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Abstract: 41 

Land-use land-cover (LULC) data are important predictors of species occurrence and biodiversity 42 

threat. Although there are LULC datasets available under current conditions, there is a lack of such 43 

data under historical and future climatic conditions. This hinders, for example, projecting niche and 44 

distribution models under global change scenarios at different time scenarios. The Land Use 45 

Harmonization Project (LUH2) is a global terrestrial dataset at 0.25o spatial resolution that provides 46 

LULC data from 850 to 2300 for 12 LULC state classes. The dataset, however, is compressed in a 47 

file format (NetCDF) that is incompatible for many analyses and requires layer extractions and 48 

transformations that are intractable for most researchers. Here we selected and transformed the 49 

LUH2 in a standard GIS format data to make it more user-friendly. We provide LULC for every 50 

year from 850 to 2100, and from 2015 on, the LULC dataset is provided under two Shared 51 

Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5). We provide two types of files for each year: 52 

separate files with continuous values for each of the 12 LULC state classes, and a single categorical 53 

file with all state classes combined. To create the categorical layer, we assigned the state with the 54 

highest value in a given pixel among the 12 continuous data. LUH2 predicts a pronounced decrease 55 

in primary forest, particularly noticeable in the Amazon, the Brazilian Atlantic Forest, the Congo 56 

Basin and the boreal forests, an equally pronounced increase in secondary forest and non-forest 57 

lands, and in croplands in the Brazilian Atlantic Forest and sub-Saharan Africa. The final dataset 58 

provides LULC data for 1251 years that will be of interest for macroecology, ecological niche 59 

modeling, global change analysis, and other applications in ecology and conservation.  60 

keywords: Conservation biogeography, ecological niche modelling, macroecology, CMIP6, climate 61 

change, deforestation 62 

 63 

INTRODUCTION 64 

Land-use and land-cover (LULC) change has been one of the main drivers of environmental 65 

change at multiple scales and is currently recognized as an important predictor of anthropogenic 66 

impacts and biodiversity threats (Maxwell et al. 2016; Prestele et al. 2016; Gomes  et al. 2020; 67 

2021; Rosa et al. 2021). Mapping land-use land-cover (LULC) changes through time is, therefore, 68 

important and desirable to predict these threats and propose effective conservation policies (Jetz et 69 

al. 2007). LULC is also an important predictor of species’ occurrence and, thus extensively used in 70 

ecological and conservation studies (Eyringet al. 2016; Ruiz-Benito et al. 2020; Sobral-Souza et al. 71 

2021). There are several LULC datasets available at a global scale under current conditions, such as 72 

the Copernicus (Buchhorn et al. 2020), Global Land Survey, the 30 Meter Global Land Cover, and 73 

the GlobeLand30 (Gutman et al. 2013; Pengra et al. 2015; Brovelli et al. 2015), as well as the near 74 

historical period, such as the ESA Climate Change Initiative (1992 to 2015), the Finer Resolution 75 

Observation, Monitoring of Global Land Cover (1984 to 2011) (Hollmann et al. 2013; Gong et al. 76 

2013) and GCAM (2015- 2100) (Chen et al. 2020). These datasets are usually available in standard 77 

Geographic Information System (GIS) formats (e.g. TIF or KMZ), routinely used by landscape 78 

ecologists, macroecologists,  biogeographers and others (Eyringet al. 2016; Ruiz-Benito et al. 2020; 79 

Sobral-Souza et al. 2021). However, there is an important gap of historical LULC data covering 80 

pre-industrial periods (i.e. older than 1700) and, more importantly, projecting LULC changes into 81 

the future. Currently, only two initiatives provide future projections:  Global Change Analysis 82 

Model (Chen et al. 2020) and Land-Use Harmonization Project (https://luh.umd.edu/data.shtml, 83 

