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ABSTRACT	15	
	16	
The	 ability	 to	 deliberately	 overwrite	 ongoing	 automatic	 actions	 is	 a	 necessary	 feature	 of	 adaptive	17	
behavior.	 It	has	been	proposed	that	the	supplementary	motor	areas	(SMAs)	operate	as	a	controller	18	
that	 orchestrates	 the	 switching	between	 automatic	 and	deliberate	 processes	 by	 inhibiting	 ongoing	19	
behaviors	and	so	facilitating	the	execution	of	alternative	ones.	In	addition,	previous	studies	support	20	
the	involvement	of	SMAs	theta	waves	(4-9	Hz)	in	cognitive	control.	However,	the	exact	role	of	such	21	
oscillatory	 dynamics	 and	 their	 contribution	 to	 the	 control	 of	 action	 are	 not	 fully	 understood.	 To	22	
investigate	 the	mechanisms	 by	 which	 the	 SMAs	 support	 direct	 control	 of	 deliberate	 behavior,	 we	23	
recorded	 intracranial	 electroencephalography	 (iEEG)	 activity	 in	 humans	 performing	 a	 motor	24	
sequence	 task.	 	 Subjects	 had	 to	 perform	 a	 “change	 of	 plans”	 motor	 task	 requiring	 habitual	25	
movements	 to	 be	 overwritten	 at	 unpredictable	 moments.	 We	 found	 that	 SMAs	 were	 exclusively	26	
active	during	trials	that	demand	action	reprogramming	in	response	to	the	unexpected	cue	but	were	27	
silent	during	automatic	action	execution.	Importantly,	SMAs	activity	was	characterized	by	a	distinct	28	
temporal	 pattern,	 expressed	 in	 a	 stereotypical	 phase	 alignment	 of	 theta	 oscillations.	 More	29	
specifically,	 single	 trial	motor	performance	was	 correlated	with	 the	 trial	 contribution	 to	 the	global	30	
inter-trial	 phase	 coherence,	 with	 higher	 coherence	 associated	 with	 faster	 trials.	 In	 addition,	 theta	31	
phase	modulated	the	amplitude	of	gamma	oscillations,	with	higher	cross-frequency	coupling	in	faster	32	
trials.	 Our	 results	 suggest	 that	 within	 frontal	 cortical	 networks,	 theta	 oscillations	 could	 encode	 a	33	
control	signal	that	promotes	the	execution	of	deliberate	actions.	34	
	35	
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INTRODUCTION	36	
	37	
The	ability	to	deliberately	interrupt	and	overwrite	ongoing	actions	as	a	response	to	external	cues	is	a	38	
necessary	 feature	 of	 cognitive	 control.	 For	 example,	 when	 driving	 a	 car	 on	 a	 known	 route,	 we	39	
automatically	perform	highly	trained	actions	to	reach	a	familiar	destination.	However,	if	the	habitual	40	
route	 is	 found	blocked,	 the	automatic	driving	 routines	are	promptly	 interrupted,	 and	a	new	motor	41	
program	is	deliberately	assembled	and	selected	to	follow	an	alternative	path	to	the	goal.		42	
The	Supplementary	Motor	Areas	(SMAs),	in	the	Medial	Frontal	Cortex	(MFC),	are	thought	to	mediate	43	
the	 switch	 from	 automatic	 to	 deliberate	 control	 when	 a	 conflict	 between	 current	 and	 expected	44	
contingencies	 is	 detected	which	 requires	 alterations	 in	 ongoing	 actions	 (1–5).	 In	 particular,	 it	 has	45	
been	 suggested	 that	 the	 SMAs	 orchestrate	 the	 balancing	 of	 automatic	 and	 deliberate	 processes	 by	46	
inhibiting	ongoing	motor	 routines	 to	 facilitate	 the	execution	of	 alternative	deliberate	 actions	 (4,5).	47	
Animal	studies	support	this	hypothesis,	 for	instance,	by	showing	the	involvement	of	neurons	in	the	48	
primate	 SMAs	 in	 either	 suppressing	 or	 promoting	 action	 during	 “change	 of	 plans”	 paradigms	 (6).	49	
Nevertheless,	 the	 functional	 role	 of	 SMAs	 in	 humans	 is	 still	 under	 debate.	 Imaging	 studies	 have	50	
reported	 increased	activation	of	 the	human	pre-SMAs	and	SMAs	during	action	 reprogramming	but	51	
not	during	automatic	action	execution	(1).	This	is	consistent	with	rare	lesion	studies	where	subjects	52	
suffering	from	focal	SMAs	damage	are	able	to	stop	an	action	but	unable	to	switch	between	automatic	53	
and	 deliberate	 control	 (7).	 These	 results	 suggest	 that	 human	 SMAs	 are	 not	 generally	 involved	 in	54	
action	 inhibition	 but	 are	 specifically	 supporting	 switching	 behavior.	 However,	 this	 interpretation	55	
seems	 at	 odds	with	 findings	 from	human	EEG	 studies	 showing	 significant	 activation	 of	 the	medial	56	
frontal	 cortex	 (MFC)	during	 a	 behavioral	 conflict.	Here,	 a	 positive	 relationship	between	 the	power	57	
increase	in	the	theta	range	(4-8	Hz)	and	response	time	during	high-conflict	trials	suggests	that	this	58	
frequency	band	(often	termed	'frontal	theta')	could	reflect	a	generic	inhibitory	mechanism,	possibly	59	
acting	as	a	“global	brake”	on	the	motor	system	both	pro-	and	retrospectively	(i.e.	post-error	slowing)	60	
(8–10).	 Hence,	 the	 exact	 role	 of	 human	 SMAs	 in	 cognitive	 control	 is	 not	 clear	 and	 pointing	 to	 a	61	
plurality	of	possible	functions.	62	
A	 second	 topic	 of	 debate	 pertains	 to	 the	 mechanism	 through	 which	 the	 SMAs	 can	 control	 action	63	
execution.	 Indeed,	 although	 the	 power	 of	 the	 theta	 band	 over	 the	 motor	 system	 could	 reflect	 an	64	
inhibitory	mechanism,	 recent	 evidence	 suggests	 that	 the	 phasic	 period	 of	 frontal	 theta	 is	 crucially	65	
related	to	performance	in	cognitive	tasks	that	involve	frontal	cortical	circuits	(11).	In	particular,	theta	66	
band	phase	coherence	within	and	across	frontal,	motor	and	parietal	regions	seems	to	correlate	with	a	67	
higher	 accuracy	 in	 rule-based	 decision	making	 (12,13)	 and	memory	 tasks	 (14),	 as	well	 as	 shorter	68	
reaction	times	during	attentional	paradigms	(15).	Despite	this	growing	body	of	evidence,	a	direct	link	69	
between	 theta	 oscillatory	 phase	 and	 the	 executive	 control	 of	 action	 is	 still	 missing	 (although	 see	70	
(16)).	In	summary,	it	remains	unclear	whether	the	human	SMAs	are	involved	in	behavioral	switching,	71	
whether	they	have	an	inhibitory	or	faciliatory	role	in	action	reprogramming	and	what	is	the	neural	72	
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mechanism	 is	 underlying	 this	 putative	 role.	 To	 address	 these	 questions,	 we	 tested	 the	 ability	 to	73	
switch	between	automatic	and	deliberate	control	of	action	in	three	(pre-operation)	epileptic	subjects	74	
with	 iEEG	medial-frontal	 implants	 in	 the	 supplementary	motor	 areas	 (BA6).	 Subjects	 performed	 a	75	
variation	of	the	Serial	Reaction	Time	Task	(SRTT)	(17),	a	paradigm	that	requires	the	execution	of	a	76	
sequence	 of	 repetitive	 visually-guided	 key-presses,	 which	 becomes	 progressively	 automated.	 In	 a	77	
