Fine-scale quantification of GC-biased gene conversion intensity in mammals.

Nicolas Galtier

ISEM - Univ Montpellier - CNRS - IRD

Abstract

GC-biased gene conversion (gBGC) is a molecular evolutionary force that favours GC over AT 6 alleles irrespective of their fitness effect. Quantifying the variation in time and across genomes of its intensity is key to properly interpret patterns of molecular evolution. In particular, the existing literature is unclear regarding the relationship between gBGC strength and species effective population q size, N_e . Here we analysed the nucleotide substitution pattern in coding sequences of closely related 10 species of mammals, thus accessing a high resolution map of the intensity of gBGC. Our maximum 11 likelihood approach shows that gBGC is pervasive, highly variable among species and genes, and of 12 strength positively correlated with N_e in mammals. We estimate that gBGC explains up to 60% 13 of the total amount of synonymous AT→GC substitutions. We show that the fine-scale analysis of 14 gBGC-induced nucleotide substitutions has the potential to inform on various aspects of molecular 15 evolution, such as the distribution of fitness effects of mutations and the dynamics of recombination 16 hotspots. 17

18 1 Introduction

GC-biased gene conversion (gBGC) is a recombination-associated transmission bias by which G and C 19 alleles are favoured over A and T alleles. This evolutionary force was discovered in the 2000's from the 20 analyses of early population genomic data sets [22, 30, 76, 80], and experimentally confirmed later on [49, 21 65, 83]. gBGC manifests itself as a GC-bias that affects both non-functional and functional sequences and 22 is correlated with the local recombination rate [28]. gBGC has a strong impact on patterns of variation 23 genome wide in mammals [10, 20, 64, 69] and many other taxa [11, 25, 33, 44, 48, 55, 58, 61, 78]. gBGC 24 can mimic the effect of natural selection and confound its detection by generating patterns of clustered 25 AT \rightarrow GC substitutions, distorted site frequency spectra and altered non-synonymous/synonymous ratios 26 [4, 15, 19, 28, 42, 66, 73]. Importantly, because it favours G and C alleles irrespective of their fitness effect, 27 gBGC tends to counteract natural selection and increase the deleterious mutation load [3, 32, 41, 59]. 28 The abundant body of literature reviewed above demonstrates a significant effect of gBGC in a large 29 number of genomes. Only a few studies, however, have attempted to quantify its strength - a harder 30 task. gBGC results from a DNA repair bias involving paired chromosomes at meiosis, and operating 31 in the immediate neighborhood of DNA double strand breaks. The genome average transmission bias, 32 b, is therefore expected to be proportional to the recombination rate, gene conversion tract length, and 33 repair bias. The effect of gBGC on genome evolution is also expected to be dependent on the intensity 34 of drift: being a directional force, gBGC is only effective if stronger than the stochastic component of 35 allele frequency evolution. The intensity of drift is inversely related to the effective population size N_e , 36 so that the strength of gBGC is usually measured by the $B = 4N_e b$ parameter. Glémin et al. [35] used 37

 $_{38}$ genome-wide resequencing data to estimate B at the megabase scale throughout the human genome.

³⁹ Fitting various population genetic models to polarised GC vs. AT site frequency spectra, Glémin et al.

[35] estimated the genome average B to be in the weak selection range, around 0.4, with B reaching a value above 5 in 1%-2% of the genome. This variance among genomic regions in gBGC strength is interpreted as reflecting the existence of recombination hotpots in humans [8, 20, 76].

Similar analyses have been performed in a number of non-human taxa. In the fruit fly Drosophila 43 melanogaster, no evidence for gBGC has been reported, albeit a weak effect on the X chromosome 44 [31, 68]. In contrast, Wallberg et al. [78] estimated the genome average B to be above 5 in the honey bee 45 Apis mellifera, again with substantial variation between low-recombining and high-recombining regions. 46 Note that N_e is expected to be much smaller in *Homo sapiens* and the eusocial A. mellifera than in D. 47 melanogaster [72]. Galtier et al. [33] analysed site frequency spectrum at synonymous positions in the 48 coding sequences of 30 species of animals. They estimated that the average B at third codon positions 49 varies between 0 and 2 among species, without any significant relationship with N_e -related life history 50 traits. These comparisons among distantly-related animals revealed substantial variation in the intensity 51 of gBGC among species, but, somewhat paradoxically, no detectable effect of N_e . 52

Another attempt to quantify the strength of gBGC is to get information from between-species diver-53 gence data, instead of within-species polymorphism data. Capra et al. [8] simultaneously modelled the 54 effects of purifying selection and gBGC during the human/chimpanzee divergence and estimated that in 55 apes 0.33% of the genome is undergoing gBGC at rate B = 3. This is lower than the estimates provided 56 by Glémin et al. [35, see above], presumably because Capra et al. [8] assumed a constant gBGC rate at 57 any location of the genome, whereas recombination hotspots are known to be highly dynamic in apes 58 [1, 46]. Using a method that combines polymorphism and divergence data, De Maio et al. [18] estimated 59 the average B to be of the order of 0.3-0.7 in apes, consistent with Glémin et al. [35]. Lartillot [43] anal-60 ysed coding sequence divergence in 33 species of placental mammals and estimated the among-gene and 61 among-species variation of B. He found that the average B varied among species from ~ 0.1 (in apes) to 62 3-5 (in bats and lagomorphs), with an among-gene standard deviation of B as high as twice the mean. 63 Lartillot [43] detected a significant, negative correlation between B and species body mass. Body mass 64 being strongly and negatively correlated with population density in mammals [16], this result suggests 65 that N_e might be a determinant of the strength of gBGC in mammals, in agreement with theoretical 66 expectations. Elaborating on the approach of De Maio et al. [18], Borges et al. [5] also reported a positive 67 relationship between the population scaled gBGC coefficient and N_e across species/populations of apes. 68 So on one hand comparative analyses of site-frequency spectra among animals did not reveal any 69 effect of N_e on the strength of gBGC, while on the other hand the analysis of the substitution pattern 70 in mammals is consistent with a N_e effect. Also a bit surprisingly, the estimated range of variation of B 71 across mammals [0.1-5, 43] is wide enough to contain all the estimates of B reported in any species of 72 animals so far. Lartillot [43] analysed a subset of currently annotated mammalian orthologs (1329 exons 73 in the largest data set), and importantly, relatively ancient divergences, at the family or order level, 74 thus capturing the average effect of gBGC across dozens of million years. Here we analyse a large set 75 of genes from closely related species in four families of mammals, thus accessing a high-resolution map 76 of the effect of gBGC on coding sequences, both in time and across the genome. We focus on two key 77 features of gBGC-driven molecular evolution, namely clustered AT→GC substitutions, and an excess of 78 $AT \rightarrow GC$ over $GC \rightarrow AT$ substitutions compared to the mutation process. Estimating B in 40 lineages 79 of mammals, we show that gBGC explains a substantial fraction of synonymous and non-synonymous 80 $AT \rightarrow GC$ substitutions, that N_e is a strong predictor of the intensity of gBGC in mammals, and that 81 large- N_e and small- N_e taxa differ substantially in how gBGC is distributed among and within genes. 82

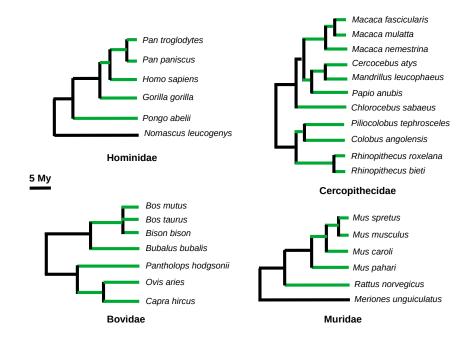


Figure 1: The four families, 32 species and 40 lineages of mammals (green branches) analysed here. Branch lengths are proportional to the estimated divergence time.