Hurtt et al. 2006; 2011; 2020), and only the last one provides a long historical time-series. The 84 

absence of compatible dataset across past, present and future scenarios, for example, hinders the use 85 

of LULC predictors in projections of ecological niche and species distribution models throughout 86 

the time and hamper global change analyses (Escobar et al. 2018). 87 

The recent and robust LULC dataset called Land-Use Harmonization project is part of the 88 

Coupled Model Intercomparison Project (CMIP) (https://luh.umd.edu/data.shtml, Hurtt et al. 2006; 89 

2011; 2020), which coordinates modeling experiments worldwide used by the Intergovernmental 90 

Panel on Climate Change (IPCC) (Eyring et al. 2016). The data is an input to Earth System Models 91 
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(ESMs) to estimate the combined effects of human activities on the carbon-climate system. 92 

Currently, CMIP datasets are available in NetCDF format, a quite complex file format for most 93 

researchers. A few studies used or analyzed the CMIP LULC  (Xia & Niu 2020 and references 94 

therein), as opposed to CMIP’s climate data already simplified on standard GIS formats available in 95 

WorldClim (https://www.worldclim.org/, Fick and Hijmans 2017) and ecoClimate 96 

(https://www.ecoclimate.org/, Lima-Ribeiro et al. 2015).  97 

The Land-Use Harmonization project (LUH2) provides the most complete data in term of 98 

time-series and scenarios of climate change. The data covers a period from 850 to 2300 at 0.25o 99 

spatial resolution (ca. 30 km). The first generation of models (LUH1, Hurtt et al. 2006; 2011) made 100 

future land-use land-cover projections under CMIP5’s Representative Concentration Pathways 101 

greenhouse gas scenarios (RCPs, see Vuuren et al. 2011), and the current generation of models 102 

(LUH2, Hurtt et al. 2020) makes projection under CMIP6’s Shared Socioeconomic Pathways 103 

greenhouse gas scenarios (SSP, see Popp et al. 2017). Both provide data on 12 land-use land-cover 104 

state classes, including different categories of natural vegetation, agriculture and urban areas. In 105 

order to make the global Land-Use Harmonization data more accessible and readily usable, here we 106 

filtered, combined and transformed it in standard GIS formats, making the dataset accessible for 107 

users with standard GIS skills. Besides providing the Land-Use Harmonization data in regular GIS 108 

format at yearly temporal resolution covering 1251 years of past, present and future (from 850 to 109 

2100), we also derived new data based on the existing dataset. 110 

 111 

 112 

METHODS 113 

We downloaded the 12 land-use land-cover state layers (state.nc) provided in Network 114 

Common Data Form (NetCDF) from the Land-Use Harmonization Project (LUH2, 115 

https://luh.umd.edu/data.shtml): forested primary land (primf), non-forested primary land (primn), 116 

potentially forested secondary land (secdf), potentially non-forested secondary land (secdn), 117 

managed pasture (pastr), rangeland (range), urban land (urban), C3 annual crops (c3ann), C3 118 

perennial crops (c3per), C4 annual crops (c4ann), C4 perennial crops (c4per), C3 nitrogen-fixing 119 

crops (c3nfx). The “forested” and “non- forested” land-use states are defined on the basis of the 120 

aboveground standing stock of natural cover; where “primary” are lands previously undisturbed by 121 

human activities, and “secondary” are lands previously disturbed by human activities and currently 122 

recovered or in process of recovering of their native aspects (see Hurtt et al. 2006; 2011; 2020 for 123 

more details). They were computed using an accounting-based method that tracks the fractional 124 

state of the land surface in each grid cell as a function of the land surface at the previous time step 125 

through historical data. Because it deals with a large and undetermined system, the approach was to 126 

solve the system for every grid cell at each time step, constraining with several inputs including 127 

land-use maps, crop type and rotation rates, shifting cultivation rates, agriculture management, 128 

wood harvest, forest transitions and potential biomass and biomass recovery rates (see Fig. S1 in the 129 