small	subset	of	trials,	the	automatic	sequence	is	unpredictably	interrupted	by	the	appearance	of	a	cue	78	
(switch	 trials),	 which	 required	 the	 subjects	 to	 halt	 the	 ongoing	 action	 sequence	 and	 press	 an	79	
alternative	un-cued	key	(switch	trials).	80	
Consistently	with	the	animal	literature	(4,6),	we	find	that	the	SMAs	are	active	during	switch	trials	but	81	
not	 during	 automatic	 ones.	We	 also	 observe	 that	 the	 response	 time	 at	 the	 single	 trial	 level	 can	be	82	
predicted	 from	 the	movement	 related	 cortical	potential	 (MRCP)	 (18).	Notably,	 the	ability	 to	detect	83	
MRCP	peaks	at	the	single	trial	level	allowed	us	to	align	the	iEEG	signals	recorded	from	the	SMAs	to	an	84	
endogenous	neural	event	predictive	of	behavior.	This	was	crucial	to	minimize	intra-	and	inter-subject	85	
variability	 (19)	 and	 to	 unveil	 the	 intrinsic	 neural	 dynamics	 independent	 of	 an	 exogenous	 (i.e.	 cue	86	
presentation)	 event-locked	 analysis	 (12,20,21).	 We	 show	 that	 the	 single-trial	 theta	 band	 phase	87	
coherence	(22,23),	i.e.	the	contribution	of	a	single	trial	to	the	overall	phase	consistency	across	trials,	88	
were	 predictive	 of	 motor	 performance	 at	 the	 single	 trial	 level,	 with	 higher	 phase	 coherence	89	
correlating	 with	 shorter	 reaction	 times.	 Neither	 amplitude	 nor	 power	 of	 the	 MRCP	 had	 such	90	
predictive	 power.	 To	 further	 investigate	 the	 neurophysiological	 link	 between	 low-frequency	91	
oscillations	and	behavior,	we	computed	 the	cross-frequency	coupling	between	 theta	phase	and	 the	92	
amplitude	of	higher	frequency	activity.	This	analysis	revealed	a	significant	increase	of	theta-gamma	93	
phase-amplitude	coupling	associated	with	shorter	response	latencies	suggesting	a	modulatory	effect	94	
of	theta	rhythms	on	local	neuronal	activity.		95	
Altogether	 our	 results	 directly	 support	 the	 role	 of	 human	SMAs	 in	 the	 control	 of	 action	 switching.	96	
Moreover,	they	reveal	a	possible	mechanism	of	cognitive	control	based	on	the	entrainment	of	high-97	
frequency	neuronal	events	by	low-frequency	oscillations	in	a	cognitive	control	version	of	the	nested	98	
frequency	theta-gamma	code	(24).	This	interpretation	provides	further	support	for	the	growing	body	99	
of	 evidence	 pointing	 to	 the	 role	 of	 phase	 synchrony	 and	 modulation	 in	 the	 theta	 band	 as	 a	100	
fundamental	operational	mode	of	frontal	executive	function.	101	
	102	
	103	
RESULTS	104	
	105	
Task	and	behavioral	results	106	
	107	
In	 order	 to	 explore	 the	 neural	 dynamics	 underlying	 behavioral	 performance	 in	 deliberate	 action	108	
switching,	three	human	subjects	implanted	with	intracranial	electrodes	(iEEG)	in	the	supplementary	109	
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motor	areas	(SMAs)	(fig.	1-B),	performed	a	variation	of	the	serial	reaction	time	task	(17,25)	(fig.	1-A).	110	
The	task	was	composed	of	two	consecutive	blocks	for	a	total	of	565	trials.	The	first	block	(trial	1-60)	111	
required	the	participants	to	learn	to	perform	a	repetitive	sequence	of	key-presses	(N=5)	on	a	touch-112	
screen	keyboard	by	 tapping	on	a	visual	 cue	 (green,	presented	 for	500	msec	or	until	pressed)	until	113	
they	reached	automaticity.	Automaticity	was	defined	as	the	decrease	of	inter-key-interval	(IKI)	to	an	114	
asymptotic	value,	indicating	that	the	subject	effectively	internalized	the	motor	sequence	and	did	not	115	
rely	on	visual	feedback	(17)	(fig.	1-C).	We	observed	a	significant	decrease	in	IKI	between	early	and	116	
late	 training	 trials	 (fig.	 1-D)	 (t-test	 unpaired	 between	 trials	 1-20	 (N=20)	 and	 trials	 40-60	 (N=20):	117	
SBJ1,	t=5.30,	p<10-05;	SBJ2,	t=5.71,	p<10-05;	SBJ3,	t=4.08,	p<10-03)	and	its	variability	(fig.	1-E)	(t-test	118	
unpaired:	 SBJ1,	 t=2.21,	 p=0.04;	 SBJ2,	 t=2.45,	 p=0.02;	 SBJ3,	 t=3.28,	 p=0.004),	 confirming	 that	 the	119	
subjects	performed	the	sequence	in	an	automatic	manner	(26).	120	
In	 the	 second	 block	 of	 the	 task	 (trial	 61-565),	 subjects	 were	 required	 to	 perform	 the	 learned	121	
sequence	 of	 visually	 guided	 key	 presses.	 However,	 these	 were	 interrupted	 by	 the	 unpredictable	122	
appearance	of	a	switch	cue	(red	circle)	at	pseudo-random	intervals	(7	+-	2	sec).	When	the	switch	cue	123	
appeared,	 subjects	 had	 to	 interrupt	 their	 ongoing	 automatic	 motor	 sequence	 and	 press	 a	 specific	124	
uncued	 key	 (fixed	 for	 each	 subject	 throughout	 the	 experiment)	 as	 instructed	 during	 the	 training	125	
phase	(switch	trials).	Subject	1	and	2	requested	to	interrupt	the	experiment	prematurely.	In	total	we	126	
collected	50	 switch	 trials	 for	 SBJ1,	 57	 for	 SBJ2	 and	80	 for	 SBJ3.	 Subjects	were	 able	 to	 successfully	127	
interrupt	 the	 ongoing	 action	 sequence	 for	 most	 of	 the	 switch	 trials.	 Switch	 trials	 where	 subjects	128	
failed	to	interrupt	the	ongoing	motor	sequence	and	pressed	the	next	key	in	the	sequence	(SBJ1,	14%;	129	
SBJ2,	20%;	SBJ3,	10%)	were	excluded	from	the	analysis.	The	behavioral	analysis	of	the	key-presses	130	
showed	consistently	longer	response	in	switch	trials	compared	to	automatic	response	trials	(fig.	1-F)	131	
(t-test	 unpaired:	 SBJ1,	 t=-39.59,	 p<0.01;	 SBJ2,	 t=-32.96,	 p<0.01;	 SBJ3,	 t=-71.56,	 p<0.01).	 This	132	
increased	latency	in	response	time	was	accompanied	by	a	greater	variability	ranging	from	about	600	133	
to	1300	ms	(fig.	1-G).	Hence,	 the	motor	response	dynamics	 in	automatic	 trials	were	consistent	and	134	
stereotyped	 whereas	 in	 switch	 trials	 subjects	 were	 variably	 faster	 or	 slower	 than	 their	 mean	135	
performance	at	each	trial.	This	difference	cannot	be	explained	as	a	learning	effect,	as	we	did	not	find	136	
a	 significant	 correlation	 between	 trial	 order	 and	 switch	 response	 latencies	 (Pearson’s	 correlation	137	
coefficient:	SBJ1:	R=-0.11,	p=0.18;	SBJ2:	R=0.08,	p=0.37;	SBJ3:	R=-0.16,	p=0.07).	In	addition,	it	cannot	138	
be	 consistently	 explained	 by	 the	 position	 of	 the	 switch	 cue	within	 the	 sequence,	 which	 showed	 a	139	
significant	 effect	 only	 in	 one	 subject	 (one	 way	 ANOVA:	 SBJ1:	 F(2,40)=2.546,	 p=0.091;	140	
SBJ2:F(2,43)=2.002,	 p=0.147;	 SBJ3:F(2,69)=4.685,	 p=0.012).	 This	 raises	 the	 question	 whether	 the	141	
difference	in	performance	in	automatic	and	switch	trials	can	be	explained	in	terms	of	the	properties	142	
of	the	neuronal	process	underlying	the	control	of	action	switching.	143	
	144	