$\mathbf{^{83}}$ 2 Results

84 2.1 Overview

We analysed patterns of $AT \rightarrow GC$ (i.e., Weak to Strong, or WS), $GC \rightarrow AT$ (SW) and GC-conservative 85 (SSWW) coding sequence nucleotide substitutions in 40 recently diverged lineages (branches) from four 86 families of mammals (Fig.1), namely Hominidae (humans and apes), Cercopithecidae (old world mon-87 keys), Bovidae (cattle, sheep and allies) and Muridae (mice, rats, gerbils). A total of 1,104,917 third 88 codon position synonymous substitutions and 514,552 first or second codon position non-synonymous 89 substitutions were called. The median number of substitutions across branches was 24,960, and the 90 minimum was 3927. The overall ratio of non-synonymous to synonymous substitutions, d_N/d_S , was 91 0.233; the family-specific d_N/d_S ratio was 0.275, 0.252, 0.228 and 0.213 in Hominidae, Cercopithecidae, 92 Bovidae and Muridae, respectively. The d_N/d_S ratio is a marker of N_e in mammals, with small popula-93 tions experiencing a higher substitution load, hence a higher d_N/d_S [60, 62, 70]. These results therefore 94 indicate that the four families of our data set rank in the Hominidae < Cercopithecidae < Bovidae <95 Muridae order as far as N_e is concerned, consistent with previous analyses [43, 71]. 96

97 2.2 Substitution clustering

Focusing on synonymous substitutions, we calculated Moran's I [53], a statistics that measures spatial 98 aurocorrelation and was adjusted to target the 400 bp scale. This index therefore measures the tendency 99 for substitutions (of a specific sort) having appeared in a given branch to be located less than 400 bp 100 apart. Fig.2 shows the distribution among branches of the average centered Moran's I, separately for 101 WS and SW synonymous substitutions. The centered Moran's I for SW substitutions was very close to 102 zero in all branches from all four families, indicating very little, if any, clustering of substitutions. WS 103 substitutions behaved differently: the centered Moran's I was close to zero in Hominidae, perceptibly 104 positive in Cercopithecidae, and reached much higher values in Bovidae and Muridae, demonstrating the 105

- ¹⁰⁶ existence of clusters of synonymous WS substitutions in these two families. This pattern clustering of
- ¹⁰⁷ WS but not SW substitutions is a signature of gBGC [e.g. 19]; its intensity appears to increase with
- N_e across the four families analysed here.

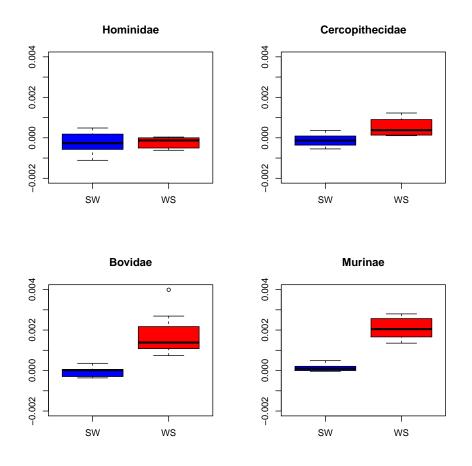


Figure 2: Distribution of centered Moran's I for WS and SW synonymous substitutions in four families of mammals. Only branches in which at least 100 genes had at least 3 inferred substitutions were included.

Simulations were performed in order to assess the amount of clustering needed to explain the observed values of Moran's I. Our simulation procedure considers two levels of clustering, one at the 500 bp scale and one at the 40 bp scale, while accounting for the intron-exon structure and the among-genes variance in mutation rate and GC-content (see Methods). In Muridae and Bovidae, we were able to replicate the observed values of Moran's I when 15-40% of the simulated substitutions appeared in clusters. This percentage was 0-10% in Cercopithecidae, and non-existent in Hominidae (Supplementary Fig. S1).

115 2.3 Estimating B

For each branch we estimated the population gBGC coefficient $B = 4N_eb$ and its variation based on synonymous WS, SW and SSWW synonymous substitution counts. Various models were fitted to the data via the maximum likelihood (ML) method, assuming that the mutation process is known [75]. Model M1 assumes a constant intensity of gBGC, B, among and within genes. Model M2 considers two categories of genes, each with its own gBGC intensity, assumed to be shared by all sites within a gene. M2 led to a rejection of M1 by a likelihood ratio test (p - val < 0.05) in 36 branches out of 40. The M32 model assumes three categories of genes, which we below denote "cold" (B = 0), "mild", and "hot".

¹²³ M3z rejected M1 in 39 branches out of 40, and M2 in 27 branches. There was, therefore, strong evidence

124 for a variable B across genes in this data set.

Then we fitted models that assume some variation of B both among and within genes. Model M3h

 $_{126}$ considers three categories of genes that differ in terms of the prevalence, q, of gBGC hotspots. gBGC is

assumed to operate at intensity B_h within hotspots, and zero outside hotspots. Model M3sh is a simplified

version of M3h obtained when q approaches zero. Applying these two models led to a dramatic increase

¹²⁹ in log-likelihood for most branches (Supplementary Table S1), which is indicative of the existence of

¹³⁰ substantial within-gene variation in gBGC intensity. Model M3h rejected M3sh by a likelihood ratio ¹³¹ test only in one branch out of 40 (*Bison bison* terminal branch, Bovidae), consistent with the idea that

¹³² gBGC hotspots occupy a small fraction of coding sequence length.

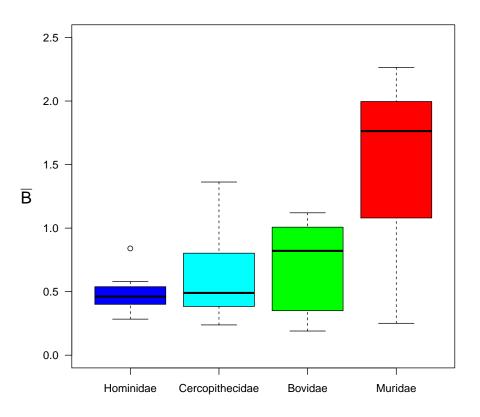


Figure 3: Distribution of the average estimated B (M3sh model). One outlying data point is missing from the figure: the estimated average B was 3.86 in the (*Capra hircus, Ovis aries*) ancestral branch (Bovidae).

The across-genes average gBGC intensity, \bar{B} , varied among models, with models allowing for more variation in B usually yielding a higher \bar{B} (Supplementary Table S1). Below we report estimates of \bar{B} obtained under the M3sh model. These were very similar to estimates obtained by averaging \bar{B} across the M1, M2, M3z, M3sh and M3h models, weighting by the AIC of each model [63, Supplementary Fig. S2].

Fig.3 shows the distribution of \overline{B} among branches in the four analysed families. The median \overline{B} was just below 0.5 in primates, 0.82 in Bovidae and 1.76 in Muridae. We calculated the across genes relative standard deviation (RSD) of B, which is the ratio of the standard deviation by the average B. The RSD

would be expected to be constant across branches if the across-genes distribution of the intensity of gBGC 141

only differed among branches by a coefficient of proportionality. We found that the RSD was generally 142

rather high (median RSD across branches: 1.8), and substantially smaller in Muridae (median: 1.2) than 143

in the other three families (median Bovidae: 1.8; median Hominidae: 1.7; median Cercopithecidae: 2.1). 144

This suggests that the intensity of gBGC is more evenly distributed among genes in Muridae than in 145

the other taxa. Of note, this result superficially appears to contradict the analysis illustrated by Fig.2, 146 which shows that the clustering of WS substitutions is maximal in Muridae. Importantly, the Moran's

I analysis (Fig.2) addresses the within-gene clustering of substitutions, whereas in the RSD analysis we 148

consider the among-gene variation in gBGC intensity. 149

147

We estimated in each branch the number of WS substitutions that would be expected in the absence 150 of gBGC. This was achieved by forcing B = 0 for all categories of genes under the M3sh model (see 151 Methods). We found that gBGC results in a substantial excess of WS substitutions, which varies from 152 typically 30% in primates to typically 60% in Muridae (Supplementary Fig. S3). No effect of gBGC on 153

SW substitutions is expected under the M3sh model (see Methods). 154

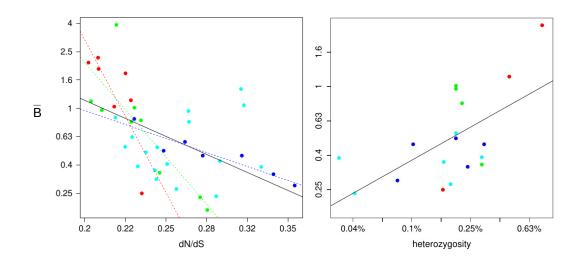


Figure 4: Relationship between the average estimated B and dN/dS (left panel, n = 40 branches) or heterozygosity (right panel, n = 18 species) across 40 mammalian lineages in log-transformed scales. B was estimated under the M3sh model. Blue: Hominidae; cyan: Cercopithecidae; green: Bovidae; red: Muridae; black line: regression line for the whole data set; colored dotted lines: family-specific regression lines

Correlates of B $\mathbf{2.4}$ 155

We correlated the log-transformed estimated \bar{B} with log-transformed branch-specific d_N/d_S ratio and 156

found a significantly negative relationship (n = 40; $r^2 = 0.24$; p-val=0.0013). The correlation coeffi-157

cient of the \bar{B} vs. d_N/d_S relationship was also significantly negative when calculated within Hominidae 158

 $(n = 7; r^2 = 0.83; p-val=0.0043)$, within Bovidae $(n = 9; r^2 = 0.79; p-val=0.0013)$ and within Muri-159

dae $(n = 7; r^2 = 0.57; p-val=0.049)$. No significant relationship was detected within Cercopithecidae 160

(fig.4, left). Very similar results were obtained when we correlated the estimated \bar{B} with d_N/d_S calcu-161

lated based on SSWW substitutions only, i.e., a statistics essentially independent of gBGC: the squared 162

¹⁶³ correlation coefficients were 0.82 (p-val=0.0047), 0.68 (p-val=0.0059) and 0.73 (p-val=0.0139) within Ho-¹⁶⁴ minidae, Bovidae and Muridae, respectively, and 0.23 (p-val=0.0017) for the whole data set (all variables ¹⁶⁵ log-transformed). A literature search yielded estimates of heterozygosity (*i.e.*, within-species genetic di-¹⁶⁶ versity), π , in 18 species of our data set. The estimated \bar{B} was positively correlated with π ($r^2 = 0.73$; ¹⁶⁷ p-val=2.1 × 10⁻⁵; fig.4, right). The sample size was here too small to investigate the within-family rela-¹⁶⁸ tionships. B was also found to be negatively correlated with species longevity ($r^2 = 0.36$, p-val=0.0026)

tionships. B was also found to be negatively correlated with species longevity ($r^2 = 0.36$, p-val=0.00 and log-transformed body mass ($r^2 = 0.22$, p-val=0.017).