Supplementary Material for details).  130 

To manipulate the NetCDF files, we used the ncdf4 and rgdal packages in R environment (R 131 

Core Team 2020, Pierce 2019; Hijmans et al. 2020; Bivand et al. 2021). We also used the Panoply 132 

software version 4.8 for quick visualization of the original data (states.nc) (Schmunk, 2017 133 

https://www.giss.nasa.gov/tools/panoply/).  134 

We created two sets of files for each year, the continuous “state-files” and the categorical 135 

“LULC-files” (Fig.1, Fig.2 and Fig. S2 of supplemental material). The state- files are the same data 136 

provided in the original LUH2 dataset (states.nc), transformed into Tag Image File Format (TIFF) 137 

and standardized for ranging from 0 to 1. We built the new LULC-files, also in TIFF format, 138 

assigning the highest value among the 12 available states to each pixel. For instance, if the highest 139 

value in a given pixel is the forest state value, it was categorically set as a forest pixel. Thus, the 140 

LULC-files present categories ranging from 1 to 12, which represents each one of the 12 existing 141 

states in the dataset (Table S1 in Supplementary Material). We generated states-files and LULC-142 

files for every year from 850 to 2100 for two greenhouse gas scenarios: an intermediate (SSP2-4.5) 143 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.05.06.442941doi: bioRxiv preprint 

https://www.worldclim.org/
https://www.ecoclimate.org/
https://luh.umd.edu/data.shtml
https://www.giss.nasa.gov/tools/panoply/
https://doi.org/10.1101/2021.05.06.442941
http://creativecommons.org/licenses/by-nc-nd/4.0/


and a pessimistic (SSP5-8.5) (see Fig. S2 in Supplementary Material for the workflow to create 144 

state files and LULC-files). The SSP2-4.5 scenario, a.k.a “Middle of the Road”, represents a 4.5 145 

W/m2 radiative forcing by 2100, where historical development patterns continue throughout the 21st 146 

century, susceptibility to societal and environmental changes remains, and greenhouse gas 147 

emissions are at intermediate levels. The SSP5-8.5, a.k.a. “Fossil-fueled Development”, on the 148 

other hand, represents the upper limit of the SSP scenarios spectrum economic, where social 149 

development is coupled with the exploitation of abundant fossil fuel resources, an energy intensive 150 

lifestyles, and high levels of greenhouse gas emissions (Popp et al. 2017; Meinshausen et al. 2020; 151 

Gatti et al. 2021). 152 

We performed an accuracy assessment of our classification for the LULC-files following 153 

Olofsson et al.’s (2014) good practices, for the all continents together and for Newton and Dale’s 154 

(2001) zoogeographic regions separately. We compared our classified LULC-file for the year 2000 155 

with that of the Global Land Cover SHARE (GLC-SHARE) data, used as the ground truth reference 156 

data in the accuracy assessment. The GLC-SHARE was built from a combination of “best 157 

available” high resolution national, regional and/or sub-national land cover databases (Latham et al. 158 

2014), and has a finer spatial resolution (1 km) than the LUH2 (30 km). GLC-SHARE has 11 159 

classes that are very similar with those from the LUH2 database: artificial surfaces (01), cropland 160 

(02), grassland (03), tree covered areas (04), shrubs covered areas (05), herbaceous vegetation, 161 

aquatic or regularly flooded (06), mangroves (07), sparse vegetation (08), bare soil (09), snow and 162 

glaciers (10), and water bodies (11). To make the two datasets comparable, we reclassified LUH2 163 

and GLC-SHARE to the following classes: forest, crops, open areas and urban (Fig. 3, Table S1 in 164 

