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Abstract 

Background: Nanopore long-read sequencing technology greatly expands the capacity 

of long-range single-molecule DNA-modification detection. A growing number of 

analytical tools have been actively developed to detect DNA methylation from Nanopore 

sequencing reads. Here, we examine the performance of different methylation calling 

tools to provide a systematic evaluation to guide practitioners for human epigenome-wide 

research. 

Results: We compare five analytic frameworks for detecting DNA modification from 

Nanopore long-read sequencing data. We evaluate the association between genomic 

context, CpG methylation-detection accuracy, CpG sites coverage, and running time 

using Nanopore sequencing data from natural human DNA. Furthermore, we provide an 

online DNA methylation database (https://nanome.jax.org) with which to display genomic 

regions that exhibit differences in DNA-modification detection power among different 

methylation calling algorithms for nanopore sequencing data. 

Conclusions: Our study is the first benchmark of computational methods for mammalian 

whole genome DNA-modification detection in Nanopore sequencing. We provide a broad 

foundation for cross-platform standardization, and an evaluation of analytical tools 

designed for genome-scale modified-base detection using Nanopore sequencing.  

Keywords: DNA methylation, base modification, long-read sequencing, Nanopore 

sequencing, methylation calling 
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Background 

DNA methylation, the process by which methyl groups are added to DNA molecules, is a 

fundamental epigenetic modification process in gene transcription regulation [1]. Several 

DNA modifications, such as N6-methyladenine (6mA), N4-methylcytosine (4mC), and 5-

methylcytosine (5mC) and its oxidative derivatives, are diversely distributed in genomes 

and play important roles in genomic imprinting, chromatin structure modulation, 

transposon inactivation, stem cell pluripotency and differentiation, inflammation, and 

transcription repression regulation [2-4]. DNA methylation measurement has traditionally 

depended on the combination of bisulfite conversion (which can damage DNA) and next-

generation sequencing, which only detects short-range methylation pattern [5].  

 

Recently, third-generation sequencing technologies, including single molecule real-time 

(SMRT) sequencing by Pacific Biosciences (PacBio), and Nanopore sequencing by 

Oxford Nanopore Technologies (ONT), have overcome the length limitation to achieve 

ultra-long read, single-base detection at a genome-wide level [6, 7]. SMRT sequencing 

can detect 5mC based on polymerase kinetics at 250x coverage [8]. This is due to the 

subtle impact of 5mC on polymerase kinetics [8]. Thus, the high coverage requirement 

and direct single-molecule 5mC detection by SMRT is still challenging [9]. Single 

molecule real-time bisulfite sequencing allows to sequence up to ~2kb amplicons but it 

relies on bisulfite conversion [10].  

 

Nanopore sequencing, instead of using a sequencing-by-synthesis method to detect 

signal for the amplified DNA fragment population, is able to directly detect DNA or RNA 
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translocation through a voltage-biased Nanopore sensor, enabling rapid long-read 

sequencing and single-base and single-molecule sensitivity [11]. Several different 

versions of Nanopore chemistry have been developed by ONT to improve the accuracy 

of single-cell molecular identification (Figure 1A). The initial pore version of flow cells, 

termed R6/R7, was replaced by R9 pore series. R9 pore series were derived from the 

bacterial amyloid secretion pore gene Curlin sigma S-dependent growth (CsgG) to yield 

a modal (i.e., most commonly observed) accuracy of up to 95% at the single-molecule 

level [12, 13]. Q scores, also known as Phred quality scores, are logarithmically linked to 

the error probability (P) of each called base: 𝑄 = −10 × 𝑙𝑜𝑔!"(𝑝). Q scores measure the 

accuracy of nucleobase identification in DNA sequencing. Higher Q values correspond to 

lower error probability and higher quality [18,19]. For example, Q30 indicates that the 

chance that a specific base is called incorrectly is 1 in 1000. R9-series pores, R9.4 and 

its slightly updated, broadly used version R9.4.1, are the most favored version and can 

achieve the best consensus accuracy at 99.99% (Q45) [14, 15]. Recently, ONT released 

Nanopore R10 with a predicted model accuracy of 94% [16, 17], and introduced the 

newest version R10.3 with of 99.995% single molecule consensus accuracy, which has 

a longer barrel and a dual-reader head inside the pore [15, 18]. The current study is 

conducted on R9.4 series version.  

 

Nanopore sequencing techniques enables DNA modification detection due to the 

difference in the electric current intensity produced from a nanopore read, termed 

“squiggles”. Specifically, the ionic-current resulting from the passage of modified bases 

through the pores differs from the current produced by the passage of unmodified bases 
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[19, 20]. The difference can be determined after nanopore read base calling and 

alignment by: (1) statistical tests comparing to an in silico reference or a non-modified 

control sample [21, 22]; (2) pre-trained supervised learning models such as neural 

network [23-25] and Hidden Markov Model (HMM) [9, 26]. However, DNA-methylation 

detection using Nanopore data presents a methodological challenge, i.e., accurate 

detection of DNA modifications in CpG sites (CpGs) termed non-singletons. A 10-base-

pair (bp) region that contains only one CpG site is defined as a singleton, while a 10-bp 

region that contains more than one CpG site are called non-singletons [9]. The primary 

difficulty is the capacity to detect modifications in different CpGs that are in close proximity 

to one another on a DNA fragment, as it is assumed that all CpGs within a 10-bp region 

share the same methylation status. Several methylation calling tools have been 

developed to handle singletons to improve DNA-methylation detection accuracy (Table 

1), but DNA-methylation detection power for non-singletons containing both methylated 

and unmethylated states remains difficult [9, 27]. Also, DNA methylation level is not 

linearly distributed across the genome and is dependent on genomic context [28-30]. 

Therefore, the accuracy of methylation callers likely differ among various types of 

genomic regions within which CpGs are located. However, there is no published guideline 

and systematic comparison of current DNA methylation calling tools for Nanopore 

sequencing using human natural DNA [31], especially at whole epigenome scale [32, 33].  

 

Here, we present the first benchmark of computational methods for detecting of DNA 5-

methylcytosine (5mC) from human Nanopore sequencing data at whole genome scale. 

We assess the impact of CpG locations on detection accuracy using human whole 
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genome nanopore sequencing data, with a focus on the impact of genomic context and 

singletons vs. non-singletons. It has been reported that even homogeneous cell 

populations can exhibit cell-to-cell variations in epigenetic pattern (epiallele) such as gain 

or loss of cytosine methylation at specific loci [34]. Such epigenetic heterogeneity is 

increasingly recognized as a contributor to biological variability in tumors and worse 

clinical outcomes in malignancies [5]. Thus, to enable assessment of this critical 

epigenetic heterogeneity, we have evaluated the DNA methylation accuracy at single-

molecule and single-base resolution, which is critical for epigenetic heterogeneity 

assessment [35-38]. This comprehensive survey and systematic comparison offer user-

specific, best-practice recommendations to maximize accurate detection of 5mC using 

current methylation calling tools and provide guidance for next generation calling tools. 