$_{170}$ 2.5 Substitution clustering conditional on B

Fig.2 revealed virtually no clustering of WS substitutions in Hominidae, even though the analysis of 171 substitution counts demonstrated a significant impact of gBGC on coding sequences in this family (Fig.3). 172 To test whether the spatial distribution of WS substitutions really differs between mammalian families, 173 we analysed substitution clustering conditional on B. For each branch, we first fitted to WS, SW and 174 SSWW substitution counts a gBGC model, M5f, assuming five categories of genes undergoing distinct 175 gBGC intensities, from B = 0 in the coldest category to B = 10 in the hottest one. We assigned each gene 176 to one of these gBGC intensity categories, and calculated the average Moran's I for WS substitutions 177 separately for the five categories (Fig.5). This was also done using the hotspot version of this five-178 category model, M5shf (Supplementary Fig. S4). The size of dots in Fig.5 and Supplementary Fig. S4 179 reflects the proportions of the five classes of genes in each family, genes from distinct branches being 180 here merged. We found that the average Moran's I increased with gBGC intensity, as expected, but 181 varied strongly among families in every gBGC category, with Muridae consistently showing the highest 182 average Moran's I, and Hominidae the lowest, at all gBGC intensities. This result indicates that the 183 level of clustering of WS substitutions differs across families to an extant that cannot be explained just 184 by differences in average B. 185

186 **3** Discussion

Analysing the substitution pattern in coding sequences across four mammalian families, we checked two predictions of the gBGC model, namely a clustering of WS substitutions and an excess of WS over SW substitutions compared to the mutation pattern. Both approaches revealed a conspicuous effect of gBGC in mammalian coding sequences.

¹⁹¹ 3.1 Ubiquitous gBGC in mammals

Dreszer et al. [19] investigated the substitution pattern in the human genome and showed that clusters 192 or nearby substitutions tend to be enriched in the WS sort. The effect, although significant, was not 193 particularly strong: the proportion of WS substitutions in clusters reached 0.55, whereas it was 0.44 on 194 average (their figure 1A). Analyzing exon evolution in apes, Berglund et al. [3] and Galtier et al. [32] 195 identified a few dozens of GC-biased exons, out of >10,000 analyzed exons. Here we applied a distinct 196 but related approach to mammalian coding sequences, and reveal only a weak, if any, tendency for WS 197 synonymous substitutions to be clustered in Hominidae, consistent with previous research. The trend, 198 however, was obvious in Cercopithecidae, and strong in Bovidae and Muridae (Fig.2). Our simulations 199 suggest that >15%, and maybe up to 40%, of WS synonymous substitutions appear as clusters in these 200 two families. These WS substitution clusters likely reflect a localized effect of gBGC at recombination 201 hotspots. Here we show that such clusters, although anecdotical in humans and apes, are a major 202 component of the substitution pattern in other families of mammals. 203

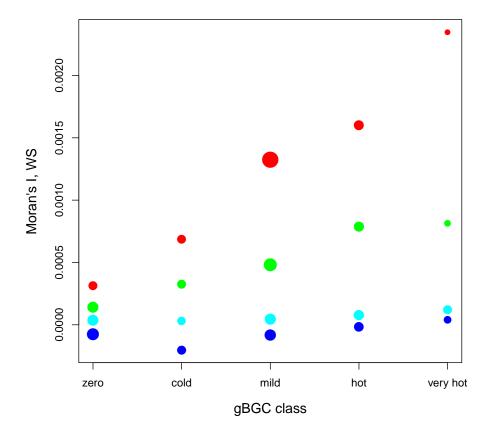


Figure 5: Average centered Moran's I as a function of average estimated gBGC strength B. Each dot is for a class of genes in a family (all species merged). Genes were assigned to classes under the M5f model. Dot size reflects the relative number of genes in the considered class. Blue: Hominidae; cyan: Cercopithecidae; green: Bovidae; red: Muridae.

Our estimate of the B parameter, which measures the average intensity of gBGC across genes, varied 204 between 0.2 and 3.9 among the 40 analysed lineages. In primates, the median estimated \bar{B} was ~ 0.5 , 205 i.e., in the range of previously published values: 0.1 in hominoids [43], 0.38 in humans [35], 0.35-0.7 in 206 apes [18]. Our estimates of \overline{B} in Bovidae (~ 0.5 - 1) and Muridae (~ 1 - 2) are also quite similar to 207 those obtained by Lartillot [43] in the Bos taurus (Bovidae), Mus musculus and Rattus rattus (Muridae) 208 lineages. In Bovidae, we found a positive relationship between the estimated \bar{B} and branch age (in 209 million years), defined as the average between the date of the top and bottom nodes of a branch (n = 9)210 branches; $r^2 = 0.75$; p-val=0.003). This is consistent with the hypothesis of a high ancestral N_e in this 211 taxon, as also suggested by fossil data and d_N/d_S -based reconstructions [26, 27]. Our study could not 212 confirm the report by Romiguier et al. [69] and Lartillot [43] of a particularly strong gBGC in bats, 213 tenrecs and lagomorphs due to the unavailability of fully-sequenced, closely related species in sufficient 214 numbers in these taxa. 215

The estimated genome average B was in the nearly neutral zone in the four families analysed here. Even so, gBGC was found to be pervasive and strongly impact the substitution process in coding sequences. Fitting a three-category, hotspot model across genes, we estimate that 30 to 60% of the WS synonymous substitutions can be attributed to gBGC in mammals. It should be noted that this estimate, as well as the estimates of B we report in this work, is dependent on the assumption of a known and

constant mutation process. Here we used the WS, SW, SS and WW mutations rates obtained from Smith 221 et al. [75], who analysed >130,000 de novo mutations inferred from mother/father/child trios in humans 222 - a very large data set. Milholland et al. [52] compared the germline mutation pattern of H. sapiens and 223 M. musculus and did not detect any conspicuous difference between the two species in the proportions 224 of SW, WS and SSWW mutations, and neither did Wang et al. [79] when comparing Macaca mulatta 225 (Cercopithecidae) to H. sapiens. So the existing literature does not seem to question our assumption of 226 constant relative mutation rates in mammals - but note that no such data is available in Bovidae, to our 227 knowledge. Also note that the clustering analysis (Fig.2) does not make any assumption regarding the 228 mutation process. 229

It should be noted that our estimate of B in this analysis is based on substitution counts inferred 230 via a parsimony-based approach. This way of counting substitutions is not devoid of potential problems. 231 Maximum parsimony substitution inference is known to be biased towards common-to-rare changes 232 [21]. However, the relatively recent divergence times we are considering presumably keeps this effect to 233 a minimum. Indeed the longest branch across all four trees (Fig. 1), the Rattus norvegicus terminal 234 branch, has a length below 0.08 substitutions per site, which is the minimal length for which this problem 235 was detectable in [21]. Using closely related species, on the other hand, runs into another potential bias: 236 when closely related species are analysed, there is a risk that within-species polymorphism contributes 237 a non-negligible fraction of the observed sequence variation, biasing the estimation of quantities such as 238 the d_N/d_S ratio [56]. This bias likely affects the estimation of the relative SW and WS substitution rates 239 as well, since the expected SW/WS rate ratio differs between polymorphism and divergence when gBGC 240 is at work. More work would be needed to confirm and quantify the effect of this bias on our analysis. 241

3.2A significant effect of the effective population size 242

263

Although a significant effect of gBGC was detected in all four analysed families, its intensity varied 243 conspicuously among families, Muridae being the most strongly impacted, followed by Bovidae, Cercop-244 ithecidae, and Hominidae. It is noticeable that gBGC ranks family in the same order as N_e , as measured 245 by the family-average d_N/d_S ratio, this order being consistently recovered in nearly all the analyses we 246 performed. This is in line with the expectation that the intensity of gBGC should be higher in large than 247 in small populations. An effect of N_e was also detected by correlating B with the d_N/d_S ratio across 248 branches, and with heterozygosity across species (Fig.4). These analyses confirmed the significance of 249 the effect, both among and within families, thus corroborating the relationship uncovered by Lartillot 250 [43] at a deeper phylogenetic scale. 251