Supplementary Material). We also masked-out ice and water areas from GLC-SHARE, as they do 165 

not have an equivalent in the LUH2 dataset. Thus, Greenland was removed from analysis and is 166 

absent in the LULC-files. We performed the accuracy assessment in QGIS 3.20 through a confusion 167 

matrix error, quantifying the commission and omission errors for each class, and then computing 168 

three primary metrics: Overall Accuracy (OA), Producer Accuracy (PA) and User Accuracy (UA). 169 

We also provide other supplemental metrics, such as Kappa, Allocation Disagreement and Quantity 170 

Disagreement using Map Accuracy Tools (Salk et al. 2018) so that users can choose the best metric 171 

given their purpose (see supplemental material Accuracies.xlsx). 172 

All codes to perform the analysis are available on the GitHub platform 173 

(https://github.com/Tai-Rocha/LUH2_Data). The entire resulting dataset is freely available for 174 

download at the ecoClimate repository (https://www.ecoclimate.org/), an open database of 175 

processed environmental data in a suitable resolution and user-friendly format (Lima-Ribeiro et al. 176 

2015). 177 

 178 

 179 

RESULTS 180 

We generated 17.394 files, 16.056 of which are the LUH2 original (continuous data) states 181 

files transformed into TIFF (Fig. 1), and the other 1.338 are new (categorical data) LULC-files 182 

created by combining the 12 states files (Fig. 2). The LULC-files had good results for most 183 

zoogeographic regions and land-use land-cover classes, but not for all (Fig. 3, Table 1). The overall 184 

accuracy (OA) was over than 70% for global scale and for most regions, except for the Neotropics, 185 

with 65 % overall accuracy. Australasia had the highest OA, with 82% accuracy (see Table 1 and 186 

supplemental material S3 for all metrics of accuracy).  187 

The producer accuracy (PA) and user accuracy (UA) for land-use land-cover classes in 188 

zoogeographic regions showed some interesting patterns (Table 1 and supplemental tables S3). For 189 

crops, there was good PA (71% to 90%) and poor or moderated UA (14% to 59%), except for the 190 

Indomalayan region (UA = 77%). Forest had moderate to good PA (61% to 91%) and poor to good 191 

UA (42% to 84%). Open area had poor to good PA (47% to 81%), moderate to good UA (71% to 192 

93%). Urban areas had poor to good PA (30% to 83%) and very poor or poor UA (2% to 40%).  193 

The Land-use Harmonized project shows important changes in LULC through time (Fig. 1 194 

and 2), although with no noticeable difference between greenhouse gas scenarios within the same 195 
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year (Fig. 4). It predicts a pronounced decrease in primary forest, and an equally pronounced 196 

increase in secondary forest and non-forest lands (Fig. 4). The decrease in primary forest is 197 

particularly noticeable in the Amazon, the Brazilian Atlantic Forest, the Congo Basin and the boreal 198 

forests (Fig. 1), coupled with an increase in secondary forest in these regions (Fig. 2). A predicted 199 

increase in C4 annual, C3 nitrogen-fixing and C3 perennial crops is especially pronounced in the 200 

Brazilian Atlantic Forest and sub-Saharan Africa (Fig. 2). These crops will apparently replace 201 

managed pastures in Africa’s Great Lakes region. Finally, there is also a specially pronounced 202 

predicted decrease in non-forested primary land (Fig. 4), especially in northern Africa and in the 203 

Horn of Africa (Fig. 2).  204 

 205 

DISCUSSION 206 

This data paper is an important contribution in making the Land-Use Harmonization project 207 

data more accessible. Here, we provide a global scale LULC dataset with yearly time resolution 208 

over a period of 1251 years (from 850 to 2100), and considerable spatial resolution (0.25o long/lat).  209 

We contributed not only by transforming the data into standard GIS file format, but also by 210 

providing new categorical data on land-use land-cover through a long time period. This LULC 211 

database provides support for several research fields in ecology and biodiversity, by disseminating 212 

open datasets/open-source tools for a quality, transparent and inclusive science. Our open, ready-to-213 

use and user-friendly database will enable a more robust integration between climate and land-use 214 

change within biodiversity science (Titeux et al. 2017; Albert et al. 2020; Hanna et al. 2020). 215 