	145	
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	146	
Figure	1.	Experimental	protocol,	recording	locations	and	behavioral	performance.	a.	Serial	reaction	time	147	
task.	During	automatic	trials	subjects	are	required	to	perform	a	series	of	visually	guided	key	presses	(green	key)	148	
following	 a	 fixed	 pseudo-randomly	 generated	 sequence.	 During	 switch	 trials	 subjects	 are	 presented	 with	 a	149	
switch	cue	(red	key	in	a	fixed	position)	appearing	at	a	random	step	of	the	sequence,	requiring	them	to	interrupt	150	
the	ongoing	motor	sequence	and	press	a	specific	uncued	key.	b.	Projection	of	the	locations	of	relevant	contact	151	
points	 in	MNI	 coordinates	 for	 each	 subject.	c.	 Evolution	of	 trail	 duration	during	 training	per	 subject.	d.	Mean	152	
Inter-Key-Interval	 (IKI)	 in	 seconds	 during	 early	 (trial	 1-20)	 and	 late	 (trial	 40-60)	 phases	 of	 training	 for	 each	153	
subject.	 	e.	 IKI	 standard	 deviation	 during	 early	 (trial	 1-20)	 and	 late	 (trial	 40-60)	 phases	 of	 training	 for	 each	154	
subject.	 f.	 Comparison	 between	 response	 time	 during	 automatic	 and	 switch	 trials	 for	 each	 subject.	 Switch	155	
responses	are	collected	from	all	the	valid	trials	in	the	switch	condition	from	the	appearance	of	the	switch	cue	to	156	
the	 key	 press.	 Automatic	 responses	 comprise	 the	 same	 number	 of	 key	 presses	 sampled	 from	 the	 automatic	157	
sequence	at	random	from	the	pool	of	automatic	trials	(SBJ	1:	N	=	43;	SBJ	2:	N	=	46;	SBJ	3:	N	=	72).	g.	Normalized	158	
distribution	of	response	time	during	switch	trials	for	subject.	Response	time	computes	as	in	f.		159	
	160	
	161	
SMAs	are	involved	in	switch	but	not	automatic	action	162	
					163	
It	 is	 believed	 that	 the	 SMAs	 contribute	 to	 cognitive	 control	 in	 particular	 the	 switching	 between	164	
automatic	and	deliberate	action	(2–4).	We	validated	this	hypothesis	by	training	a	classifier	to	identify	165	
the	trial	type	(automatic	vs.	switch),	by	the	signals	obtained	from	all	the	available	contact	points	for	166	
each	 individual	 subject	 (see	Methods).	This	 classification	 shows	 that	 the	 signals	obtained	 from	 the	167	
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medial-frontal	 cortex,	 and	 in	 particular	 the	 SMAs	 (BA6C),	 are	most	 predictive	 of	 switch	 trials	 (F1	168	
score=0.7)	 followed	 by	 the	motor	 cortex	 (BA4)	 (F1	 score	 =	 0.57)	 and	 the	 lateral	 premotor	 cortex	169	
(B6L)	(F1	score	=	0.52).	In	particular,	we	observe	that	the	amplitude	of	the	iEEG	local	field	potentials	170	
(LFPs)	measured	 in	 the	 SMAs	 is	 predictive	 of	 the	 type	 of	 trial	 (automatic	 or	 switch)	 (fig.	 2-A,	 B).	171	
Following	this	step,	we	restricted	our	analysis	to	the	relevant	contact	points	in	the	SMAs	in	order	to	172	
determine	the	precise	role	of	SMAs	in	switching	from	automatic	to	deliberate	behaviors.	173	
Analyzing	 the	 time	 evolution	 of	 the	 SMAs	 iEEG	we	 observe	 that	 during	 switch	 trials,	 a	 significant	174	
movement	related	cortical	potential	(MRCP)	preceded	the	response	in	all	three	subjects.	In	contrast,	175	
this	 MRCP	 was	 not	 present	 during	 automatic	 trials	 (T-statistics	 cluster	 permutation	 (N=1000)	176	
analysis:	 SBJ1,	 t=34.09,	 p<10-4;	 SBJ2,	 t=21.20,	 p<10-4	 ;	 SBJ3,	 t=29.69,	 p<10-4)	 (fig.	 2-B).	 To	 control	177	
whether	this	MRCP	encoded	the	motor	sequence	initiation	rather	than	a	switch	action	per	se	(27),	we	178	
aligned	the	LFPs	for	each	subject	to	the	cue	indicating	the	beginning	of	the	automatic	motor	sequence	179	
(not	 shown).	 We	 found	 no	 significant	 increase	 in	 amplitude	 confirming	 that	 the	 earlier	 observed	180	
MRCP	 was	 specific	 to	 automatic-deliberate	 switching	 (T-statistics	 cluster	 permutation	 (N=1000)	181	
analysis:	SBJ1,	t=7.64,	p=n.s.;	SBJ2,	t=4.73,	p=n.s.;	SBJ3,	t=8.13,	p=n.s.).		182	
Our	 results	 confirm	 that	 the	 SMAs	mediate	 the	 execution	of	 actions	 that	 require	 cognitive	 control,	183	
such	as	switch	trials	and	are	not	involved	in	the	control	of	over-trained	sequential	motor	responses	184	
nor	the	initiation	of	automatic	sequences	(1).	185	
Due	to	the	high	resolution	of	intracranial	EEG,	we	aimed	to	identify	robust	MRCPs	at	the	single	trial	186	
level	 in	 order	 to	 determine	 what	 features	 of	 the	 neural	 signal	 were	 predictive	 of	 behavioral	187	
performance.	To	achieve	this,	we	extracted	the	temporal	and	amplitude	 information	for	each	event	188	
by	band-pass	filtering	the	signal	at	low	frequencies	(1-2	Hz)	and	further	extracting	the	absolute	peak	189	
(fig.	2-C-1,2)	(18,28).	We	further	analyzed	the	time	window	from	the	switch	cue	presentation	to	the	190	
MRCP	peak	(TP),	the	time	window	from	the	peak	to	the	key	press	(FP)	and	the	peak	amplitude	(A)	in	191	
relation	 to	 the	 response	 time	 at	 each	 trial.	 Temporal	 analysis	 of	 the	 MRCP	 showed	 a	 marked	192	
correlation	between	its	time	to	peak	(TP)	and	reaction	time	with	respect	to	cue	presentation	at	the	193	
single	 trial	 level	 (Pearson’s	 correlation	 coefficient:	 SBJ1,	R=0.481,	 p<0.001;	 SBJ2,	R=0.779,	 p<10-10,	194	
SBJ3,	R=0.499,	p<10-5)	(fig.	2-E).	A	similar	positive	correlation	was	found	between	single	trial	time-195	
from-peak	to	key-press	(FP)	and	the	response	time	(Pearson’s	correlation	coefficient:	SBJ1,	R=0.698,	196	
p<10-7;	SBJ2,	R=0.707,	p<10-8,	SBJ3,	R=0.464,	p<10-5)	(fig.	2-F).	 In	contrast,	peak	amplitude	showed	197	
no	 consistent	 effect	 on	 response	 times	 and	 only	 in	 one	 subject	 reached	 statistical	 significance	198	
(Pearson’s	 correlation	 coefficient:	 SBJ1,	 R=0.141,	 p=0.371;	 SBJ2,	 R=0.314,	 p=0.035,	 SBJ3,	 R=0.06,	199	
p=0.959)	(fig.	2-G).	To	further	quantify	the	relevance	of	the	time	to	peak	and	amplitude	aspects	of	the	200	
MRPC	 for	 switch	 behavior	 we	 fit	 a	 linear	 model	 for	 each	 variable	 and	 computed	 the	 explained	201	
variance	(R2)	with	respect	to			202	
	203	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442965doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442965
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