We also generated and made available a R Shiny database to distribute the modification-

detection power associated with different genomic regions using different tools for 

development of future algorithms and analytic tools development.   

 

Results 

Benchmarking dataset 

We used four datasets for benchmarking: Nanopore sequencing of the human B-

lymphocyte cell line NA19240 (hereafter referred to as NA19240 in the following text) [39], 

human leukemia cell lines K562 and HL-60 (referred to as K562 and HL-60), and a human 

primary acute promyelocytic leukemia clinical specimen (referred to as APL).  

NA19240 was sequenced at ~32x coverage by the 1000 Genomes Project [39] as a high-

coverage dataset. We take the union of sites from two reduced representation bisulfite 
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sequencing (RRBS) replicates for NA19240 as corresponding DNA methylation ground 

truth. We generated nanopore sequencing data for K562, HL-60, and APL with ~1-3x 

coverage and whole genome bisulfite sequencing (WGBS) for APL. We used the 

published WGBS for K562 and RRBS for HL-60 as ground truth. 

Overall strategy to compare DNA methylation calling tools  

Several methylation calling tools have been developed to detect DNA methylation using 

Nanopore direct DNA sequencing data (Table 1). Among the nine tools, seven tools are 

compatible with R9.4 flow cells and six of these tools can predict 5-methylcytosine (5mC). 

To compare the performance of these state-of-the-art methylation calling tools, we 

developed a three-step standardized workflow to compare five methylation calling tools 

targeting 5mC in CpG context compatible with the most favored Nanopore flow cell 

version (R9.4.1 pores): Nanopolish [9], Megalodon [24], DeepSignal [27], 

Tombo/Nanoraw (referred to as Tombo) [21], and DeepMod [25] (Figure 1B, Figure S1). 

Nanopolish, Megalodon, DeepSignal and DeepMod, is model-based while Tombo is 

statistics-based. We excluded methBERT [40], as its repository is still under active 

development. 

Step 1. Base-calling and quality control. To translate raw signal data into nucleotide 

sequences, we conducted the base calling step for Nanopore reads with Guppy (v4.2.2). 

Then we used NanoPack [41] for data visualization and processing, in order to assess 

the read length and quality of the base-called and to demultiplex sequencing data for 

downstream  analysis. The APL, K562, and HL-60 ONT datasets exhibited comparable 

read length and base quality compared to the published NA19240 ONT dataset [39] 

(Figure 2A-B). Distribution of CpG sites distribution based on singletons/non-singletons 
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is shown in (Table S1, Figure S2), while the number of CpG sites in various genomic 

contexts distribution is shown in Figure 2C and 2D. 

Step 2. Genome assembly and polishing. We aligned the base-called reads  to the human 

genome assembly GRCh38/hg38 using minimap2 [42] for all five tools. The electric 

current signal level data of a nanopore read produced by an ONT sequencer is called a 

squiggle. Base calling a squiggle, i.e., translating the current signal into a DNA sequence, 

typically contains some errors when comparing to a reference sequence [43]. The Tombo 

re-squiggle algorithm refines the assignment from a squiggle to a reference sequence 

after base-calling and alignment. The re-squiggle algorithm is required by Tombo and 

DeepSignal for DNA methylation calling.  

Step 3. Methylation calling. We detected 5mCs in CpG context with five methylation 

calling tools: Nanopolish [9], Megalodon [24], DeepSignal [27], Tombo [21], and DeepMod 

[25]. We then designed three performance evaluation criteria (Figure 1B and S1) to 

compare the performances of each methylation calling tools. First, we evaluated the 

predictions of 5mCs at single-molecule, single-base resolution based on per-read 

prediction accuracy of fully methylated or fully unmethylated CpG sites determined by 

bisulfite sequencing data. We examined various biologically relevant genomic regions 

and singletons vs. non-singletons. Singletons are CpG sites with only one CpG within the 

10-bp region, while non-singletons contain more than one CpG with the 10-bp region [32]. 

We further divided non-singletons into two sub-categories: (1) concordant non-singletons: 

all CpGs within the region share the same absolute methylation state (i.e., all fully 

methylated or all fully unmethylated), (2) discordant non-singletons: the methylation 

states of CpGs appearing in a close neighborhood (10bp) were mixed with both fully 
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methylated and fully unmethylated sites present. Second, we measured the 5mC 

methylation correlation coefficient between ONT output and bisulfite sequencing data 

across all CpG sites at genome level. Third, we assessed the running speed and per-

read resource usage evaluation. Further details on performance criteria used in 

evaluation are shown in Methods. 

 

Predictions of 5mC at single-molecule, single-base resolution  

To understand the impact of various DNA methylation callers on 5mC prediction at single-

molecule, single-base resolution, from different genomic contexts, we assessed the per-

read accuracy in singletons and non-singletons. We compared methylation-calling 

performances on fully methylated/unmethylated CpGs in bisulfite sequencing (BS-seq) 

(coverage>=5) at the singleton and non-singleton levels across four datasets (Table S2). 

For NA19240, there are 30,377 singleton CpGs and 224,645 non-singleton CpGs in BS-

seq (coverage>=5) that overlap with the ONT data. The comparison performance metrics 

include accuracy, F1 score, receiver operating characteristic curves (ROC curves) and 

area under the ROC curve (AUC) (Figure 3, Figure S3, and Table S3). DeepMod 

performance is much lower than other four tools when applied to all four human ONT 

datasets (Table S3). While DeepMod robustness is comparable to other tools when using 

5mC positive control dataset from E. coli [33] (Table S4). Thus, for clarity, we only keep 

display the other four tools in Figure 3-5. Specifically, Nanopolish, Megalodon, and 

DeepSignal outperformed the other two tools on all datasets (Figure 3A and Table S3). 

While Nanopolish, Megalodon, DeepSignal, and Tombo exhibit lower accuracy (less than 

0.90) at discordant non-singletons, consistent across four datasets (Figure 3A, Figure 
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S3A). Next, we assessed the performance using the ROC curves and AUC in singletons 

and non-singletons (Figure 3B). Again, Nanopolish, Megalodon, and DeepSignal 

achieved the highest AUC values (singletons AUC: 0.92 - 0.93, non-singletons AUC:  0.96 

– 0.98, concordant non-singletons AUC: 0.96 – 0.98, discordant non-singletons AUC: 

0.81 – 0.82). We further confirmed the performance assessment using the F1 score 

(Figure S3B-S3C), which is the harmonic mean of precision and recall, and addresses 

any imbalanced classes. Overall, Nanopolish, Megalodon, and DeepSignal are 

consistently the top three performers at singleton and non-singleton 5mC prediction at 

single-read, single-base resolution. 

 

Predictions of 5mC at single-molecule, single-base resolution across various 

biologically relevant genomic regions 

Since different genomic contexts display various CpG density and DNA methylation levels 

[44], we overlapped CpG islands, promoters, exons, introns, and intergenic regions 

(referred as intergenic) with BS-seq (coverage>=5) to evaluate the impact of biologically 

relevant genomic contexts on 5mC predictions (Figure 4A-B, Figure S4, Table S3). 