Given that overall accuracy is still a widely used metric (e.g. Curtis et al. 2018; Gong et al. 216 

2019; Kafy et al. 2021; Liu et al. 2021), our LULC-files provide good quality data (70% to 82% 217 

OA), especially for large and coarse scale studies. Besides, we follow the best practices suggested 218 

by Olofsson et al. (2014) for validation, considering a reference map with higher quality than the 219 

map classification. Validation requires the matching of both maps in terms of classes. Thus, we 220 

carefully choose a reference map (GLC-SHARE) that shared similarities with LUH2 in terms of 221 

number of classes, which we believe reduced the biases in the reclassification process. In any case, 222 

we suggest that users consult Table 1 and supplemental file Accuracies.xlsx for classes’ accuracy at 223 

different zoogeographic regions when performing regional analysis. 224 

The most pronounced changes predicted by the Land-use Harmonized project between years 225 

2020 and 2100 are the decrease in primary forest and the increase in secondary forest and non-226 

forested lands (Fig.4, SSP2-4.5 and SSP5-8.5). It is important to note that “primary” refers to intact 227 

land, undisturbed by human activities since 850, while “secondary” refers to land undergoing a 228 

transition or recovering from previous human activities (Hurrt et al. 2006; 2011; 2020). A major 229 

concern regarding the reduction of primary forest is, obviously, habitat loss and associated 230 

biodiversity decline, specially of rarer species (Chase et al. 2020; Horta and Santos 2020; Lima et 231 

al. 2020), in addition to increased greenhouse gas emissions (Mackey et al. 2020) and likelihood of 232 

pandemics associated with viral spillover from wildlife to humans (Dobson et al. 2020). Predicted 233 

forest loss is noticeable in the Amazon, Brazilian Atlantic Forest, Congo Basin and boreal forests, 234 

especially under the SSP5-8.5 (Fig .1 and Fig. 2), which is in agreement with recent findings. 235 

Svensson et al. (2019) found, for example, a decrease from 75% to 38% in boreal forests between 236 

years 1973 and 2013, and Shapiro et al. (2021) showed that over 24 million hectares of forest were 237 

degraded in the Congo Basin between years 2000 and 2016. Similar or worse scenarios are 238 

happening in the Amazon and Atlantic Forest (Junior et al. 2021; Rosa et al. 2021). This is 239 

happening particularly inside Brazil, where recent governmental actions have promoted 240 

deforestation and forest fires (Escobar 2019; 2020; Amigo 2020; Silva et al. 2021; França et al. 241 

2021; Qin et al. 2021; Vale et al. 2021), with record deforestation rates in the Amazon (Junior et al. 242 

2021).  Although not captured quantitatively at the global analysis (Fig.4), another relevant regional 243 

level prediction is the increase in C4 annual, C3 nitrogen-fixing, and C3 perennial crops in the 244 

Brazilian Atlantic Forest and sub-Saharan Africa (Fig. 2),. Other studies have similar predictions 245 

(Zabel et al. 2019), and the trend is already observed in the Atlantic Forest (Rosa et al. 2021).  246 

The data provided here provides support for several analysis in ecology and biodiversity. 247 
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The continuous data in the state-files may be particularly useful as predictors in ecological niche 248 

modeling (Peterson et al. 2011) or can be combined to species distribution models to reconstruct 249 

changes in species distributions (Sofaer et al. 2019; Cazaca et al. 2020). The forested primary land 250 

state, for example, can be used to model the distribution of forest-dependent species, as in birds 251 

from the Atlantic Forest biodiversity hotspot (Vale et al. 2018). This data has the advantage of being 252 

represented in continuous values, as opposed to most discrete land cover data (e.g. all datasets cited 253 