	204	
	205	
Figure	2.	Neural	 response	 in	 SMAs.	 	 a.	Classifier	mean	prediction	accuracy	of	switch	trials	projected	over	a	206	
Brodmann	atlas.	Red	hue	represents	the	classification	accuracy	(F1	score)	associated	with	the	areas	that	were	207	
recorded,	gray	denotes	areas	not	present	in	the	recording.	b.	Motor	Related	Cortical	Potential	(MRCP)	in	SMAs	208	
during	 switch	 (green)	 and	 automatic	 (black)	 trials	 aligned	 to	motor	 response	 (red	 dashed).	 Switch	 trials	 are	209	
aligned	to	the	key-press	in	response	to	the	switch	cue	(key	press	of	the	uncued	key),	automatic	trials	are	aligned	210	
to	the	last	key-press	of	the	automatic	sequence.	Mean	and	SEM	for	each	subject.	Bar	indicates	the	intersection	of	211	
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significant	temporal	windows	for	all	the	subjects	(p<0.05).		c.	Example	of	alignment	of	single	trial	MRCPs	to	the	212	
relative	peak	 for	one	subject.	1.	Key-press	aligned	MRCPs	 for	each	switch	trial	 (black)	and	mean	(red).	2.	2Hz	213	
Low	passed	MRCPs	for	each	trial	(black)	and	mean	(red).	Black	dots	indicate	the	detected	peaks.	3.	Alignment	of	214	
low	passed	filtered	MRCPs	by	their	relative	peak	and	unfiltered	average.	d.	MRCP	in	SMAs	during	fast	and	slow	215	
responses	during	switch	trials	(trials	sorted	by	the	median	of	the	response	time	distribution)	aligned	to	the	peak	216	
of	the	band-passed	MRCP	(red	dashed).	Mean	and	SEM	of	subjects.	e.	Relationship	between	time	of	response	and	217	
of	cue	presentation	to	MRCP	peak	during	switch	trials	for	each	subject.	Solid	line	indicates	the	linear	fit	of	the	218	
data	and	Pearson’s	correlation	coefficient.	f.	Relationship	between	response	time	and	time	from	MRCP	peak	to	219	
key-press	 during	 switch	 trials	 for	 each	 subject.	 g.	 Relationship	 between	 response	 time	 and	 MRCP	 peak	220	
amplitude	during	switch	trials	for	each	subject.	h.	Mean	R2	linear	regression	coefficient	between	response	time	221	
and	time	from	cue	to	peak	(TP),	time	from	peak	to	key-press	(FP)	and	peak	amplitude	(A).	Each	score	is	obtained	222	
on	 the	 test	 set	 as	 a	 result	 of	 an	 independent	 regression	 for	 each	 regressor	 trained	 on	 70%	 of	 the	 available	223	
aggregated	trials	and	tested	on	the	remaining	30%.	Mean	scores	and	standard	deviation	are	the	result	of	a	100-224	
fold	cross-validation.	225	
	226	
the	 response	 time	 (fig.	 2-H).	 This	 analysis	 confirmed	 that	 the	 temporal	 dynamics	 of	 the	MRPC	 in	227	
terms	 of	 time-to-peak	 from	 cue	 onset	 and	 time-from-peak	 to	 response	 could	 accurately	 predict	228	
performance	while	excluding	amplitude	as	a	reliable	predictor	of	motor	behavior.	229	
We	 subsequently	 analyzed	 whether	 the	 profile	 of	 the	 MRPCs	 showed	 any	 behavior	 dependent	230	
modulation	by	comparing	fast	and	slow	switch	trials	(fig.	2-D).	For	each	subject,	trials	were	aligned	to	231	
the	 time	 of	 the	 peak	 of	 the	 band-passed	MRCP	 (as	 shown	 in	 fig.	 2-C-3).	 Further,	 these	 trials	were	232	
sorted	into	two	groups	according	to	the	median	value	of	the	response	time	distribution	(i.e.	fast	and	233	
slow)	in	order	to	obtain	an	equal	number	of	trials	for	each	group	and	potential	differences	between	234	
groups	 tested	 using	 cluster-based	 permutation	 analysis.	 This	 analysis	 revealed	 no	 differences	235	
between	fast	and	slow	switch	trials	(T-statistics	cluster	permutation	(N=1000)	analysis:	SBJ1,	t=5.87,	236	
p>0.05;	 SBJ2,	 t=9.23,	 p>0.05;	 SBJ3,	 t=8.61,	 p>0.05)	 suggesting	 that,	 although	 the	 MRPC	 is	 a	237	
characteristic	 neural	 signature	 of	 switch	 actions,	 it	 does	 not	 encode	 information	 predictive	 of	238	
behavioral	parameters	such	as	response	time.		239	
Altogether,	 these	 results	 suggest	 that	 the	 SMAs	 are	 recruited	 for	 deliberate	 control	 of	 switching	240	
behavior	 and	 that	 the	 temporal	 features	 of	 the	 MRPC,	 i.e.	 phase,	 are	 decisive	 in	 controlling	 the	241	
response	time	(29).	242	
	243	
	244	
Theta	phase	aligns	in	faster	actions	245	
	246	
We	hypothesized	that	oscillatory	dynamics	in	the	theta	range	could	constitute	a	neural	signature	of	247	
cognitive	control	by	mediating	deliberate	action	switching.	Previous	reports	have	suggested	a	strong		248	
	249	
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	250	

