectivity, as the distribution Lij represents the fundamental trophic 335 

niche of consumer i, i.e. the set of prey it can consume based on its traits. Both quantities are 336 

determined by species body masses. We assume that encounter probability is more likely for species 337 

with higher movement speeds of both consumer and resource species: 338 

𝑃𝑖𝑗 = 𝑝0𝑚𝑖
𝛽𝑖𝑚

𝑗

𝛽𝑗
𝑒

𝐸𝑝
𝑇0−𝑇

𝑘𝑇0𝑇. 339 

Since movement speed scales allometrically and based on feeding type49, we drew βi and βj from 340 

normal distributions (carnivore: μβ = 0.42, σβ = 0.05, omnivore: μβ = 0.19, σβ = 0.04, herbivore: μβ = 341 

0.19, σβ = 0.04, primary producer: μβ = 0, σβ = 0). Activation energy Ep is equal to -0.38, from 10. Lij is 342 

assumed to follow a Ricker curve46, defined as:  343 

𝐿𝑖𝑗 = (
𝑚𝑖

𝑚𝑗𝑅𝑜𝑝𝑡
𝑒

1−
𝑚𝑖

𝑚𝑗𝑅𝑜𝑝𝑡)

𝛾

,  344 

where the optimal consumer-resource body mass ratio Ropt = 71.68 was calculated from the observed 345 

realised interactions in our dataset. We used a threshold Lij < 0.01 under which values were set to 0, 346 

assuming that consumers do not consider prey which are too small or too large. The handling time hij 347 

of i on j is defined as:  348 

ℎ𝑖𝑗 = ℎ0𝑚𝑖
𝜂𝑖𝑚

𝑗

𝜂𝑗
𝑒

𝐸ℎ
𝑇0−𝑇

𝑘𝑇0𝑇,  349 

where the scaling constant h0 was set to 0.4 and the allometric coefficients for 𝜂𝑖 and 𝜂𝑗 where drawn 350 

from a normal distribution with mean and standard deviation of -0.48 and 0.03 for 𝜂𝑖 and of -0.66 and 351 

0.02 for 𝜂𝑗. Eh is equal to 0.26. The term wij informs on species selectivity50, describing the foraging 352 
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effort of a given consumer on part of its fundamental niche (described by the Lij). For the models 353 

without behavioural expectations we used the classical parametrisation and defined it for every j as 1 354 

over the number of prey of consumer i. When adaptive behaviour was included in the model, the 355 

value was determined by the predictions of our dataset: we used the moments (mean, standard 356 

deviation and skewness) of the different preference distributions to estimate parameters of a skewed 357 

normal distribution that we related to temperature, predator body mass, ecosystem productivity and 358 

the interaction between temperature and productivity using a linear model for parameters associated to 359 

location and shape and  generalised linear model with a log link function for the scale parameter that 360 

is positive real.. To maintain the comparability with the model without adaptive behaviour, the wij 361 

values were transformed so that their sum was equal to 1 for each consumer. As for our experimental 362 

data, productivity was defined as the total biomass of prey available for each consumer. As this value 363 

can be highly variable during the simulations, especially in the transient dynamics, we rescaled this 364 

value between 0 and 6 to maintain it to a scale that is similar to the one from our dataset that we used 365 

to inform the skew normal distributions  366 

The biomass dynamic of the basal species i is defined as:  367 

𝑑𝐵𝑖

𝑑𝑡
= 𝑟𝑖𝐺𝑖𝐵𝑖 − ∑ 𝐵𝑗𝐹𝑗𝑖𝑗 − 𝑥𝑖𝐵𝑖,  368 

where 𝑟𝑖 = 𝑚𝑖
−0.25 defines the species growth rate. Gi is the species-specific growth factor, determined 369 

by the concentration of two nutrients N1 and N2:  370 

𝐺𝑖 = 𝑚𝑖𝑛 (
𝑁1

𝐾𝑖1+𝑁1
,

𝑁2

𝐾𝑖2+𝑁1
),  371 

Where Kil determines the half saturation density of plant i nutrient uptake rate, determined randomly 372 

from a uniform distribution in [0.1, 0.2]. The dynamic of the nutrient concentrations is defined by:  373 