Interestingly, the slope of the $log(\bar{B})$ vs. $log(d_N/d_S)$ relationship differed conspicuously among fam-252 ilies in Fig.4. This result might tell something about the strength of selection on amino-acid changing 253 mutations in mammalian coding sequences. Welch et al. [81] showed that, assuming a Gamma distribu-254 tion of deleterious effects of non-synonymous mutations, the d_N/d_S ratio is expected to be proportional 255 to $N_e^{-\beta}$, where β is the shape parameter of the Gamma distribution. So under this assumption, and since 256 B is proportional to N_e , the slope of the $log(\bar{B})$ vs. $log(d_N/d_S)$ relationship should equal $-1/\beta$. This 257 rationale yields estimates of β equal to 0.51 in Hominidae, 0.15 in Bovidae, and 0.09 in Muridae. These 258 figures differ considerably from estimates obtained by site frequency spectrum analyses, *i.e.*, $\beta \sim 0.15$ in 259 Hominidae and ~ 0.2 in Muridae [9, 29, 38]. More work is needed to understand the origin and meaning 260 of this discrepancy. At any rate, our results suggest that gBGC analysis could constitute a new source 261 of information on the variation in N_e among species, and might enrich the ongoing discussion on this 262 issue [e.g 7, 29].

The among lineages correlation between the estimated \overline{B} and the d_N/d_S ratio we report here in 264 mammals, which confirms Lartillot [43]'s results, contrasts with the absence of such a correlation at 265

the Metazoa scale. Large- N_e fruit flies and marine molluscs, for instance, are less strongly impacted by gBGC than small- N_e bees and amniotes [33, 68, 78]. The simplest explanation for this is that b, the transmission bias, probably differs much between distantly related taxa, due to differences in recombination rate, repair bias and/or conversion tract length. For instance, the recombination rate is known to be particularly high in honey bees [82].

Two recent studies experimentally assessed the intensity of gBGC in mice via crosses followed by 271 sperm [34] or progeny [47] whole genome sequencing. Both estimated that b is lower in mice than 272 in humans - maybe five times lower, although this figure requires confirmation. Gautier [34] invoked 273 purifying selection against gBGC to explain this result. Indeed, because of its deleterious effects [3, 32, 274 59, gBGC as a process could be counter-selected, and purifying selection being more effective in large 275 than in small population, this verbal model would predict a lower b in mice than in human. Adapted 276 to our results, this hypothesis of a negative correlation between N_e and b would imply that the range 277 of variation in B should be narrower than the range of variation in N_e among mammalian lineages. 278 We indeed observed a narrower variation in the magnitude of the estimated \bar{B} (standard deviation of 279 log(B): 0.63) than of heterozygosity (standard deviation of $log(\pi)$: 0.74; same 18 species used in these 280 two calculations, see Fig.4, right panel). The difference, however, is not particularly pronounced, and 281 does not suggest the existence of a strong negative relationship between b and N_e in mammals. That 282 said, not only N_e influences the variation of π : the mutation rate also matters. Among-species differences 283 in per generation mutation rate, if any, should be taken into account for a better assessment of the b vs. 284

 $_{285}$ N_e relationship.

286 3.3 Recombination hotspots dynamics

The among-gene variation in gBGC intensity, measured by the relative standard deviation of B, was 287 found to be substantial in all branches, while lower in Muridae than in the other three families - a 288 pattern also reported by Lartillot [43]. gBGC seems to be more evenly distributed across the genome 289 in this taxon, consistent with previous reports that GC3 in murid rodents has been increasing and was 290 homogenised since the common ancestor of this family [10, 54, 67, 69]. Muridae appears to be a peculiar 291 group of mammals with this respect [69], and one should keep this in mind when interpreting patterns 292 of gBGC-related evolution in this taxon. Of note, the existing literature does not suggest that the 293 recombination map is less heterogeneous in mouse or rat than in primates [6, 40, 50]. 294

The within-gene heterogeneity in B, in contrast, was more pronounced in Muridae than in Bovidae 295 and, particularly, primates (Fig.2), and this was true even when we controlled for gene-specific B (Fig.5): 296 for any particular intensity of gBGC, WS substitutions tend to be more clustered in large- N_e than in 297 small- N_e species. This intriguing result might be interpreted in relation with the dynamics of recom-298 bination hotspots. To result in a cluster of WS substitutions, a recombination hotspot must be active 299 during a sufficiently long period of time for several WS alleles to reach a high population frequency. We 300 suggest that in primates gBGC does not generate a pattern of highly clustered WS substitutions because 301 heterozygosity is low and recombination hotspots are short-lived in this taxon. Indeed, recombination 302 hotspots are known to be particularly ephemeral in Hominidae, due to a transmission distortion asso-303 ciated with the Red Queen-like evolution of the major hotspot determining gene PRDM9 [1, 14, 57]. 304 For instance, Lesecque et al. [46] showed that denisovians and modern humans did not share the same 305 recombination hotpots, while the level of divergence between these two genomes is of the order of one 306 synonymous substitution per gene on average [51]. Our results might suggest that the situation differs 307 in other taxa of mammals, maybe in a way related to N_e . At any rate, heterozygosity is higher in 308 large- N_e species, which increases the probability that a given local episode of gBGC results in more than 309 one WS substitutions, irrespective of recombination hotspot lifespan. A deeper understanding of this 310

result would require to account for the many factors influencing the turnover time of PRDM9 alleles and recombination hotspots [45], the length of gene conversion tracts, as well as the population mutation rate and fixation probability of WS mutations.

³¹⁴ 4 Concluding remarks

Quantifying gBGC in closely related species of mammals, we report a pervasive effect on the nucleotide substitution process, a positive relationship with N_e , and a complex pattern of variation within and among genes. This work also demonstrates that the analysis of gBGC has the potential to illuminate various aspects of molecular evolution, including the distribution of fitness effect of mutations and the dynamics of recombination hotspots. The apparent lack of a N_e effect on gBGC intensity at the Metazoa scale is an unresolved question that requires further quantification of the strength of gBGC in nonvertebrate taxa.

322 5 Material and Methods

323 5.1 Sequence data

Mammalian coding sequence alignments were downloaded from the Orthomam v10 database [74]. The 324 four families of mammals represented by at least six species in OrthoMam v10 were selected, namely 325 Hominidae (six species, 11,859 genes), Cercopithecidae (eleven species, 10,834 genes), Bovidae (seven 326 species, 9527 genes), and Muridae (six species, 11,758 genes). In Bovidae, the Bos indicus sequences 327 were not considered since this taxon is a subspecies of Bos taurus. In all four families the phylogenetic 328 histories of the sampled species are well documented, with the exception of the unresolved relationship 329 between cattle, yak and bison [23, 24, 37, 77, Fig1]. Nodes were dated based on the TimeTree website 330 (http://www.timetree.org/) using the median date estimates. 331

332 5.2 Substitution mapping

For each of the four data sets, nucleotide substitutions were mapped to the resolved branches of the trees 333 using a stringent parsimony approach. For any given branch, an $X \rightarrow Y$ substitution was recorded if and 334 only if all species descending from the considered branch carried state Y, and all other species carried 335 state X. All positions not matching this exact pattern, including positions with missing data or gaps, 336 were disregarded. Branches connected to the root of the tree were excluded, as well as branches whose 337 number of descending species was higher than half the total number of sampled species in the family. A 338 total of 40 distinct branches were considered - seven in Hominidae and Muridae, nine in Bovidae, 17 in 339 Cercopithecidae (Fig.1). For each branch and each coding sequence, the number and positions of non-340 synonymous and synonymous substitutions were recorded, distinguishing the $AT \rightarrow GC$ (WS), $GC \rightarrow AT$ 341 (SW) and GC-conservative (SSWW) sorts. Only synonymous substitutions occurring at third codon 342 positions, and non-synonymous substitutions occurring at first or second codon positions, were counted. 343 For any given branch, substitutions that mapped to consecutive sites were ignored, and genes in which 344 the per base pair substitution rate was higher than ten times the across-genes median rate were discarded 345 (implying that the number of analysed genes could slightly differ among lineages within a family). The 346 last two steps aimed at diminishing the effect of misaligned regions. 347

³⁴⁸ 5.3 Clustering analysis (synonymous substitutions)

For each branch and each gene of length above 400 bp, we calculated Moran's I index (Moran 1950) 349 separately for WS and SW synonymous substitutions. We used a weight matrix defined as follows: the 350 weight equalled one for any two substitutions distant of 400 bp or less, and zero for any two substitutions 351 more distant than 400 bp. Window widths of 200 bp and 100 bp gave qualitatively similar results. For 352 each branch and each sort of substitutions, Moran's I was averaged across genes, excluding genes with 353 less than three substitutions of the considered sort. Moran's I has a negative expectation of -1/(l-1)354 under the null hypothesis of no spatial autocorrelation, where l is the number of third codon positions 355 of the considered gene. Here we used the centered version of the statistics, I + 1/(l-1), the expectation 356 of which is zero in the absence of substitution clustering. 357

358 5.4 Clustering: simulations

We downloaded from the Ensembl database coding sequence annotations in one representative species per family, namely *Homo sapiens* (Hominidae), *Macaca mulatta* (Cercopithecidae), *Bos taurus* (Bovidae) and *Mus musculus* (Muridae), disregarding coding sequences shorter than 400 bp. Then we simulated substitution data in a hypothetical branch by iteratively sampling the location of third-codon-position substitutions across coding sequences using the following method:

(initiation:) randomly sample the location of the first substitution among the third codon positions of
 all genes;

366 (iteration:)

- with probability $1 - p_{clust}$, randomly sample the location of the $(n+1)^{th}$ substitution among the third codon positions of all genes;

- with probability p_{clust} , randomly sample the location of the $(n+1)^{th}$ substitution in the neighborhood of the n^{th} substitution (clustered substitutions).