	251	
	252	
Figure	3.	Phase	alignment	and	performance.	a.	Inter-trial	phase	coherence	difference	(z-score)	between	fast	253	
and	slow	(fast-slow)	switch	trials	for	the	combination	of	the	significant	contact	points	for	each	subject	projected	254	
on	 the	MNI	space.	Contact	points	showing	a	significant	cluster	of	 time-frequency	bins	 (z	>	2.58,	Montecarlo	p	255	
value	<	0.05)	in	the	time	window	–1	s	to	1	s	centered	to	the	peak	of	the	MRCP	are	represented	in	color.	b.	Power	256	
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difference	(z-score)	between	fast	and	slow	(fast-slow)	switch	trials	for	the	combination	of	all	the	contact	points	257	
available	 from	all	 the	 subjects	projected	on	 the	MNI	 space.	No	contact	point	 reached	a	 statistically	 significant	258	
level,	 therefore	no	masking	 is	applied	to	 this	 figure.	c.	Single	subject	statistical	analysis.	 left.	 ITPC	normalized	259	
difference	between	 fast	and	slow	(fast-slow)	switch	trials.	Trials	are	aligned	by	the	relative	peak	of	 the	MRCP	260	
(black	 dashed	 line).	 Red	 dashed	 line	 indicates	 the	 average	 cue	 onset	 time	with	 respect	 to	MRCP	peak.	 Green	261	
outline	 indicates	 region	with	Monte	Carlo	P	value	<	0.01.	right.	 Spearman’s	R	correlation	coefficient	between	262	
Single	 Trial	 Phase	 Coherence	 (STPC)	 and	 Response	 Time	 (RT)	 computed	 for	 each	 time	 frequency	 bin	 during	263	
switch	trials.	Trials	are	aligned	by	the	relative	peak	of	the	MRCP	(black	dashed	line).	Red	dashed	line	indicates	264	
the	average	cue	onset	time	with	respect	to	the	MRCP	peak.	Red	profile	indicates	Monte	Carlo	P	value	<	0.05.	box.	265	
Relationship	between	Response	Time	and	STPC	for	the	significant	area	shown	in	the	time-frequency	plot	shown	266	
to	the	left.	Red	line	indicates	linear	fit.	267	
	268	
implication	 of	 phase	 dynamics	 in	 cognitive	 control	 (11,12,16)	 suggesting	 the	 possibility	 that	269	
stereotypical	phase	profiles	could	underlie	deliberate	action	modulation.		270	
To	detect	potential	stereotypical	phase	patterns	underlying	 the	differences	 in	response	 times	(RT),	271	
we	first	aligned	the	LFPs	to	the	peak	of	the	MRCP.		Note	that	this	is	not	only	a	necessary	step	to	filter	272	
out	inter-	and	intra-	subject	differences	so	as	to	compare	phase	profiles	across	conditions	(19),	but	it	273	
could	also	 reveal	 oscillatory	patterns	 that	 are	 removed	when	using	exogenous	events	 as	 reference	274	
(8,12,20).	Further,	we	sorted	the	switch	trials	for	each	subject	into	two	classes	of	equal	size	(fast	and	275	
slow),	 by	 splitting	 the	RT	distributions	 by	 their	median	 value.	 For	 each	 subject	 and	 each	 available	276	
contact	point,	we	then	calculated	ITPC	for	 fast	and	slow	trials	and	computed	the	normalized	phase	277	
coherence	difference	following	the	method	described	in	(30)	(see	Methods).	278	
Class	comparison	revealed	a	significantly	larger	phase	alignment	in	fast	trials	compared	to	slow	trials	279	
localized	in	the	SMAs	for	all	the	subjects.	To	verify	the	specificity	of	this	result	we	applied	Z-statistics	280	
cluster	 permutation	 analysis	 to	 all	 the	 available	 contact	 points	 in	 order	 to	 identify	 significant	281	
differences	 in	 ITPC	between	 fast	and	slow	trials	 (see	Methods)	and	 further	projected	 in	MNI	space	282	
the	contact	points	with	a	significant	difference	(p	<	0.05)	in	the	time	window	between	-0.6	and	0.4	s	283	
with	respect	to	the	peak	of	the	MRCP	(Figure	3-A,	see	Methods).	We	observe	that,	contact	points	with	284	
significantly	stronger	phase	alignment	fall	 in	between	Brodmann	area	6	and	9	for	subjects	1	and	in	285	
Brodmann	area	6	for	subjects	2	and	3.		This	effect	was	found	in	the	theta	frequency	range	between	4	286	
and	8	Hz	(fig.	3-C	left	for	an	example	for	each	subject)	with	an	onset	varying	across	subjects	between	287	
0.5	 and	0.1	 seconds	before	 the	MRCP	peak,	 possibly	 due	 to	 implant	 location	differences	 (i.e.	more	288	
frontal	for	subject	1).	Similar	theta	range	variability	was	detected	in	the	contact	points	of	individual	289	
subjects	 in	 areas	 anatomically	 or	 functionally	 related	 to	 the	 SMA.	 In	 particular,	 in	 the	 anterior	290	
cingulate	cortex	(ACC)	of	subject	3	and	in	the	temporal	lobe	of	subject	2	(see	Table	1	for	a	list	of	the	291	
contact	 points	 with	 significant	 differences	 (p	 <	 0.05)	 in	 phase	 alignment	 between	 fast	 and	 slow	292	
trials).	293	
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To	further	confirm	the	role	of	 theta	phase	dynamics	with	respect	 to	action	switching,	we	applied	a	294	
single-trial	 analysis	 to	 a	 subset	 of	 contact	 points	 in	 the	 SMAs	 that	 showed	 the	 reaction	 speed	 and	295	
phase	 alignment	 effect.	 Our	 specific	 goal	 was	 to	 determine	 the	 contribution	 of	 inter-trial	 phase	296	
coherence	 to	motor	 performance.	 In	 particular,	we	 computed	 the	 total	 inter-trial	 phase	 coherence	297	
(ITPC)	for	each	time-frequency	bin	and	inferred	the	individual	contribution	of	 intra-trial	coherence	298	
by	computing	a	Single	Trial	Phase	Coherence	(STPC)	pseudo	value	following	(22,23).	Finally,	for	each	299	
time-frequency	bin,	we	computed	a	Spearman’s	R	correlation	between	the	trial	response	times	(RT)	300	
and	the	relative	STPCs	(see	Methods).	We	observe	a	negative	correlation	between	RT	and	STPC	in	the	301	
4-8	 Hz	 frequency	 band	 once	 aligned	 to	 the	 peak	 of	 the	 MRCP	 (fig.	 3C,	 right)	 (Z-statistics	 cluster	302	
permutation	(N=1000)	analysis:	SBJ1,	z>1.96,	p<0.001;	SBJ2,	z>1.96,	p<0.001;	SBJ3,	z>1.96,	p=0.07).	303	
Altogether	these	analyses	reveal	a	stereotypic	phase	profile	of	theta	oscillations	locked	to	the	motor	304	
potential	 controlling	action	switching	whose	magnitude	 is	monotonically	 related	 to	 the	 time	of	 the	305	
behavioral	response	at	the	single	trial	level.		306	
Importantly,	 it	has	been	argued	that	phase	coherence	may	be	induced	by	increases	in	the	power	of	307	
the	 oscillations,	 thus	 constituting	 an	 evoked	 rather	 than	 an	 actual	 phase	 alignment	 (29).	 We	308	
controlled	for	this	possibility	by	calculating	the	difference	in	power	between	fast	and	slow	trials	and	309	
compared	the	obtained	z-scored	differences	with	those	obtained	in	the	ITCP	domain	(fig.	3-B).	This	310	
analysis	 confirms	 a	 significant	 effect	 of	 ITPC	 on	 response	 time	 in	 the	 absence	 of	 significant	311	
differences	 in	 power	 suggesting	 that	 the	 detected	 phase	 alignment	 is	 likely	 the	 result	 of	 an	 actual	312	
phase	coding	mechanism	within	the	theta	range.		313	
Altogether,	these	results	suggest	that	the	SMAs	play	a	central	role	in	controlling	the	ability	to	switch	314	
from	the	execution	of	an	automatic	motor	sequence	to	the	execution	of	a	deliberate	action	prompted	315	
by	an	unexpected	cue.	The	enhanced	synchronization	of	 theta	 frequencies	 in	 faster	switch	trials,	 in	316	
absence	of	power	differences,	 supports	 the	role	of	phase	dynamics	as	a	mediating	mechanism	that	317	
facilitates	the	execution	of	deliberate	movements.	 In	addition,	the	differences	found	in	the	ACC	and	318	
temporal	 lobe	 support	 the	 existence	 of	 a	 functional	 network	 involved	 in	 switching.	 Within	 this	319	
network	 the	 ACC	 could	 be	 responsible	 for	 selectively	 biasing	 processes	 in	 favor	 of	 task	 relevant	320	
information	 during	 high	 conflict	 switch	 trials	 (31).	 The	 temporal	 lobe	 in	 turn	 might	 encode	 for	321	
arousal	or	 surprise	 elicited	by	 the	unexpected	 cue	 (32,33)or	 support	 the	mnemonic	 aspects	of	 the	322	
decision	making	process	(e.g.	retrieving	what	key	should	be	pressed	once	the	cue	is	presented)	(34).	323	
	324	
Subject	 Contact		