Specifically, we define the region 2000 bp around transcription start site (TSS) as the 

promoter. Nanopolish, Megalodon, and DeepSignal exhibit higher overall accuracy on 

genome wide CpG sites across all datasets, and overall, intergenic regions display the 

lowest accuracy (Figure 4A). Whereas the overall F1 scores for all tools are not as 

accurate at CpG island and promoters. Megalodon and DeepSignal are less accurate on 

CpG islands and promoters (F1 score <0.88) than other regions (Figure 4B). The 

decreased F1 at these two regions may be caused by highly imbalanced distribution of 
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5mC and 5C on: CpG islands (9,054:166,126) and promoters (11,495:164,989) regions 

for NA19240 (Table S3). In comparison, DeepMod exhibits lower accuracy and F1 score 

across all genomic regions (Table S3). In summary, we concluded that Nanopolish, 

Megalodon, and DeepSignal achieved better methylation calling performance across 

genomic contexts.  

 

Methylation calls by Nanopolish, Megalodon, and DeepSignal show high 

concordance with ground truth BS-seq.   

To assess the performance of 5mC prediction of these tools for CpG sites with full range 

of methylation levels, we evaluated the Pearson’s correlation coefficient between 

methylation patterns of the predicted DNA methylation percentage (read coverage>=3) 

and the corresponding BS-seq data (coverage>=5) at single-base resolution. We found 

that the methylation levels for all CpG sites predicted by Nanopolish, Megalodon and 

DeepSignal showed highest correlation (Figure 5A) with NA19240 reduced 

representation bisulfite sequencing (RRBS) data. We also observed that the results of 

Nanopolish, Megalodon, and DeepSignal are highly correlated (R >= 0.94) for NA19240. 

Similar correlation coefficients of these three tools can be found for APL, K562, and HL-

60 (Figure S5) datasets. Ideally, as ground truth BS-seq suggested, a bimodal 

distribution of DNA methylation is expected (0 for unmethylated, 1 for methylated). The 

histogram of the DNA methylation output of Nanopolish, Megalodon, and DeepSignal 

displayed bimodal distribution as the BS-seq data. In contrast, Tombo and DeepMod 

exhibit different data distributions. The DNA methylation level histogram of Tombo output 

had multiple peaks between 0% and 100% methylation levels, while DeepMod did not 
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display the peak around 100% methylation level. The Pearson’s correlation between BS-

seq and DeepMod with (R = -0.07) for NA19240 data indicates that DeepMod cannot 

effectively predict methylation distribution at whole-genome level for human cells. We 

further evaluated the Pearson’s correlation coefficient of methylation percentage 

achieved by methylation-calling tools with BS-seq across different genomic contexts 

(Table S5). Nanopolish, Megalodon and DeepSignal consistently produce the highest 

correlation coefficients at all genomic regions for NA19240 data (Figure S6).  

 

To assess the biological context of the methylation calls, we explored the relationship 

between CpG methylation percentage and distance to annotated TSS (Figure 5B-C and 

S7A-B). As expected, CpG sites near TSS tend to be unmethylated. Methylation level 

gets higher as the distance from the TSS increased. DNA methylation patterns from 

Nanopore sequencing closely resemble the pattern for the WGBS data (Figure 5C and 

S7A). Nanopolish displayed the lowest DNA methylation levels at TSS.  

 

Transcriptional factors CCCTC-binding factor (CTCF) binding sites are featured with low 

DNA methylation [45]. CTCF plays a critical role in long-range chromatin interactions, the 

formation and maintenance of the topologically associated domains, and transcription. 

Thus, we further assessed the relationship between CpG methylation percentage and 

distance to the center of the CTCF binding peaks from the ChIP-seq data of the matching 

cell lines (NA19240, K562, and HL-60). Indeed, DNA methylation is the lowest at the 

center of the CTCF binding peaks (Figure 5D and S7C-D) and the ONT 5mC calls by 
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Nanopolish, Megalodon, and DeepSignal closely track the pattern of WGBS data (Figure 

S7C).  

 

Overall, Nanopolish, Megalodon, and DeepSignal had high correlations with the 

background truth BS-seq, and they closely tracked the methylation pattern for the 

background truth BS-seq at whole genome level. The correlation coefficient of DNA 

methylation across CpG sites between the five tools and BS-seq is consistent with the 

read-level accuracy (Figure 3-4).  

 

Megalodon and DeepSignal covered more CpG sites than Nanopolish.  

Lastly, we evaluated the capacity of the five tools to make 5mC prediction for CpG sites 

by evaluating the number of CpG sites (read coverage>=3) covered by each tool. 

Megalodon and DeepSignal covered more CpG sites than other tools on four datasets 

(Figure 6 and S8, Table S6). The UpSet diagram shows the number of overlapped sites 

by the five tools (Figure 6 and S8). 52% of the predicted CpG sites in NA19240 were 

predicted by all five tools (Table S6). Furthermore, for all the CpG sites predicted by any 

of the three top performers (i.e., Nanopolish, Megalodon, and DeepSignal), 92% CpGs 

were predicted by all three tools, shown by proportional Venn diagram (Figure 6). 

Megalodon and DeepSignal covered more CpG sites that were not covered by the other 

three tools (Megalodon and DeepSignal predicted 99% of the union of CpG sites using 

NA19240). Nanopolish covered 93% of the union CpG sites due to the more stringent 

criteria of log-likelihood ratio used to predict 5mC for non-singletons [9]. Megalodon and 

DeepSignal covered 6% more CpG sites than Nanopolish and the differences increases 
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greatly for lower sequencing-depth ONT datasets (Figure 6 and S8, Table S6). Therefore, 

Megalodon and DeepSignal predicted the most CpG sites, while Tombo and DeepMod 

predicted the least CpG sites.  

 

Running time and memory usage on benchmarking datasets.  

To evaluate the running time and peak memory of each methylation-calling tool, we ran 

five pipelines starting from the initial stage of taking input of raw fast5 files to the final 

output of the read level and genome level prediction results using the same High-

Performance Computing (HPC) platform and environment (See Methods). In order to 

parallelize methylation calling, we split the raw reads of the benchmarking dataset, and 

start 50 running jobs on each part of reads for each methylation-calling tool. A GPU and 

eight processors of hardware resources were allocated to each job running GPU 

accelerated computing supported tools (Guppy, Megalodon, DeepSignal and DeepMod) 

to minimize run time. The SLURM resource and job management system effectively 

monitor the usage of computing resources on HPC clusters [46]. Therefore, for each 

tested dataset we ran all jobs managed by SLURM and calculated the sums of run time 

totals (hours) and the peak memory usage (GB) based on reported logs of SLURM jobs 

for each pipeline (Figure 7, Table S7). Nanopolish and Megalodon had the shortest run 

times (703 and 704 hours) to process the fast5 raw signal file for NA19240 (32x coverage). 