More precisely, conditional on the n^{th} and $(n+1)^{th}$ substitutions being clustered,

³⁷² - with probability p_{CO} the $(n + 1)^{th}$ substitution was randomly sampled in a window of width l_{CO} ³⁷³ centered on the location of the n^{th} substitution, and

- with probability $p_{NCO} = 1 - p_{CO}$ the $(n+1)^{th}$ substitution was randomly sampled in a window of width l_{NCO} centered on the location of the n^{th} substitution.

- This was intended to represent the fact that gene conversion tracts associated to crossing-over and non-376 crossing-over events are of different lengths [13]. If the sampled location of the $(n + 1)^{th}$ substitution 377 reached beyond the boundaries of the exon carrying the n^{th} substitution, then the $(n+1)^{th}$ substitution 378 was ignored. Our procedure also accounted for the existence of variation in mutation rate among exons: 379 we assumed that one half of the exons had a mutation rate γ times as high as the other half. We separately 380 simulated WS and SW substitution data, accounting for the distribution of GC-content at third codon 381 positions - hence, the availability of W and S sites - in the four groups. A gene with GC3=90% was 10 382 times more likely to host a SW substitution than a gene with GC3=10% in our simulations. 383
- Two parameters of the simulation procedure were varied among conditions, namely the per third 384 codon position density of substitutions (taking values in $\{0.0003, 0.001, 0.003, 0.01, 0.03\}$) and the 385 probability p_{clust} for two successive substitutions to be clustered (taking values in {0, 0.1, 0.2, 0.3, 0.4}). 386 The other parameters were fixed to constant values estimated from the literature. Parameters l_{CO} and 387 l_{NCO} were set to 500 and 40 bp, respectively [13, 39, 47, 83]. Parameter γ was set to 3, ensuring an 388 among-exon mutation rate relative standard deviation of 0.5, in agreement with figure 4 in Smith et al. 389 [75]. Finally, parameter p_{CO} was set to 0.86, according to the following rationale: the CO/NCO odds 390 ratio for the first substitution to occur in a gene conversion tracts is $(l_{CO}n_{CO})/(l_{NCO}n_{NCO})$, where n_{CO} 391 and n_{NCO} are the number of crossing-over and non crossing-over events, respectively; the CO/NCO 392

odds ratio for the second substitution to occur in the same gene conversion tract is l_{CO}/l_{NCO} ; so the CO/NCO odds ratio for the occurrence of a pair of clustered substitutions is the product, p, of the two terms above, and $p_{CO} = p/(1+p)$. Using $n_{CO}/n_{NCO} = 0.1$ [2, 12], $l_{CO} = 500$ and $l_{NCO} = 40$ we obtain $p_{CO} = 0.86$.

³⁹⁷ 5.5 Maximum likelihood estimation of gBGC strength

For each branch and each gene, we counted the numbers of inferred WS, SW and SSWW synonymous substitutions at third codon positions. Then we fitted mutation/gBGC/drift models to these observations in the maximum likelihood framework.

Consider a coding sequence of length l evolving in a parmictic diploid population of constant size N_e under neutrality during a period T of time. The expected number of substitutions, n^* , depends on the mutation rate μ and fixation probability f:

$$n^* = 2N_e l\mu fT \tag{1}$$

Assuming a homogeneous gBGC intensity of b, the fixation probability of WS, SW and SSWW mutations can be written as:

$$f_1 = \frac{2b}{1 - e^{-4N_e b}} \tag{2}$$

$$f_2 = \frac{2b}{e^{4N_e b} - 1}$$
(3)

$$f_3 = 1/2N_e \tag{4}$$

Here and below, subscript 1, 2 and 3 respectively refer to the WS, SW and SSWW sorts of change.
Substituting in equation 1 and only considering third codon positions, we get the expected number of synonymous substitutions of the three sorts:

$$n_1^* = l_W \mu_{WS} \frac{B}{1 - e^{-B}} T \tag{5}$$

$$n_2^* = l_S \mu_{SW} \frac{B}{e^{-B} - 1} T \tag{6}$$

$$n_3^* = (l_W \mu_{WW} + l_S \mu_{SS})T$$
(7)

where $B = 4N_e b$, l_W and l_S are the number of AT- and GC-ending codons, respectively, in the considered coding sequence, and μ_{WS} , μ_{SW} , μ_{SS} and μ_{WW} are the corresponding mutation rates.

Assuming that the number of WS substitutions is Poisson distributed, the probability of observing n WS substitutions given B and T is given by the following function:

$$\phi_1(n|B,T) = \frac{n_1^{*n}}{n!} e^{-n_1^*} \tag{8}$$

and similarly for SW and SSWW substitutions:

$$\phi_2(n|B,T) = \frac{n_2^{*n}}{n!} e^{-n_2^*} \tag{9}$$

$$\phi_3(n|B,T) = \frac{n_3^{*n}}{n!} e^{-n_3^*} \tag{10}$$

We modelled the variation of B among genes using discrete distributions. Assume there are k categories of genes, with each category including a fraction p_k of the genes and characterised by a populationscaled gBGC intensity B_k , assumed to be constant within genes. For a gene at which n_1 , n_2 , and n_3 substitutions of the three sorts are observed, the likelihood can be written as:

$$L = \sum_{k} p_k \phi_1(n_1 | B_k, T) \phi_2(n_2 | B_k, T) \phi_3(n_3 | B_k, T)$$
(11)

We considered various models that differ in how B varies across genes. Under model M1, a constant 418 B across genes is assumed. Model M2 defines two categories of genes, each with its own gBGC intensity. 419 Model M3z (for zero) has three categories of genes, among which one has a gBGC intensity of zero, the 420 other two being free parameters. Model M5f (for fixed) has five categories of genes with fixed gBGC 421 intensities equal to $B_1 = 0$, $B_2 = 0.333$, $B_3 = 1$, $B_4 = 3.333$ and $B_5 = 10$, respectively. In all four 422 models the proportions of genes in the various categories were free to vary, T was assumed to be shared 423 among genes and the relative mutation rates μ_{WS} , μ_{SW} , μ_{SS} and μ_{WW} were set to empirical estimates 424 obtained from Smith et al. (2018), i.e., $\mu_{WS} = 5.21$, $\mu_{SW} = 10.90$, $\mu_{SS} = 2.07$ and $\mu_{WW} = 1$. 425

The models above assume a homogeneous rate of gBGC among positions within a gene. To account for the existence of hotspots of gBGC, we modelled the within-gene variation of B by assuming that only a fraction q of the positions undergo gBGC at rate B_h , the other positions evolving neutrally. Under this assumption, the expected number of WS and SW substitutions are given by:

$$n_1^* = l_W \mu_{WS} [(1-q) + \frac{qB_h}{1 - e^{-B_h}}]T$$
(12)

$$n_2^* = l_S \mu_{SW} [(1-q) + \frac{qB_h}{e^{B_h} - 1}]T$$
(13)

430 while n_3^* is given by equation 7.

Equations 12 and 13 simplify if q is assumed to be much smaller than 1 and B_h much higher than 1; under these assumptions, we have:

$$n_1^* = l_W \mu_{WS} (1 + qB_h) T \tag{14}$$

$$n_2^* = l_S \mu_{SW} T \tag{15}$$

Parameters q and B_h only appear as a product in equations 14 and 15, saving one degree of freedom. The simplified equation 15 exhibits the main difference between hotspot and gene-homogeneous models, which concerns SW substitutions. In gene-homogeneous models, the expected number of SW substitutions is decreased in genes experiencing strong gBGC, whereas hotspot models predict nearly no influence of gBGC on the SW substitution rate if q is sufficiently small.