point	

MNI	coordinates	 Brodmann	

Area	

ITPC	statistics	

1	 I’12	 -23,713;25,731;35,165	 BA9	 Z=3.547,	MC_p=0.004	

2	 T’3	 -32,098;	10,264;	-38,737	 BA36	 Z=3.210,	MC_p=0.022	

2	 X’10	 -24,089;	10,467;	38,760	 BA6	 Z=4.003,	MC_p=0.014	
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3	 K’2	 -8,865;	10,540;	47,061	 BA32	 Z=3.546,	MC_p=0.016	

3	 O’10	 -39,712;	3.550;	30,963	 BA48	 Z=2.841,	MC_p=0.026	

3	 M’9	 -33,840;	-9,556;	39,289	 BA6	 Z=3.737,	MC_p=0.022	

3	 R’4	 -18,703;	-2,314;	56,739	 BA6	 Z=2.836,	MC_p=0.04	

3	 K’7	 -27,784;	6,911;	42,980	 BA6	 Z=3.005,	MC_p=0.046	

3	 B’1	 -3,148;	25,277;	26,200	 BA32	 Z=2.727,	MC_p=0.042	

	325	
Table	 1.	 List	 of	 all	 the	 contact	 points	 where	 the	 difference	 in	 ITCP	 between	 fast	 and	 slow	 trials	 reached	326	
statistical	significance.	327	
	328	
	329	
Cross-frequency	coupling	predicts	faster	movements	330	
	331	
We	 have	 shown	 that	 the	 speed	 of	 deliberate	 action	 switching	 is	 accompanied	 by	 theta	 phase	332	
alignment.	However,	the	direct	physiological	link	needed	to	support	the	hypothesis	that	theta	phase	333	
dynamics	modulate	 performance	 via	 phase-dependent	 neural	 activity	 needs	 to	 be	 established.	We	334	
sought	 to	answer	 this	question	by	determining	 the	modulatory	effect	of	 theta	phase	on	 local	high-335	
frequency	 activity	with	 the	 hypothesis	 that	 higher	modulation	 could	 support	 faster	 switch	 actions	336	
(fig.	 4-A),	 an	 analysis	 for	which	 a	measure	 of	 cross-frequency	 Phase-Amplitude	 Coupling	 (PAC)	 is	337	
particularly	suited	(35,36).		338	
We	restricted	our	analysis	to	the	contact	points	and	the	temporal	windows	of	approximately	400	ms	339	
where	a	significant	 increase	 in	phase	alignment	was	detected	(Figure	3C).	To	achieve	the	temporal	340	
resolution	necessary	for	this	type	of	analysis	we	obtained	one	surrogate	signal	for	fast	and	slow	trials	341	
for	each	subject	by	concatenating	the	respective	single	trial	windows	for	all	the	SMAs	contact	points	342	
for	each	subject	(see	Table	1	for	a	list	of	contact	points).	Further,	we	computed	PAC	values	(using	the	343	
GLM	 approach	 (37))	 between	 4-8	 Hz	 phase	 (modulatory	 frequency)	 and	 the	 amplitude	 of	 higher	344	
frequencies	(10-100	Hz	in	steps	of	2	Hz,	modulated	frequency),	and	obtained	the	difference	between	345	
the	two	types	of	trials.	Further,	to	test	the	significance	of	the	difference	between	fast	and	slow	trials,	346	
we	computed	the	expected	difference	in	PAC	under	the	null	hypothesis	by	shuffling	the	two	types	of	347	
trials	 and	 extracted	 the	 z	 threshold	 corresponding	 to	 p=0.01	 (38)	 (see	Methods).	We	 observed	 an	348	
increased	modulatory	effect	of	the	theta	oscillatory	phase	on	the	amplitude	of	frequency	bands	in	the	349	
low	 gamma	 range	 (30-80	 Hz),	 which	 was	 consistent	 across	 subjects	 (Z-statistics	 permutation	350	
(N=1000)	analysis:	SBJ1,	z>2.58,	p=0.027;	SBJ2,	z>2.58,	p=0.034;	SBJ3,	z>2.58,	p=0.029,	fig.	4-B,D).	In	351	
addition,	a	significant	modulatory	effect	was	found	in	the	beta	range	(i.e.	30	Hz)	for	one	subject	(SBJ1,	352	
z>2.58,	p=0.019).	Further	analysis	revealed	no	difference	in	absolute	gamma	amplitude	between	trial	353	
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types	(SBJ1,	p=0.23;	SBJ2,	p=0.26;	SBJ3,	p=0.65),	suggesting	that	the	magnitude	of	phase	modulation,	354	
rather	 than	 activity	 per-se,	 has	 a	 direct	 effect	 on	 controlling	 performance	 (fig.	 4-D).	 This	 result	355	
supports	 a	 neurophysiological	 link	 between	 theta	 phase	 coherence	 and	 deliberate	 control	 of	 the	356	
action	switching	through	the	modulation	of	high-frequency	activity,	often	interpreted	as	a	correlate	357	
of	local	population	activity	(35).	358	