𝑑𝑁𝑙

𝑑𝑡
= 𝐷(𝑆𝑙 − 𝑁𝑙) − 𝑣𝑙 ∑ 𝑟𝑖𝐺𝑖𝑃𝑖𝑖 ,  374 

Where D = 0.25 determines the nutrient turnover rate and Sl = 5 determines the maximal nutrient 375 

level. The loss of a specific nutrient Nl is limited by its relative content in plant species biomass (v1=1, 376 

v2=0.5). We ran our model on food webs of 50 species, composed of 30 consumers and 20 basal 377 

species. A link was drawn between two species i and j when Lij > 0. For each temperature we ran 50 378 

replicates of the two versions of the model (with and without adaptive behaviour) using an updated 379 
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version of the ATNr package51 and recorded the number of extinctions. We fitted a GAM model on 380 

this number of extinctions.  381 

 382 

Code and data availability: Code and data can be made available to editors and reviewers on 383 

request. Should the manuscript be accepted, code and data will be made publicly available and 384 

associated to a DOI. 385 

  386 
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Tables 520 

 521 

Table 1: response of the realized distribution to predator body mass and environmental gradients 522 

  Median of the realised distribution 

Predictors Estimates CI p 

(Intercept) -1.24 -2.40 – -0.08 0.036 

Predator body mass 0.65 0.08 – 1.23 0.026 

Productivity 0.44 -0.01 – 0.90 0.054 

Shape (fusiform) 0.09 -0.05 – 0.23 0.191 

Temperature -0.02 -0.03 – -0.01 <0.001 

pred.BM:Productivity -0.16 -0.39 – 0.06 0.153 

shapefusiform:temperature -0.02 -0.03 – -0.00 0.032 

Observations 290 

R2 / R2 adjusted 0.286 / 0.271 

 523 

 524 

 525 

Table 2: response of the preference distribution to predator body mass and environmental gradients 526 

  Median of the preference distribution 

Predictors Estimates CI (95%) 

Intercept -1.06 -3.25 – 0.99 

Predator body mass 0.55 0.40 – 0.70 

Temperature 0.18 -0.03 – 0.39 

Productivity 0.18 -0.53 – 0.92 

temperature:productivity -0.07 -0.14 – 0.00 

Observations 290 

R2 Bayes 0.279 
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Figures 528 

 529 

Fig. 1:  530 

 531 

 532 
Fig. 1: Illustration of the different fish prey body mass distributions. The environmental distribution (green) 533 

represents the distribution of prey body mass in the ecosystem, the realized distribution (dashed red) represents 534 

the body mass of the prey in a consumer stomach, and the preference distribution (blue) represents the 535 

selectivity of a consumer for a specific prey body mass. a) All of the log prey body masses are equally 536 

represented in the environment, so the distribution of prey body masses observed in a consumer’s gut represents 537 

the body masses on which it actively foraged (its preference distribution) and predation is driven by trait 538 

selectivity only (hypothesis 1). b) The body mass distribution of the prey observed in the gut and in the 539 

environment are equivalent, so the prey consumed by the predator were entirely driven by encounter 540 

probabilities (i.e. a neutral process), implying no active selectivity over specific prey size classes (hypothesis 2). 541 

Panels a) and b) represent extreme scenarios while real-world data are more likely to be described by two 542 

different distributions, as in c) where the body mass distribution of prey observed in the stomach and in the 543 

environment differs, so that the consumer specifically forages on some prey body masses that are represented by 544 

the preference distribution. High values in the preference distribution represent body masses that are over-545 

represented in fish stomachs compared to what is available in the environment.  546 

 547 

 548 
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Fig. 2:  550 

 551 

 552 
 553 

Fig. 2: Response of the median body mass of the realized prey body mass distribution. Response to predator 554 

body mass (a), and temperature (b) for the two fish functional groups. Points represent non-transformed data 555 

across all productivity levels and lines present model predictions. Regression lines represent model’s prediction 556 

when all other covariates are considered. The shaded areas show the 95% confidence interval on the predicted 557 

values.  558 

 559 
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Fig. 3: 561 

 562 

 563 
 564 

 565 

Fig. 3: Response of the median prey body mass of the preference distribution to (a) predator body mass and (b) 566 

temperature and productivity. Points represent non-transformed data across all productivity levels and lines 567 

represent model predictions. Regression lines represent model’s prediction when all other covariates are 568 

considered. The shaded areas show the 95% confidence interval on the predicted values.  569 

 570 
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Fig. 4: 572 

 573 

 574 

 575 
 576 

 577 

Fig. 4: Number of species extinctions predicted by the model at different temperatures. The blue line represents 578 

the model output with adaptation of species diets to local temperature and productivity conditions considered, 579 

whilst the red line shows extinctions without allowing for this adaptation. The shaded areas show the 95% 580 

confidence interval on the predicted values. Predictions were estimated using a GAM with a binomial link 581 

function. 582 
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