The among-gene variation in gBGC strength was here modeled via categories of genes that differed with respect to the prevalence of hotspots, q, while sharing the same intensity of gBGC within hotspots, B_h . Specifically, we considered a three-category model in which the "coldest" category had no hotspot, i.e., $q_1 = 0$. The fraction of hotspots in the other two categories, q_2 and q_3 , and the relative prevalence of the three categories, p_1 , p_2 and p_3 , as well as T and B_h , were free to vary. This model was called M3h (for hotspot); its predictions are given by equations 12, 13 and 7. A simplified hotspot model, M3sh (for simplified hotspot), was also implemented by instead using equations 14, 15 and 7. M3sh is

a special case of M3h assuming that the fraction of sites affected by gBGC within a gene is small. We also considered a simplified five-category hotspot model, M5shf, with fixed values for the $q_k B_h$ product equal to 0, 0.333, 1, 3.33 and 10, respectively.

The overall likelihood was obtained by multiplying the likelihoods of distinct genes. Parameters were estimated in the maximum likelihood (ML) framework. Likelihood maximization was achieved via home-made C++ programs using the Bio++ library [36].

⁴⁵¹ The across gene categories average estimated intensity of gBGC was computed as

$$\bar{B} = \sum_{k} \hat{p_k} \hat{B_k} \tag{16}$$

452 under gene-homogeneous models and

$$\bar{B} = \sum_{k} \hat{p_k} \hat{q_k} \hat{B_h} \tag{17}$$

under hotspot models, where the k index is for gene categories and the hat denotes ML estimate. The across genes standard deviation of the intensity of gBGC was calculated similarly.

Akaike's Information Criterion (AIC) was calculated for all models, the number of estimated parameters being 2, 4, 5, 5, 5 and 6, respectively, for M1, M2, M3z, M5f, M3sh, M5shf and M3h. AIC weights [63] were used to calculate an across-model estimate of the *B* parameter. The parametrisation of the various models is recapitulated in Table 1.

⁴⁵⁹ For each gene, the expected number of WS substitutions in the absence of gBGC was estimated as:

$$m_1^* = l_W \mu_{WS} \hat{T} \tag{18}$$

and the excess WS substitutions due to gBGC were estimated as $(n_1^* - m_1^*)/m_1^*$. No depletion of SW substitutions is expected under M3sh (compare equations 15 and 18). Finally, each gene was assigned to one of the gBGC categories by selecting the category k maximising the following posterior probability:

$$\phi_1(n_1|B_k, T)\phi_2(n_2|B_k, T)\phi_3(n_3|B_k, T) \tag{19}$$

All these calculations were achieved separately for the 40 branches of the data set.

464

model	$\operatorname{cat.}^{a}$	nb fixed ^{b}	\mathbf{fixed}^c	nb optimised ^{d}	$optimised^e$
all^f			$\mu_{WS}, \mu_{SW}, \mu_{SS}, \mu_{WW}$		Т
M1	1	4		2	B
M2	2	4		4	B_1, B_2, p_1
M3z	3	5	B_1	5	B_2, B_3, p_1, p_2
M5f	5	9	B_1 - B_5	5	p_1-p_4
M3h	3	5	q_1	6	q_2, q_3, B_h, p_1, p_2
M3sh	3	5	q_1B_h	5	q_2B_h, q_3B_h, p_1, p_2
M5shf	5	9	q_1B_h - q_5B_h	5	p_1 - p_4

Table 1: Parametrisation of the models used in this analysis. a: number of categories of genes; b: number of fixed parameters; c: list of fixed parameters; d: number of optimized parameters; e: list of optimized parameters; f: parameters shared by all models

465 5.6 Additional variables

For every branch, the numbers of non-synonymous substitutions of the WS, SW and SSWW sorts at first and second codon positions were computed, summed across genes, and used to calculate branch-specific d_{N}/d_{S} ratios. A literature survey was conducted in search for genome-wide estimates of within-species diversity, or heterozygosity, π . Such estimates were collected in 18 of the analysed species, as reported in Supplementary Table S2. Data on species longevity and body mass were obtained from the AnAge data base [17] and are also reported in Supplementary Table S2.

472 6 Supplementary Material, Data accessibility

473 All the data sets, programs and scripts used in this study are available from:

474 https://osf.io/fx54q/?view_only=1109ca2f66e74ad99f0d76ac93d40fc5

475 7 Acknowledgments

The author is grateful to Laurent Duret, Nicolas Lartillot, Sylvain Glémin, Benoît Nabholz and Jonathan
Romiguier for very useful comments, and to Adam Eyre-Walker for sharing data on *de novo* mutation
in humans. This work was supported by Agence Nationale de la Recherche project ANR-19-CE12-0019
(HotRec).

480 References

- [1] A Auton, A Fledel-Alon, S Pfeifer, O Venn, L Ségurel, T Street, E M Leffler, R Bowden, I Aneas,
 J Broxholme, P Humburg, Z Iqbal, G Lunter, J Maller, R D Hernandez, C Melton, A Venkat, M A
 Nobrega, R Bontrop, S Myers, P Donnelly, M Przeworski, and G McVean. A fine-scale chimpanzee
 genetic map from population sequencing. *Science*, 336(6078):193–198, 2012.
- [2] F Baudat and B de Massy. Regulating double-stranded DNA break repair towards crossover or
 non-crossover during mammalian meiosis. *Chromosome Res*, 15(5):565–577, 2007.
- [3] J Berglund, K S Pollard, and M T Webster. Hotspots of biased nucleotide substitutions in human
 genes. *PLoS Biol*, 7(1):e26, 2009.
- [4] P Bolívar, C F Mugal, M Rossi, A Nater, M Wang, L Dutoit, and H Ellegren. Biased inference of
 selection due to GC-biased gene conversion and the rate of protein evolution in flycatchers when
 accounting for it. *Mol Biol Evol*, 35(10):2475–2486, 2018.
- ⁴⁹² [5] R Borges, G J Szöllősi, and C Kosiol. Quantifying gc-biased gene conversion in great ape genomes
 ⁴⁹³ using polymorphism-aware models. *Genetics*, 212(4):1321–1336, 2019.
- [6] H Brunschwig, L Levi, E Ben-David, R W Williams, B Yakir, and S Shifman. Fine-scale maps of
 recombination rates and hotspots in the mouse genome. *Genetics*, 191(3):757–764, 2012.
- [7] V Buffalo. Why do species get a thin slice of π ? Revisiting Lewontin's paradox of variation. *bioRxiv*, doi: https://doi.org/10.1101/2021.02.03.429633, 2021.
- [8] J A Capra, M J Hubisz, D Kostka, K S Pollard, and A Siepel. A model-based analysis of GC-biased
 gene conversion in the human and chimpanzee genomes. *PLoS Genet*, 9(8):e1003684, 2013.

- [9] D Castellano, M C Macià, P Tataru, T Bataillon, and K Munch. Comparison of the full distribution
 of fitness effects of new amino acid mutations across great apes. *Genetics*, 213(3):953–966, 2019.
- ⁵⁰² [10] Y Clément and P F Arndt. Substitution patterns are under different influences in primates and ⁵⁰³ rodents. *Genome Biol Evol*, 3:236–245, 2011.
- [11] Y Clément, G Sarah, Y Holtz, F Homa, S Pointet, S Contreras, B Nabholz, F Sabot, L Sauné,
 M Ardisson, R Bacilieri, G Besnard, A Berger, C Cardi, F De Bellis, O Fouet, C Jourda, B Khadari,
 C Lanaud, T Leroy, D Pot, C Sauvage, N Scarcelli, J Tregear, Y Vigouroux, N Yahiaoui, M Ruiz,
 S Santoni, J P Labouisse, J L Pham, J David, and S Glémin. Evolutionary forces affecting synony-
- mous variations in plant genomes. *PLoS Genet*, 13(5):e1006799, 2017.
- ⁵⁰⁹ [12] F Cole, L Kauppi, J Lange, I Roig, R Wang, S Keeney, and M Jasin. Homeostatic control of ⁵¹⁰ recombination is implemented progressively in mouse meiosis. *Nat Cell Biol*, 14(4):424–430, 2012.
- [13] F Cole, F Baudat, C Grey, S Keeney, B de Massy, and M Jasin. Mouse tetrad analysis provides
 insights into recombination mechanisms and hotspot evolutionary dynamics. *Nat Genet*, 46(10):
 1072–1080, 2014.
- [14] G Coop and S R Myers. Live hot, die young: transmission distortion in recombination hotspots.
 PLoS Genet, 3(3):e35, 2007.
- [15] P Corcoran, T I Gossmann, HJ Barton, Great-Tit-HapMap-Consortium, J Slate, and K Zeng.
 Determinants of the efficacy of natural selection on coding and noncoding variability in two passerine
 species. *Genome Biol Evol*, 9(11):2987–3007, 2017.
- ⁵¹⁹ [16] J Damuth. A macroevolutionary explanation for energy equivalence in the scaling of body size and ⁵²⁰ population density. *Am Nat*, 169(5):621–631, 2007.
- [17] J P de Magalhães and J A Costa. A database of vertebrate longevity records and their relation to
 other life-history traits. J Evol Biol, 22(8):1770–1774, 2009.
- [18] N De Maio, C Schlötterer, and C Kosiol. Linking great apes genome evolution across time scales
 using polymorphism-aware phylogenetic models. *Mol Biol Evol*, 30(10):2249–2262, 2013.
- ⁵²⁵ [19] T R Dreszer, G D Wall, D Haussler, and K S Pollard. Biased clustered substitutions in the human ⁵²⁶ genome: the footprints of male-driven biased gene conversion. *Genome Res*, 17(10):1420–1430, 2007.
- ⁵²⁷ [20] L Duret and P F Arndt. The impact of recombination on nucleotide substitutions in the human ⁵²⁸ genome. *PLoS Genet*, 4(5):e1000071, 2008.
- [21] A Eyre-Walker. Problems with parsimony in sequences of biased base composition. J Mol Evol, 47
 (6):686–690, 1998.
- [22] A Eyre-Walker. Evidence of selection on silent site base composition in mammals: potential impli cations for the evolution of isochores and junk DNA. *Genetics*, 152(2):675–683, 1999.
- ⁵³³ [23] P H Fabre, A Rodrigues, and E J Douzery. Patterns of macroevolution among Primates inferred
 ⁵³⁴ from a supermatrix of mitochondrial and nuclear DNA. *Mol Phylogenet Evol*, 53(3):808–825, 2009.
- ⁵³⁵ [24] P H Fabre, L Hautier, D Dimitrov, and E J Douzery. A glimpse on the pattern of rodent diversifi ⁵³⁶ cation: a phylogenetic approach. *BMC Evol Biol*, 12:88, 2012.