	359	
	360	
Figure	 4.	 Theta-gamma	 cross	 frequency	 coupling	 and	 its	 relation	 to	 performance.	 	 a.	 Example	 of	361	
oscillatory	activity	in	SMAs	during	fast	trials	(left)	and	slow	trials	(right)	for	SBJ	2.	Top.		LFP	traces	of	individual	362	
switch	 trials	 (black)	 and	 mean	 (red)	 filtered	 in	 the	 theta	 range	 (4-8	 Hz).	 Center.	 	 Oscillatory	 phase	 of	 the	363	
individual	LFP	traces	(black)	and	mean	(red)	shown	in	the	above	panel.	Bottom.	Amplitude	of		the	individual	LFP	364	
traces	(black)		and	mean	(red)	filtered	in	the	low	gamma	range	(30-80	Hz).	All	traces	are	aligned	to	the	peak	of	365	
the	 MRCP	 and	 sorted	 by	 fast	 (<	 900	 msec)	 and	 slow	 (>	 900	 msec)	 response	 time.	 b.	 	 Difference	 in	 phase	366	
amplitude	coupling	(PAC)	between	fast	and	slow	trials	(fast-slow)	for	each	subject	comparing	the	phase	of	theta	367	
oscillations	(4-8	Hz)	to	the	amplitude	of	higher	frequency	bands	(x,	30	Hz,	30-80Hz,	and	80-100	Hz).	Yellow	area	368	
indicates	p	<	0.05.	 c.	Quantification	of	mean	gamma	amplitude		in	fast	and	slow	trials	for	each	subject	selected	369	
from	statistically	significant	regions	marked	 in	yellow	in	panel	b.	Bar	 indicates	standard	error	of	 the	mean.	d.	370	
Distribution	 of	 gamma	 band	 amplitude	 (selected	 from	 statistically	 significant	 regions	 in	 b)	 over	 the	 phase	 of	371	
theta	for	fast	(left)	and	slow	(right)	trials	for	each	subject.		372	
	373	
	374	
DISCUSSION	375	
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	376	
Switching	from	automatic	to	deliberate	behavior	in	response	to	environmental	cues	is	a	key	aspect	of	377	
adaptive	behavior,	however,	the	substrate	and	dynamics	supporting	this	ability	 in	the	human	brain	378	
are	 not	 fully	 understood.	 Here,	 we	 have	 addressed	 this	 question	 by	 analyzing	 the	 iEEG	 of	 the	379	
neocortex	 subjects	 engaged	 in	 a	 switch	 task.	We	 designed	 a	 variation	 of	 the	 Serial	 Reaction	 Time	380	
Task	 (SRTT)	 where	 automaticity	 is	 detected	 as	 a	 progressive	 shift	 towards	 faster	 and	 more	381	
stereotyped	movements,	indicating	that	sequences	are	performed	on	the	basis	of	an	internal	habitual	382	
representation	and	allowed	to	execute	autonomously	(7,39,40).	Using	a	classifier	of	the	time-domain	383	
features	of	the	iEEG	we	localized	a	predictive	signal	of	switch	trials	to	the	SMAs	which	confirmed	its	384	
role	in	action	control.	We	found	that	by	aligning	trials	to	action	initiation,	stereotypical	phase	profiles	385	
in	the	theta	range	emerged	in	the	SMAs	that	predicted	switch	performance	at	the	single	trial	level.	In	386	
addition,	 we	 showed	 that	 theta	 rhythms	 modulated	 high-frequency	 power	 in	 a	 performance-387	
dependent	manner.		388	
In	our	design,	however,	we	extended	the	SRTT	by	introducing	a	switch	cue	the	required		the	subjects	389	
to	 interrupt	 the	 automated	 sequence	 and	 execute	 an	 alternative	 key-press.	 This	 alternative	 action	390	
was	un-cued,	and	it	occurred	at	a	low	and	variable	rate,	at	unexpected	positions	in	the	sequence,	in	391	
order	to	both	avoid	habituation	and	maintain	active	deliberation.	This	manipulation	is	analogous	to	392	
the	switch	cue	used	in	(6).	However,	in	our	setup,	the	alternative	action	was	un-cued,	to	guarantee	a	393	
minimum	amount	of	deliberation	since	subjects	had	to	retrieve	and	implement	a	specific	instruction	394	
set	 from	 memory	 (5).	 During	 the	 switch	 trials,	 we	 found	 significantly	 longer	 response	 times,	395	
suggesting	 a	 switch	 from	 automatic	 to	 controlled,	 deliberate	 processes	 (3,6,41).	 Within	 the	396	
psychological	 literature,	 this	 behavioral	 marker	 is	 known	 as	 switch	 cost	 (42),	 interpreted	 as	 the	397	
result	of	an	“act	of	control”	that	involves	attentional,	mnemonic	and	motor	processes.		398	
We	 found	 that	 activity	 in	 the	 SMAs	 could	 successfully	 predict	 whether	 the	 action	 was	 performed	399	
deliberately	or	automatically,	supporting	the	involvement	of	human	SMAs	in	executive	control.	This	400	
result	 extends	previous	 evidence	 from	primate	 studies	 that	demonstrated	 a	 lateralized	 increase	 in	401	