While Tombo, DeepSignal, and DeepMod were much longer (9, 32, and 40x longer, 

respectively) for the same file. Furthermore, Nanopolish required the lowest peak memory 

usage (~21 GB) while Megalodon required the highest peak memory usage (21 times). 

The same analysis of run time and memory usage for other benchmarking datasets also 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 6, 2021. ; https://doi.org/10.1101/2021.05.05.442849doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442849


confirmed the ranking for these tools (Table S7). In conclusion, Nanopolish requires the 

least CPU time and the lowest peak memory usage resource. For other tools, there is a 

trade-off between prediction performance and running resources. Thus, Nanopolish is 

more appealing for high-coverage mammalian ONT dataset for 5mC prediction.  

 

Discussion 

Enhanced detection of DNA methylation in the human genome is critical to improve our 

understanding of the functional impacts of epigenetic modifications. Recently, ONT 

nanopore-based sequencers have made possible direct DNA sequencing to generate 

long single-molecule reads at base resolution. ONT long-read contributes to the phasing 

of base modifications with genetic variants, along individual nucleic acids. Therefore, it 

allows exploration of epigenetic heterogeneity at single-molecule resolution and can 

improve our ability to detect DNA modification in long range.  

ONT has released multiple commercialized platforms and pore-chemistry versions (see 

timeline in Figure 1A). In 2015, ONT released its first commercialized platform, MinION™ 

[47, 48], a portable device enabling simultaneous sequencing using up to 512 pores, with 

the capacity to generate up to 30 GB of DNA data [49]. In 2017, ONT introduced a scaled-

up platform, GridION™, allowing analysis of up to five MinION flow cells and generation 

of up to 100GB of data per run [50]. In 2018, ONT introduced the ultra-high-throughput 

platform PromethION™ with up to 48 flow cells [51], and later offered PromethION24/48 

for much larger-scale sequencing [52]. Nanopore sequencing is considered a paradigm 

among recent sequencing approaches, because of its unique design enabling significant 

portability and relatively low cost [11, 53]. 
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In the past, the advantages of long-reads and real-time sequencing have made Nanopore 

sequencing an effective tool to detect genomic and genetics aberrations such as DNA 

structural variants and RNA alternative splicing events [54]. Nanopore sequencing have 

demonstrated its powerful capability of detecting structural variation in lung cancer [55, 

56], leukemia [57], and neuron disorder [58-60], and it has been applied to clinical 

samples for molecular etiology or diagnosis of genomic variants relevant disease [58-63].  

Meanwhile, Nanopore sequencing of splicing changes has been utilized in cancer 

research such as breast cancer [64], leukemia [65, 66], and brain tumor [67]. Such 

research with Nanopore sequencing has improved our understanding of evolutionary 

process in human diseases. 

Nanopore sequencing also provides new opportunity for epigenetic research. For 

example, Miga et al provides telomere-to-telomere assembly and DNA methylation maps 

of human X-chromosome [68] using Nanopore sequencing and Ewing et al. developed a 

new computational tools and long-read nanopore sequencing for transposable element 

epigenomic profiling [69]. Recently, some efforts have been made to combine Nanopore 

sequencing and other methods to epigenomics profiling and chromosome structures 

exploration. For example, Wongsurawat et al utilized Nanopore Cas9-targeted 

sequencing to simultaneously assess IDH mutation status and MGMT methylation level 

in both cell lines and fresh biopsies of diffuse glioma [70]. And, Lee et al developed a new 

method based on Nanopore sequencing to evaluate CpG methylation and chromatin 

accessibility simultaneously [71]. Also, several preprint papers utilized Nanopore 

sequencing to enhance the understanding of epigenetic heterogeneity and mechanism 

[72-74].  
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In this study, we benchmarked state-of-art methylation calling tools for Nanopore 

sequencing data. Based on our systematic comparison analysis, we revealed four key 

observations. First, the choice of methylation calling critically affects the level of accuracy, 

F1 score and AUC score on different Nanopore data sets and at different genomic regions. 

Second, both the HMM model-based Nanopolish and deep learning-based tools 

Megalodon and DeepSignal, are comparable in terms of overall accuracy, F1 score and 

AUC values, at single-base and single-read resolution. Notably, Nanopolish has the 

lowest memory usage, and both Nanopolish and Megalodon are faster than DeepSignal. 

Third, the methylation detections in discordant regions with mixed DNA methylation and 

intergenic regions exhibit lower accuracy and F1 score across all five tools. Nanopolish 

is fast and accurate, at the same time, it outputs the methylation levels of 6% fewer CpG 

sites than DeepSignal and Megalodon, due to the more stringent log-likelihood ratio cutoff 

for predicting non-singleton CpG sites. Nanopolish can be used for quick prediction, and 

future algorithm development can focus on increasing the accuracy and higher CpG 

coverage, which leads to higher overall performance.  When high-performance clustering 

or cloud computing is available, Nanopolish, Megalodon, and DeepSignal can each 

produce high-quality methylation predictions on the largest number of CpG sites. In the 

absence of an HPC or cloud it is feasible to run Nanopolish on a laptop for DNA 

methylation calling due to its short run-time and low memory for in-field analysis that also 

makes it compatible with ONT MinION’s portability.  

We believe that our benchmarking of methylation calling tools will guide researchers and 

practitioners to make conscious and effective choices when designing the analytic plan 

for epigenomic profiling using ONT sequencing, including Nanopore Cas9-targeted 
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sequencing data analysis. The bottlenecks revealed by our analysis can help developers 

to improve ONT sequencing data methylation-calling training data generation and tool 

design. We note that one recent preprint [33] proposed a consensus random forest model 

to improve accuracy by combining read level methylation predictions of some tools (i.e., 

DeepSignal and Megalodon). Our analysis demonstrates that a training dataset covering 

discordant non-singletons and intergenic regions would improve the overall robustness 

of DNA methylation prediction at single-molecule, single-base resolution for human 

epigenome-wide study.  

 

Conclusion 

Oxford Nanopore long-read sequencing technology poses a challenge for accurate 

methylation predictions. The past few years have witnessed rapid development of both 

the sequencing technology and analytical tools. For DNA methylation analysis, many 

algorithms are emerging for ONT sequencing data. We comprehensively surveyed 

current publicly available computational tools for direct ONT DNA sequencing data 

methylation detections. We systematically evaluated the advantages, disadvantages, and 

identified performance bottlenecks that affect the robustness of DNA methylation 

detection at single-molecule and single base resolution. Using a standardized workflow 

we assessed the performance of five DNA methylation calling tools and found that 

methylation callers vary in their accuracy in diverse genomic contexts, epigenome 

coverage, peak memory usage, and run time, for both single-read and single-base 

resolution. For initial DNA methylation analysis, we recommend Nanopolish given its short 

run-time, low memory requirement and overall high performance in calling DNA 
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methylation in whole genome level, singleton, non-singleton, promoter, CpG islands, 

exonic, and intronic regions. For systematic analysis, we recommend integrating the 

preliminary results with Megalodon, or DeepSignal output for optimal performance, e.g., 

more comprehensive epigenome coverage. Comprehensive and balanced training 

datasets that cover various genomic contexts is desirable for more robust prediction of 

DNA methylation in discordant and intergenic regions and will help improve our 

understanding of epigenetic mechanisms underlying many different biological processes, 

such as aging and cancer development. 