- E Figuet, M Ballenghien, J Romiguier, and N Galtier. Biased gene conversion and GC-content
 evolution in the coding sequences of reptiles and vertebrates. *Genome Biol Evol*, 7(1):240–250,
 2014.
- [26] E Figuet, J Romiguier, J Y Dutheil, and N Galtier. Mitochondrial DNA as a tool for reconstructing
 past life-history traits in mammals. J Evol Biol, 27(5):899–910, 2014.
- ⁵⁴² [27] E Figuet, M Ballenghien, N Lartillot, and N Galtier. Reconstruction of body mass
 ⁵⁴³ evolution in the Cetartiodactyla and mammals using phylogenomic data. *bioRxiv*, doi:
 ⁵⁴⁴ https://doi.org/10.1101/139147, peer-reviewed and recommended by Peer Community In Evolutionary Biology, https://evolbiol.peercommunityin.org/articles/rec?id=67, 2017.
- ⁵⁴⁶ [28] N Galtier and L Duret. Adaptation or biased gene conversion? extending the null hypothesis of ⁵⁴⁷ molecular evolution. *Trends Genet*, 23(6):273–277, 2007.
- ⁵⁴⁸ [29] N Galtier and M Rousselle. How much does n_e vary among species? Genetics, 216(2):559–572, ⁵⁴⁹ 2020.
- [30] N Galtier, G Piganeau, D Mouchiroud, and L Duret. GC-content evolution in mammalian genomes:
 the biased gene conversion hypothesis. *Genetics*, 159(2):907–911, 2001.
- [31] N Galtier, E Bazin, and N Bierne. GC-biased segregation of noncoding polymorphisms in *Drosophila*.
 Genetics, 172(1):221–228, 2006.
- [32] N Galtier, L Duret, S Glémin, and V Ranwez. GC-biased gene conversion promotes the fixation of
 deleterious amino acid changes in primates. *Trends Genet*, 25(1):1–5, 2009.
- [33] N Galtier, C Roux, M Rousselle, J Romiguier, E Figuet, S Glémin, N Bierne, and L Duret. Codon
 usage bias in animals: Disentangling the effects of natural selection, effective population size, and
 GC-biased gene conversion. *Mol Biol Evol*, 35(5):1092–1103, 2018.
- [34] Maud Gautier. La recombinaison comme moteur de l'évolution des génomes : caractérisation de la conversion génique biaisée chez la souris. PhD thesis, Ecole Doctorale E2M2, Université Claude
 Bernard Lyon 1, 9 2019.
- [35] S Glémin, P F Arndt, P W Messer, D Petrov, N Galtier, and L Duret. Quantification of GC-biased
 gene conversion in the human genome. *Genome Res*, 25(8):1215–1228, 2015.
- ⁵⁶⁴ [36] L Guéguen, S Gaillard, B Boussau, M Gouy, M Groussin, N C Rochette, T Bigot, D Fournier,
 ⁵⁶⁵ F Pouyet, V Cahais, A Bernard, C Scornavacca, B Nabholz, A Haudry, L Dachary, N Galtier,
 ⁵⁶⁶ K Belkhir, and J Y Dutheil. Bio++: efficient extensible libraries and tools for computational
 ⁵⁶⁷ molecular evolution. *Mol Biol Evol*, 30(8):1745–1750, 2013.
- [37] A Hassanin, F Delsuc, A Ropiquet, C Hammer, B Jansen van Vuuren, C Matthee, M Ruiz-Garcia,
 F Catzeflis, V Areskoug, T T Nguyen, and A Couloux. Pattern and timing of diversification of Cetar tiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial
 genomes. C R Biol, 335(1):32–50, 2012.
- [38] C D Huber, B Y Kim, C D Marsden, and K E Lohmueller. Determining the factors driving selective
 effects of new nonsynonymous mutations. *Proc Natl Acad Sci U S A*, 114(17):4465-4470, 2017.
- ⁵⁷⁴ [39] A J Jeffreys and C A May. Intense and highly localized gene conversion activity in human meiotic ⁵⁷⁵ crossover hot spots. *Nat Genet*, 36(2):151–156, 2004.

- 576 [40] M I Jensen-Seaman, T S Furey, B A Payseur, Y Lu, K M Roskin, C F Chen, M A Thomas,
- ⁵⁷⁷ D Haussler, and H J Jacob. Comparative recombination rates in the rat, mouse, and human ⁵⁷⁸ genomes. *Genome Res*, 14(4):528–538, 2004.
- ⁵⁷⁹ [41] J Lachance and S A Tishkoff. Biased gene conversion skews allele frequencies in human populations,
 ⁵⁸⁰ increasing the disease burden of recessive alleles. Am J Hum Genet, 95(4):408–420, 2014.
- [42] N Lartillot. Interaction between selection and biased gene conversion in mammalian protein-coding
 sequence evolution revealed by a phylogenetic covariance analysis. *Mol Biol Evol*, 30(2):356–368,
 2012.
- ⁵⁸⁴ [43] N Lartillot. Phylogenetic patterns of GC-biased gene conversion in placental mammals and the ⁵⁸⁵ evolutionary dynamics of recombination landscapes. *Mol Biol Evol*, 30(3):489–502, 2013.
- ⁵⁸⁶ [44] F Lassalle, S Périan, T Bataillon, X Nesme, L Duret, and V Daubin. GC-content evolution in
 ⁵⁸⁷ bacterial genomes: the biased gene conversion hypothesis expands. *PLoS Genet*, 11(2):e1004941,
 ⁵⁸⁸ 2015.
- [45] T Latrille, L Duret, and N Lartillot. The Red Queen model of recombination hot-spot evolution: a
 theoretical investigation. *Philos Trans R Soc Lond B Biol Sci*, 372(1736):20160463, 2017.
- [46] Y Lesecque, S Glémin, N Lartillot, D Mouchiroud, and L Duret. The red queen model of recombi nation hotspots evolution in the light of archaic and modern human genomes. *PLoS Genet*, 10(11):
 e1004790, 2014.
- [47] R Li, E Bitoun, N Altemose, R W Davies, B Davies, and S R Myers. A high-resolution map of
 non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat
 Commun, 10(1):3900, 2019.
- ⁵⁹⁷ [48] H Long, W Sung, S Kucukyildirim, E Williams, S F Miller, W Guo, C Patterson, C Gregory,
 ⁵⁹⁸ C Strauss, C Stone, C Berne, D Kysela, W R Shoemaker, M E Muscarella, H Luo, J T Lennon,
 ⁵⁹⁹ Y V Brun, and M Lynch. Evolutionary determinants of genome-wide nucleotide composition. Nat
 ⁶⁰⁰ Ecol Evol, 2(2):237–240, 2018.
- [49] E Mancera, R Bourgon, A Brozzi, W Huber, and L M Steinmetz. High-resolution mapping of
 meiotic crossovers and non-crossovers in yeast. *Nature*, 454(7203):479–485, 2008.
- [50] G A McVean, S R Myers, S Hunt, P Deloukas, D R Bentley, and P Donnelly. The fine-scale structure
 of recombination rate variation in the human genome. *Science*, 304(5670):581–584, 2004.
- [51] M Meyer, M Kircher, M T Gansauge, H Li, F Racimo, S Mallick, J G Schraiber, F Jay, K Prüfer,
 C de Filippo, P H Sudmant, C Alkan, Q Fu, R Do, N Rohland, A Tandon, M Siebauer, R E
 Green, K Bryc, A W Briggs, U Stenzel, J Dabney, J Shendure, J Kitzman, M F Hammer, M V
 Shunkov, A P Derevianko, N Patterson, A M Andrés, E E Eichler, M Slatkin, D Reich, J Kelso,
 and S Pääbo. A high-coverage genome sequence from an archaic Denisovan individual. *Science*, 338
 (6104):222–226, 2012.
- ⁶¹¹ [52] B Milholland, X Dong, L Zhang, X Hao, Y Suh, and J Vijg. Differences between germline and ⁶¹² somatic mutation rates in humans and mice. *Nat Commun*, 8:15183, 2017.
- ⁶¹³ [53] P A Moran. Notes on continuous stochastic phenomena. *Biometrika*, 37(1):17–23, 1950.
- ⁶¹⁴ [54] D Mouchiroud, C Gautier, and G Bernardi. The compositional distribution of coding sequences and
 ⁶¹⁵ DNA molecules in humans and murids. J Mol Evol, 27(4):311–320, 1988.