in this paper), overcoming the shortcoming of using categorical data as layers in ecological niche 254 

modeling (Peterson 2001). More importantly, it allows for the use of land cover data in projections 255 

of species distribution under future climate change scenarios. Additionally, the categorical data in 256 

the LULC-files can be useful in ecosystem services mapping, especially when working with the 257 

widely-used InVEST modeling tool (https://naturalcapitalproject.stanford.edu/software/invest), 258 

which is highly dependent on land-use land-cover data (Sharp et al. 2020). The LULC-files can also 259 

be used in studies of global change impacts from other perspectives (Mantyka-Pringle et al. 2015; 260 

Titeux et al. 2017; Newbold 2018; Clerici et al. 2019; Hong et al. 2019; Jetz et al 2007; Powers and 261 

Jetz 2019). Least, but not least, the data can help decision-makers in the construction of evidence 262 

based mitigation and conservation policies (Martinez-Fernández et al. 2015; Dong et al. 2018). We 263 

hope that the dataset provided here, which is freely available for download at ecoClimate repository 264 

(https://www.ecoclimate.org/), can foster the use of land-use land-cover data in many and different 265 

fields of study.  266 

 267 

 268 
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TABLES AND FIGURES 496 

 497 

Table 1. Classification accuracy for LULC classes at global scale and biogeographical regions. OA: 498 

overall accuracy; PA: producer accuracy; UA: user accuracy. See the confusion matrix and accuracy 499 

metrics in Accuracies.xlsx supplemental file. 500 

 501 
 502 
  crops forest open areas  urban 
 OA PA UA PA UA PA UA PA UA 
Global 71.7% 79.7% 47.3% 70.5% 66.8% 71.2% 82.7% 55.5% 13.2% 
Afrotropical 70,9% 72.2% 15.1% 72.4% 42.2% 70.6% 93.9% 50% 2% 
Australasian 82% 80.5% 54.9% 91.2% 47% 80% 98% 83.3% 20% 
Indomalayan 77.7% 90% 77% 83.2% 83% 58.2% 71.3% 35.7% 9.8% 
Neartic 71.7% 83.1% 59.4% 61.1% 84.3% 81.2% 66.9% 80.9% 27.9% 
Neotropical 65.4% 89.5% 14.8% 87.3% 66.9% 47.7% 88.3% 39.2% 40.7% 
Afrotropical 71.4% 71.3% 53.1% 67.7% 64.7% 73.5% 81.2% 30.3% 4% 
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 504 

 505 

Figure 1. Example of state-files data. Continuous forested primary land state for 2020 (top) and 506 

2100 (bottom) under SSP5-8.5 greenhouse gas scenario, as originally provided by the Land-Use 507 

Harmonization (LUH2) project. State values range from 0 to 1, roughly representing the likelihood 508 

a pixel is occupied by the land-use land-cover class depicted in the map. All other state-files have 509 

the same structure.  510 
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 511 
 512 

Figure 2. Example of LULC-files data. Categorical LULC for 2020 (top) and 2100 (bottom) under 513 

SSP5-8.5 greenhouse gas scenarios, as a result of the combination of the 12 LUH2 original state 514 

classes (State-files) into a single map.  515 
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Figure 3. 516 

Data used in the accuracy assessment of LULC-files. The accuracy of the classification of the 517 

LULC-file (bottom) assessed using the GLC-SHARE as reference data (top). To make the two 518 

datasets comparable, both were reclassified to four land-use land-cover states for the year 2000 (see 519 

Table 1 for reclassification scheme).   520 
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 557 

Figure 4. Land-use land cover comparison among years and scenarios. Data for the LULC-files for 558 

year 2020 and 2100 for the optimistic (SSP2-4.5, top) and pessimistic (SSP5-8.5, bottom) 559 

greenhouse gas scenarios, arranged in decreasing order of class area in 2020.  560 
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