 

Methods 

Sample collection and processing  

In the study we provided four independent human datasets - one normal B-Lymphocyte 

cell line (NA19240) [39], one primary acute promyelocytic leukemia clinical specimen 

(APL), two cancer cell lines (K562, HL-60).  

For APL, sample was obtained from the Stem Cell and Xenograft Core of the University 

of Pennsylvania. The Core maintains a tissue bank of cells from patients with Hematologic 

Malignancies. This is Institutional Review Board (IRB) approved research (IRB protocol 

#703185). The patient sample was collected at the time of clinical presentation and prior 

to therapy. The sample was collected as leukopheresis and viably frozen using standard 

techniques. The de-identified specimen was then provided to the Jackson Laboratory for 

Genomic Medicine (JAX-GM). Diagnosis (Dx) of acute promyelocytic leukaemia 

(APML) was confirmed by Fluorescence in situ hybridization (FISH) analysis for t(15;17). 

K562 and HL-60 were cultivated in Roswell Park Memorial Institute (RPMI) 1640 Medium 

(Gibco, A10491-01) with 10% fetal bovine serum (FBS) (Gibco, 26140079). K562 medium 
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was additionally supplemented with 1% Antibiotic-Antimycotic (Gibco, 15240062). HL-60 

medium was additionally supplemented with 1.2% of penicillin-streptomycin (Gibco, 

15140-163), GlutaMAX (Gibco, 35050-061), Sodium Pyruvate (Gibco, 11360-070), MEM 

Nonessential Amino Acids (Corning, MT25025CI) and MEM Vitamin Solution (Corning, 

MT25020CI). Incubator conditions were 37°C and 5% CO2.  

 

Bisulfite sequencing (BS-seq) dataset and analysis 

We generated whole genome bisulfite sequencing (WGBS) for APL. DNA was extracted 

using AllPrep DNA/ RNA kit (Qiagen) following manufacturer’s recommendation. Two 

500ng DNA were sheared to 500bp using a LE220 focused-ultrasonicator (Covaris) and 

purified using 0.9X SPRI beads (Beckman Coulter). The libraries were prepared using 

the KAPA Hyper Prep Kit for Illumina (Roche) and bisulfite conversion was performed 

using the TrueMethyl Seq Kit (CEGX). Briefly, the fragmented DNA was first spiked in 

with CEGX sequencing controls, followed by end-repair and A-tailing, and then ligated 

with SeqCap indexed adaptor (Roche). Sample destined for 5hmC library was first 

subjected to oxidation whereas samples destined for 5mC library was treated as mock. 

This is then followed by a bisulfite conversion. The treated DNA were cleaned up and 

amplified with 15 cycles of PCR and purified. The final library was quantified by real time 

qPCR for an accurate concentration. Libraries were sequenced paired end 2x150bp on 

the Illumina HiSeq 2500 instrument. 

We utilized the published whole genome bisulfite sequencing (WGBS) for K562 

(ENCODE accession number: ENCFF721JMB, ENCFF867JRG), and reduced 
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representation bisulfite sequencing (RRBS) for HL-60 (ENCODE accession number: 

ENCFF000MDA, ENCFF000MDF) and NA19240 (ENCODE accession number: 

ENCFF000LZS, ENCFF000LZT). 

All BS-seq data were analyzed with Bismark [75] with the human reference genome 

(GRCh38/hg38) to get the cytosine methylation frequency at each CpG site. Region-

specific analysis and local smoothing for samples was performed using the BS-seq 

package (https://github.com/TheJacksonLaboratory/BS-seq-pipleine). Then, we only 

select high-confidence CpG sites with coverage >=5, where a CpG is considered as fully 

methylated when its methylation frequency is 100% and considered as unmethylated 

when its methylation frequency is zero. For each dataset, we take the union of high-

confidence sites from all tools and BS-seq as our final high-confidence set and the 

selected high-confidence sites (Table S2). In total, 30,377 singleton CpGs (10,815 fully 

methylated and 19,562 unmethylated) and 224,645 non-singleton CpGs (29,432 fully-

methylated and 195,213 unmethylated) were selected from NA19240 RRBS, and 42,137 

singleton CpGs (21,738 fully-methylated and 20,399 unmethylated) and 276,411 non-

singleton CpGs (56,444 fully-methylated and 219,967 unmethylated) were selected from 

HL-60 RRBS. For K562 and APL, the total selected high-confidence CpG sites are 

25,382,453 and 8,707,630 respectively from WGBS.  

 

Nanopore sequencing dataset and analysis 

We generated Nanopore sequencing dataset for APL, K562, and HL-60 at JAX-GM.  

For APL, genomic libraries were prepared using the Rapid Sequencing Kit (SQK-RAD004, 

ONT) according to manufacturer’s recommendation. Briefly 1200ng DNA was incubated 
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with 2.5ul of FRA at 30°C for 1 min and 80°C 1 min. This is followed by an addition of 3ul 

of adaptor (RAP) to the reaction mix and incubated at 5 min at room temperature. The 

libraries were sequenced on the flowcell R9.4.1 (FLO-MIN106, ONT) on GridION (ONT) 

using the MinKNOW software for 48hr.  

For K562 and HL-60, HMW genomic DNA were extracted from 5m cells using phenol 

chloroform approach (PMID30933081). Libraries were prepared using the Rapid 

Sequencing Kit (SQK-RAD004, ONT) according to manufacturer’s recommendation. 

Briefly 1200ng DNA was incubated with 2.5ul of FRA at 30°C for 1 min and 80°C 1 min. 

This is followed by an addition of 3ul of adaptor (RAP) to the reaction mix and incubated 

at 5 min at room temperature. The libraries were sequenced on the flowcell R9.4.1 (FLO-

MIN106, ONT) on a GridION (ONT) using the MinKNOW software for 48hr.  

For NA19240, we request Nanopore raw data from previously published research [39]. 

For E.coli, we utilized an example dataset on Github 

(https://github.com/comprna/METEORE/tree/master/data/example), which contains 50 

single-read fast5 files from the positive control dataset for E.coli generated by Simpson 

et al [9]. 