- [55] C F Mugal, P F Arndt, and H Ellegren. Twisted signatures of GC-biased gene conversion embedded
 in an evolutionary stable karyotype. *Mol Biol Evol*, 30(7):1700–1712, 2013.
- ⁶¹⁸ [56] C F Mugal, V E Kutschera, F Botero-Castro, J B W Wolf, and I Kaj. Polymorphism data assist ⁶¹⁹ estimation of the nonsynonymous over synonymous fixation rate ratio ω for closely related species. ⁶²⁰ Mol Biol Evol, 37(1):260–279, 2020.
- [57] S Myers, R Bowden, A Tumian, R E Bontrop, C Freeman, T S MacFie, G McVean, and P Donnelly.
 Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination.
 Science, 327(5967):876-879, 2010.
- ⁶²⁴ [58] B Nabholz, A Künstner, R Wang, E D Jarvis, and H Ellegren. Dynamic evolution of base compo-⁶²⁵ sition: causes and consequences in avian phylogenomics. *Mol Biol Evol*, 28(8):2197–2210, 2011.
- [59] A Necşulea, A Popa, D N Cooper, P D Stenson, D Mouchiroud, C Gautier, and L Duret. Meiotic
 recombination favors the spreading of deleterious mutations in human populations. *Hum Mutat*, 32
 (2):198–206, 2011.
- [60] S I Nikolaev, J I Montoya-Burgos, K Popadin, L Parand, Margulies EH, and S E Antonarakis. Life history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements.
 Proc Natl Acad Sci U S A, 104(51):20443–20448, 2007.
- [61] E Pessia, A Popa, S Mousset, C Rezvoy, L Duret, and G A Marais. Evidence for widespread
 GC-biased gene conversion in eukaryotes. *Genome Biol Evol*, 4(7):675–682, 2012.
- [62] K Popadin, L V Polishchuk, L Mamirova, D Knorre, and K Gunbin. Accumulation of slightly
 deleterious mutations in mitochondrial protein-coding genes of large versus small mammals. *Proc Natl Acad Sci U S A*, 104(33):13390–13395, 2007.
- [63] D Posada and T R Buckley. Model selection and model averaging in phylogenetics: advantages of
 akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol, 53(5):
 793–808, 2004.
- [64] R Pracana, A D Hargreaves, J F Mulley, and P W H Holland. Runaway GC evolution in gerbil
 genomes. *Mol Biol Evol*, 37(8):2197–2210, 2020.
- [65] F Pratto, K Brick, P Khil, F Smagulova, G V Petukhova, and R D Camerini-Otero. DNA recombination; recombination initiation maps of individual human genomes. *Science*, 346(6211):1256442, 2014.
- [66] A Ratnakumar, S Mousset, S Glémin, J Berglund, N Galtier, L Duret, and M T Webster. Detecting
 positive selection within genomes: the problem of biased gene conversion. *Philos Trans R Soc Lond B Biol Sci*, 365(1552):2571–2580, 2010.
- [67] M Robinson, C Gautier, and D Mouchiroud. Evolution of isochores in rodents. *Mol Biol Evol*, 14
 (8):823–828, 1997.
- [68] M C Robinson, E A Stone, and N D Singh. Population genomic analysis reveals no evidence for
 GC-biased gene conversion in *Drosophila melanogaster*. Mol Biol Evol, 31(2):425–433, 2014.
- [69] J Romiguier, V Ranwez, E J Douzery, and N Galtier. Contrasting GC-content dynamics across 33
 mammalian genomes: relationship with life-history traits and chromosome sizes. *Genome Res*, 20
 (8):1001–1009, 2010.

- [70] J Romiguier, E Figuet, N Galtier, E J Douzery, B Boussau, J Y Dutheil, and V Ranwez. Fast and
 robust characterization of time-heterogeneous sequence evolutionary processes using substitution
 mapping. *PLoS One*, 7(3):e33852, 2012.
- ⁶⁵⁸ [71] J Romiguier, V Ranwez, E J Douzery, and N Galtier. Genomic evidence for large, long-lived ⁶⁵⁹ ancestors to placental mammals. *Mol Biol Evol*, 30(1):5–13, 2013.
- ⁶⁶⁰ [72] J Romiguier, J Lourenco, P Gayral, N Faivre, L A Weinert, S Ravel, M Ballenghien, V Cahais,
 ⁶⁶¹ A Bernard, E Loire, L Keller, and N Galtier. Population genomics of eusocial insects: the costs of
 ⁶⁶² a vertebrate-like effective population size. J Evol Biol, 27(3):593–603, 2014.
- [73] M Rousselle, A Laverré, E Figuet, B Nabholz, and N Galtier. Influence of recombination and GC biased gene conversion on the adaptive and nonadaptive substitution rate in mammals versus birds.
 Mol Biol Evol, 36(3):458–471, 2019.
- ⁶⁶⁶ [74] C Scornavacca, K Belkhir, J Lopez, R Dernat, F Delsuc, E J P Douzery, and V Ranwez. Orthomam
 ⁶⁶⁷ v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred
 ⁶⁶⁸ mammalian genomes. *Mol Biol Evol*, 36(4):861–862, 2019.
- ⁶⁶⁹ [75] T C A Smith, P F Arndt, and A Eyre-Walker. Large scale variation in the rate of germ-line de
 ⁶⁷⁰ novo mutation, base composition, divergence and diversity in humans. *PLoS Genet*, 14(3):e1007254,
 ⁶⁷¹ 2018.
- ⁶⁷² [76] C C Spencer, P Deloukas, S Hunt, J Mullikin, S Myers, B Silverman, P Donnelly, D Bentley, and
 ⁶⁷³ G McVean. The influence of recombination on human genetic diversity. *PLoS Genet*, 2(9):e148,
 ⁶⁷⁴ 2006.
- [77] D Vanderpool, B Q Minh, R Lanfear, D Hughes, S Murali, R A Harris, M Raveendran, D M
 Muzny, M S Hibbins, R J Williamson, R A Gibbs, K C Worley, J Rogers, and M W Hahn. Primate
 phylogenomics uncovers multiple rapid radiations and ancient interspecific introgression. *PLoS Biol*, 18(12):e3000954, 2020.
- [78] A Wallberg, S Glémin, and M T Webster. Extreme recombination frequencies shape genome varia tion and evolution in the honeybee, *Apis mellifera. PLoS Genet*, 11(4):e1005189, 2015.
- [79] R J Wang, G W C Thomas, M Raveendran, R A Harris, H Doddapaneni, D M Muzny, J P Capitanio,
 P Radivojac, J Rogers, and M W Hahn. Paternal age in rhesus macaques is positively associated
 with germline mutation accumulation but not with measures of offspring sociability. *Genome Res*,
 30(6):826–834, 2020.
- [80] M T Webster and N G Smith. Fixation biases affecting human SNPs. Trends Genet, 20(3):122–126,
 2004.
- [81] J J Welch, A Eyre-Walker, and D Waxman. Divergence and polymorphism under the nearly neutral
 theory of molecular evolution. J Mol Evol, 67(4):418–426, 2008.
- [82] L Wilfert, J Gadau, and P Schmid-Hempel. Variation in genomic recombination rates among animal
 taxa and the case of social insects. *Heredity (Edinb)*, 98(4):189–197, 2007.
- [83] A L Williams, G Genovese, T Dyer, N Altemose, K Truax, G Jun, N Patterson, S R Myers, J E
 Curran, R Duggirala, J Blangero, D Reich, and Przeworski M. Non-crossover gene conversions show
 strong GC bias and unexpected clustering in humans. *Elife*, 4:e04637, 2015.