All Nanopore reads (.FAST5 files) were base-called by Guppy (v4.2.2) with default high-

accuracy model (dna_r9.4.1_450bps_hac.cfg). The base-called reads were then aligned 

to human reference genome (GRCh38/hg38) for human dataset (NA19240, APL, K562, 

HL-60) or aligned to the E.coli K12 MG1655 genome for E.coli dataset using minimap2 

[42]. Specially, R9.4-series pore is the current broadly used Nanopore flow cell and there 

is a slight difference between R9.4 and R9.4.1 flow cells and most computational model 

can work for both [76].  
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Additionally, for cell line authentication of K562 and HL-60, we aligned the base-called 

reads to the human reference genome (GRCh37/hg37) with the help of Minimap2 [42] 

and Samtools [77] and compared target regions in aligned reads with reported 

insertions/deletions (indels) derived from the Cancer Cell Line Encyclopedia (CCLE) 

project [78] in genome browser IGV to identify the cancer cell line information. 

 

Experimental settings and running configurations for Nanopore sequencing 

analysis 

We ran five tools on the benchmarking datasets. We supply FAST5 files generated by 

Nanopore sequencers with raw signals and base calls as input for methylation detection 

analysis. To compare speed performance, all tools were carried out on the same 

computer clusters: 32 cores, 2.6GHz HP Proliant SL Series CPU, 300 GB RAM, NVIDIA 

Tesla P100 Data Center and 1 TB Data Direct Networks Gridscalar GS7k GPFS storage 

appliance. The HPC platform software and hardware specifications are: slurm manager 

version: 19.05.5, CPU: Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz, GPU: Tesla V100-

SXM2-32GB. 

Base calling, the process of translating raw electrical signal of the sequencer into 

nucleotide sequence, is the initial step of Nanopore data analysis. Both ONT and 

independent researchers are actively developing different tools for base calling step. 

Specifically, ONT provides base-calling programs including official ONT community-only 

software (Albacore and Guppy) and open-source software (Flappie, Scrappie, Taiyaki, 

Runnie, and Bonito), the latter of which are under development with new algorithms for 

base calling [31, 79, 80]. Only very recently has it been possible to base-call DNA 
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modifications directly from the raw signal without genomic anchoring, which can be 

accomplished via specific base callers such as Scrappie [81]. Among the base calling 

programs, Albacore and Guppy are compatible with Nanopore R9.4 reads and offer the 

most stable performance [43]. Albacore [82, 83] is a general-purpose base caller that runs 

on CPUs. Guppy [84] is a neural network based basecaller with several bioinformatic 

post-processing  features. Guppy supports both CPUs and GPUs for improved base-

calling run time, and it is available on the ONT community site 

(https://community.nanoporetech.com) for internal use. Because the state-of-art 

basecaller Guppy using the default model showed excellent performance among ONT 

basecalling tools [43], we utilized Guppy (v4.2.2, with all 32 CPU threads) for base calling 

for all datasets and all DNA methylation calling tools. 

RNN and HMM are computationally intensive algorithms. In HMM- based Nanopolish tool, 

the Viterbi algorithm is used for methylation prediction. The Viterbi algorithm is a 

sequential technique, and its computation cannot currently be parallelized with 

multithreading. However, in RNN-based DeepSignal and DeepMod, multiple threads can 

work on different sections of the neural network and thus RNN computation can be 

parallelized with multithreading. We choose this system for evaluation since it has a larger 

memory capacity than desktop systems and, with the help of a large number of cores, the 

tasks can be easily parallelized to accelerate data output for state-of-the-art tools. 

 

Methylation calling Nanopore sequencing at read level and site level 

We evaluated the performance of Nanopolish (v0.13.2), Megalodon (v2.2.9), DeepSignal 

(v0.1.8), Tombo (v1.5.1), and DeepMod (v0.1.3) to detect 5mC at CpG dinucleotides. 
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These five tools differ in the underlying algorithms and the modifications they are trained 

to detect.  

Nanopolish [9] calls 5mC in a CpG context using a HMM to assign a log-likelihood ratio 

(LLR) for each CpG site, where a positive log-likelihood ratio (LLR) indicates support for 

methylation. Nanopolish groups nearby CpG sites together and calls the cluster jointly to 

assign the same methylation status to each site in the group. For example, on a motif 

such as CGCGT, Nanopolish reports a LLR for the whole group, rather than a separate 

LLR for the individual cytosine. We use the 2.0 as the LLR threshold for methylation 

calling as the Nanopolish authors suggests that the initial 2.5 shown in the paper is overly 

conservative [85]. To be more specific, we first called methylation at the read level: we 

removed ambiguous reads when the absolute value of their LLR was less than 2.0, and 

then called CpG sites as methylated when the LLR > 2.0 and called CpG sites as 

unmethylated when the LLR < -2.0. Then we calculated methylation frequency at the site 

level by converting the LLR to a binary call (methylated/unmethylated) for each read and 

calculating the fraction of reads classified as methylated. 

Megalodon [24] is a new ONT-developed a research command line tool and can identify 

modified base and sequence variant calls from raw nanopore reads. For modified base 

calls, Megalodon utilizes Guppy (v>=4.0) on the backend and pre-trained models for 

basecalling. It anchors the intermediate basecalling neural network output to a reference 

genome. Megalodon performs the methylation calling at either the per-read or per-site 

level (aggregate per-read results) based on the log probability that the base is modified 

or canonical.  Guppy (v>=4.0) backend and pre-trained models is recommended for base 

calling, so we fed Megalodon with Guppy v4.2.2 with the latest 5mC in an all context 
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model (res_dna_r941_min_modbases_5mC_v001.cfg) from Rerio [86] as the basecalling 

model, and chose the default 0.8 threshold as the probability cutoff to count the called 

base (modified or canonical) with probability >0.8 toward the final aggregated output at 

per-site level. 

DeepSignal [27] proposed a deep recurrent neural network with Bidirectional Long short-

term memory (BiLSTM)+Inception structure to detect the methylation state of target 

cytosine in CpG context. DeepSignal required an extra the re-squiggle module of Tombo 

before methylation calling. The methylation calling output of DeepSignal is a tab-delimited 

text file (tsv) at read level including two probability values for each base, one for 

methylated (prob_1) and one for unmethylated (prob_0), as well as a binary call 

(unmethylated/methylated) for each base. The CpG sites is called as methylated when 

prob_1 > prob_0 and is called as unmethylated when prob_1 <= prob_0. We performed 

per-read methylation calling with the CpG model trained using HX1 R9.4 1D reads 

(model.CpG.R9.4_1D.human_hx1.bn17.sn360.v0.1.7+.tar.gz) provided with the latest 

version of DeepSignal,  and calculated the fraction of reads classified as methylated at 

site level with their official methylation frequency script. 

ONT-developed Tombo [21] performed a statistical test to identify modified nucleotides 

with its alternative model without the need for prior training data. Tombo computed per-

read, per-genome location test statistics by comparing the signal intensity difference 

between modified bases and canonical bases. We chose to use the recommended CpG 

motif specific model with the default threshold of (-1.5, 2.5) for DNA where scores below 

-1.5 were considered as methylated and above 2.5 unmethylated, and scores between 
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these thresholds did not contribute to the per-site methylation. After that, we calculated 

methylation percentage at each genomic position.  

DeepMod [25] designed a bidirectional recurrent neural network (RNN) with an LSTM unit 

for genome-scale detection of DNA modifications. The input is a reference genome and 

FAST5 files with raw signals and base calls, and the output is a BED file with coverage, 

number of methylated reads, and methylation percentage information for genomic 

positions of interest. Since 5mC in CpG motifs has a cluster effect in the human genome 

[25], DeepMod provides a cluster model to generate a final output for site level predicted 

methylation probability in human genome. We performed DeepMod for methylation calling 

with the RNN model (rnn_conmodC_P100wd21_f7ne1u0_4) and cluster model 

(na12878_cluster_train_mod-keep_prob0.7-nb25-chr1) [87]. Also, since DeepMod 

aggregated methylation callings results into a per-site output BED file, we counted the 

number of methylated callings and unmethylated callings from BED outputs to evaluate 

its read level performance.  

The performances of these methods that use prior knowledge about the expected 

deviations in signal depend notably on the training data used, which is typically composed 

of a fully unmodified and a fully modified sample. Motifs that are not represented in the 

training set or that contain mixtures of modified and unmodified bases lead to suboptimal 

performance.  

 

Methylation calling performance evaluation at read level 

We designed the performance evaluation process for 5-methylcytosine status prediction 

among five methylation calling tools.  
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First, we evaluated performance for the five tools on four real world Nanopore Sequencing 

datasets at singleton and non-singleton site levels and biologically relevant genomic 

context level at read level. To be more specific, we only considered CpG sites covered 

by >= 5 reads in BS-seq and CpGs sites covered by >= 3 reads by methylation calling 

tools, and joined the common sites identified by the five tools with background truth BS-

seq. For the CpG sites that showed 0% or 100% methylation level, we evaluated the 

performance of these tools as a per-read classification model. Then we joined each tool’s 

prediction results to a common CpG set and measured accuracy on basis of singleton 

and non-singleton sites, or biologically relevant genomic context. We compared the 

percentage of methylation calculated by the five Nanopore-based methods to that derived 

by BS-seq at annotated locations. On each location basis, we calculated the F1 score, 

accuracy, precision, recall, and assessed the tradeoff between true-positive and false-

positive rates of 5mC prediction by calculating receiver operating characteristic (ROC) 

curve by varying the threshold for methylation calling and reported the area under the 

ROC curve (AUC) values. Metrics of performance are calculated as following using BS-

seq as ground truth: 

TP: true positive 

TN: true negative 

FP: false positive 

FN: false negative 

Precision: TP/(TP+FP) 

Recall: TP/(TP+FN) 

Accuracy: (TP + TN) / (TP + TN + FP + FN) 
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F1 Score: 2*(Recall * Precision) / (Recall + Precision). We calculated F1 score for both 

5mC and 5C and used macro_F1(average F1_5mC and F1_5C) for final F1 score. 

ROC AUC: the area under receiver operating characteristic curve, usually ranging from 

0.5 to 1.0. It is a performance metric used to evaluate how a classifier performs on both 

methylated and unmethylated class predictions. 

 

Methylation calling performance evaluation at site level 

We calculated the Pearson’s coefficient between predicted methylation status and BS-

seq status and checked the methylation distribution structure for each tool at a genome 

level. Again, we first kept CpGs with >= 5 reads in BS-seq and CpGs with >= 3 reads by 

methylation calling tools, joined the CpG sites as overlapped sets, and calculated 

methylation frequencies for all DNA CpGs at a genome level for each tool from read level. 

For correlation analysis, we treat each pair of tools as a regression model to calculate 

Pearson’s correlation coefficients at a genome level. We compute the relationship 

between CpG methylation percentage with distance to annotated transcription start site 

(TSS) and transcriptional factors CCCTC-binding factor (CTCF) binding sites using 

deepTools [88]. 

 

Memory usage and running time for methylation tools 

We compared the capability of the five methylation calling tools for memory usage and 

running time on single-read fast5 file in each dataset. All tools have support for multi-

processors, so we generated simulated data sets to compare the scalability of these tools 

on the same system configurations: We split each dataset into 50 batches to ensure the 
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same scale of input, chose default tool configurations to run the program. Each job was 

allocated eight processors (200GB per processor) and one GPU hardware resource 

(GPU is allocated for running Guppy, Megalodon, DeepSignal and DeepMod). We extract 

running time (field name: CPU Utilized) and peak memory utilization (field name: Memory 

Utilized) from the SLURM job log data. These results were used as the measurement of 

running time and memory usage for hardware performance comparison and evaluation. 

 

CpG sites comparison by different methylation calling tools in each dataset. 

We compared the number of CpG sites covered by different methylation calling tools. For 

each dataset, we kept CpGs with >= 3 reads by methylation calling tools, then joined the 

CpG sites with BS-seq to check the overlapping sites that were also detected in BS-seq.  

We also checked the CpG sites detected by Nanopolish, Megalodon and DeepSignal 

since these three performed best among the methylation calling tools. 

 

Availability of Data and Materials. 

All source codes are publicly available at GitHub https://github.com/liuyangzzu/nanome 

and https://zenodo.org/record/4730517 with the DOI: 10.5281/zenodo.4730517. 

APL WGBS and ONT datasets, HL-60 and K562 ONT datasets were deposited under 

GEO accession GSE173675, GSE173676, GSE173687, and GSE173688.  
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Table 1. Current DNA methylation-calling tools for Nanopore sequencing 

FIGURE LEGENDS 

Figure 1.  
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(A) Timeline of publication and technological developments of Oxford Nanopore 

Technologies (ONT) methylation calling tools to detect DNA cytosine modifications. 

Methylation calling tools are listed acc in order by publication date instead of bioRxiv 

online submission date (BioRxiv date for methBERT and Github release time for 

Megalodon since they lack an available official publication). Chemical pore versions of 

Nanopore flow cell are represented as colored bars. Chemical pore version of Nanopore 

flow cell compatibility for each methylation calling tools is shown in corresponding colors. 

Relevant publication time are from multiple source [9, 15, 16, 18, 21, 40, 50-52, 79, 89-

91]. (B) Performance evaluation on 5mC/5C prediction of methylation calling tools with 

Nanopore sequencing.  We generated four datasets for nanopore sequencing, applied 

five methylations calling tools separately to detect methylation status and compare the 

5mC/5C classification with the background truth BS-seq. To compare the performance of 

different tools, we compared methylation calling results in singletons/non-singletons 

regions or biological relevant genomic regions, correlated all CpGs sites with methylation 

distribution in BS-seq, and evaluated the running speed and computing memory usage. 

 

Figure 2.  

(A-B) Quality control summary for four datasets. (A) Violin plot of log-transformed read 

length (B) Violin plot of base call quality. Data shown are colored by dataset and plotted 

by Plots NanoPack [41]. (C) Scheme for biologically relevant annotations of genomic 

context and singleton/non-singleton classification. We consider biologically relevant 

genomic context including promoter, exon, intron, intergenic regions and CpG island. 

Singletons are CpG sites that contain only one CG within the 10 base pairs, including 
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absolute state (CpG is 0% or 100% methylated) or mixed state (0% < CpG methylation 

frequency < 100%). Non-singletons are those CpGs that contain more than one CpG in 

10bp. (D) CpG sites distribution based on singletons, non-singletons and biologically 

relevant genomic context in Nanopore sequencing of the NA19240 dataset. Only regions 

with coverage >= 1 were considered. 

 

Figure 3. Comparison of Nanopore methylation calling tools for the detection of 

CpG methylation on four real world data sets in singletons and non-singletons. 

(A) Prediction accuracy across four datasets based on singleton and non-singleton 

classification. Singletons are CpG sites that contain only one CG within the 10 base pairs, 

non-singletons are those CpGs that contain more than one CG. Non-singletons can be 

divided into two groups: i) all means fully mixed, for which methylation of all CpGs in non-

singleton is > 0% and < 100% and, ii) all CpGs are in the absolute states (100% or 0% 

methylated). Non-singletons in absolute states include Concordant non-singletons: all 

CpGs inside have the same absolute state (i.e., all 100% or all 0% methylated); 

Discordant non-singletons: at least one CpG is fully methylated and at least one other 

CpG is fully unmethylated. (B) ROC curves on NA19240 dataset on singleton, non-

singleton, concordant, discordant coordinates.   

 

Figure 4. Comparison of Nanopore methylation calling tools for the detection of 

CpG methylation on four real world data sets in biologically relevant genomic 

contexts. 
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(A) Prediction accuracy across four datasets based on biologically relevant genomic 

contexts. The biologically relevant genomic contexts include Genome-wide, CpG Islands, 

promoters, exons, intergenic regions(intergenic) and introns. Promoter is 2000 bp 

upstream of the start. (B) F1 score across four datasets based on biologically relevant 

genomic context. 

 

Figure 5. Comparison of Pearson correlation of methylation call tools across all 

CpG sites. 

(A) Correlation plot showing Pearson correlation of each methylation calling tool with BS-

Seq on NA19240. The upper left triangle denotes Pearson’s correlation coefficients; the 

diagonals are distributions of 5mC percentage of BS-seq data and 5mC percentage 

predicted by each tool using ONT data. 2D kernel density plots are shown at the lower 

left triangle for each pair of comparison. (B-C) Relationship between CpG methylation 

percentage and distance to annotated TSS in (B) NA19240 and (C) APL. (D) Relationship 

between CpG methylation percentage and distance to annotated CTCF binding peaks in 

NA19240. Distances are binned into (B, C) 50-bp, and (D) 100-bp windows. Negative 

distances are upstream and positive distances are downstream of the (B-C) TSS and 

CTCF binding peaks (D). 

 

Figure 6.  CpG sites detected by methylation calling tools using NA19240 

UpSet diagram shown at the lower left is for CpG sites detected by all methylation calling 

tools. Venn diagram shown at the upper right is for CpG sites detected by Top3 
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performance methylation calling tools (Nanopolish, Megalodon and DeepSignal). For 

each methylation calling tool, only CpG sites covered >= 3 reads are considered. 

 

Figure 7. CPU utilized time and memory usage for each methylation calling tool on 

each dataset.  

All tools were compared on the same computer clusters: 32 cores, 2.6GHz HP Proliant 

SL Series CPU, 300 GB RAM, NVIDIA Tesla P100 Data Center and 1 TB Data Direct 

Networks Gridscalar GS7k GPFS storage appliance. The HPC platform software and 

hardware specifications are: slurm manager version: 19.05.5, CPU: Intel(R) Xeon(R) Gold 

6136 CPU @ 3.00GHz, GPU: Tesla V100-SXM2-32GB. 
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SUPPLEMENTARY INFORMATION 
 
Additional file 1:  Supplementary figures. This file contains supplementary figures S1-

S8. 

Additional file 2:  Supplementary tables. This file contains supplementary tables S1 – 

S7. 
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4mC 5mC 5hmC 6mC 6mA

Nanopolish[9] ✓ Base-called FAST5 ✓ R7.3, R9, R9.4 
series E. coli Hidden Markov model (HMM) Accuracy = 0.94 (5mC, Homo sapiens )

Tombo/ 
Nanoraw[21] ✓ ✓ ✓ Raw FAST5 R9.4 series, 

R9.5 no model Mann-Whitney and Fisher's exact test Accuracy = 0.839, AUC = 0.78

NanoMod[22] ✓
Base-called FAST5, 

requires control 
sequence

R7.3 no model Kolmogorov-Smirnov test Precision = 0.9

DeepMod[25] ✓ ✓
FAST5 with raw 

signals and base 
calls

R9.4 series E. coli
Bidirectional recurrent neural network 

(RNN)  with long short-term memory (LSTM) Precision = 0.99, AUC > 0.97

Synthetic nucleotides Accuracy = 0.76 (for 5hmC, 5mC)

E. coli Accuracy = 0.96 (for 5mC), Precision = 0.92

mCaller[23] ✓ Base-called FAST5 R9.4 series E. coli Neural network Accuracy = 0.954, AUC = 0.99

DeepSignal[27] ✓ ✓
FAST5 processed by 

Tombo re-
squiggle module

R9.4 series E. coli
Bidirectional RNN with LSTM+Inception 

structure
Accuracy = 0.92(5mC, Homo sapiens ), 

0.90(m6A), Precision = 0.97

Megalodon[24] ✓ ✓ Raw FAST5a ✓ R9.4 series
Homo sapiens  and 

E. coli
b Recurrent neural networkc N/Ad

methBERT[40] ✓ ✓ Raw FAST5a R9.4 series Homo sapiens  and 
E. coli

Bidirectional encoder representations from 
transformers (BERT) Precision = 0.9147(5mC, Homo sapiens )e

a. Megalodon must obtain the intermediate output from the basecall neural network, and Guppy  is the recommended backend to obtain this output from from FAST5. 
b.The model is trained in biological contexts only on Homo sapiens  and E. coli . Users have to specify the model from the modified base models included in basecaller Guppy or research models in ONT Rerio repository.
c. Megalodon’s functionality centers on the anchoring of the high-information neural network basecalling output to a reference sequence.
d. The performance for Megalodon is not available since it is still actively developed, no available published paper yet.
e. Only 5mC precision on Homo sapiens  at genomic level is listed here, more performance parameter(AUC, Recall) of 5mC at genomic level and read-level, and 5mC/6mA performance on E.coli are available in the original paper.

Table 1. Current DNA methylation calling tools for Nanopore sequencing

Hidden Markov model with a hierarchical 
Dirichlet process (HMM-HDP)✓ Base-called FAST5 R7.3SignalAlign[26] ✓ ✓

Reported PerformanceTools DNA Modification Input required Flow cells Model Trained On AlgorithmSupport multi-
thread FAST5 file?
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