the	 firing	 rate	 of	 supplementary	 eye	 field	 neurons	 that	 exclusively	 accounted	 for	 successful	402	
performance	during	switch	but	not	automatic	actions	(4).	Although	the	activity	profile	found	in	our	403	
study	 is	 qualitatively	 similar	 to	 the	 one	 reported	 in	 (6),	 it	 remains	 unclear	 what	 the	404	
neurophysiological	 link	between	low-frequency	LFP	events	and	firing	rate	is.	One	possibility	is	that	405	
the	 motor	 potential	 we	 reported	 (fig.	 2-b)	 is	 the	 result	 of	 the	 sum	 of	 synchronized	406	
afterhyperpolarization	events	of	SMAs	neurons	contributing	to	the	extracellular	field	potential	(43).	407	
This	 pattern	 of	 activity	 is	 also	 consistent	 with	 human	 fMRI	 studies	 that	 reported	 a	 consistent	408	
activation	 of	 the	 SMAs	 and	 the	 more	 anterior	 pre-SMAs	 during	 action	 switching	 (1,41,44).	 For	409	
example,	 SMAs	 are	 transiently	 active,	 together	 with	 the	 cingulate	 cortex,	 during	 the	 execution	 of	410	
switch	 actions	 triggered	 by	 response	 conflict	 (1,45).	 Besides,	 TMS	 induced	 inhibition	 of	 medial	411	
frontal	areas	 impaired	 the	ability	 to	switch	between	motor	responses	but	not	 the	ability	 to	 initiate	412	
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action	per	 se,	 an	 observation	 consistent	with	 our	 results	 showing	no	 significant	 change	 of	 activity	413	
during	 sequence	 initiation	 (46).	 Moreover,	 contrary	 to	 previous	 reports	 (27),	 we	 excluded	 the	414	
possibility	that	the	neural	signature	of	switching	we	report	could	encode	sequence	production,	as	no	415	
SMAs	 activity	 was	 found	 during	 automatic	 trials.	 Instead,	 we	 demonstrate,	 to	 the	 best	 of	 our	416	
knowledge,	for	the	first	time	the	movement-cortical	potential	(MRCP)	as	the	prominent	signature	of	417	
deliberate	 action	 switching	 in	 the	 human	 SMAs	 using	 iEEG.	 MRCPs	 are	 low-frequency	 potentials	418	
generated	 in	 association	 with	 the	 planning	 and	 execution	 of	 a	 cued	 or	 self-paced	 voluntary	419	
movement	 in	 premotor	 and	 motor	 regions	 (18).	 MRCPs	 can	 be	 decomposed	 in	 three	 distinct	420	
components:	a	slow	rise	component,	known	as	Readiness	Potential,	which	is	more	prominent	in	self-421	
paced	 movements	 (47,48).	 A	 fast	 decay	 component	 following	 the	 RP,	 called	 negative	 slope	 (NS),	422	
which	 peaks	 at	 the	 moment	 of	 maximum	 negativity	 in	 concomitance	 of	 action	 initiation	 (motor	423	
potential	 -	 MP).	 Finally,	 a	 rebound	 activity	 following	 movement	 initiation	 is	 associated	 with	424	
movement	 monitoring.	 In	 our	 task,	 we	 identified	 a	 strong	 NS	 component	 preceding	 movement	425	
initiation	 but	 no	 clear	 RP,	 possibly	 because	 the	 switch	 action	 was	 not	 internally	 (i.e.	 voluntarily)	426	
generated.	 Previous	 literature	 indeed	 shows	more	 prominent	NS	 and	 absence	 of	 RP	 in	 cue-guided	427	
movements	compared	to	self-paced	ones	(49).	428	
The	 absence	 of	 RP	 could	 also	 support	 a	 recent	 hypothesis	 by	 Schurger	 and	 colleagues	 (50).	 They	429	
suggest	 that	 this	 apparent	 signature	 of	 volitional	 control	 could	 be	 attributed	 to	 an	 artefact	 arising	430	
from	the	averaging	of	stochastic	fluctuations	in	the	neural	activity	over	trials.	Indeed,	within	the	EEG	431	
literature	MRCPs	are	typically	extracted	from	averaging	across	a	large	number	of	trials	time-locked	432	
to	 action	 initiation,	 in	 order	 to	 filter	 out	 the	 noise	 and	 account	 for	 artefacts	 introduced	 by	 scalp	433	
diffusion	(51).	This	procedure,	however,	generates	an	artificial	build-up	 in	the	averaged	signal	 that	434	
reflects	 the	 integration	 of	 noise	 in	 a	 stochastic	 decision	 process	 (SDP)	 following	 a	 drift-diffusion	435	
model,	where	neural	 activity	 reaches	 a	 “decision	 threshold”	 and	drives	 action	 initiation	due	 to	 the	436	
combination	of	evidence	and	stochastic	fluctuations.	The	latter	is	seen	as	the	source	of	the	variability	437	
in	response	times	(52).	In	our	study,	the	higher	resolution	and	low	SNR	of	iEEG	allowed	to	robustly	438	
detect	MRCPs	at	 the	 single	 trial	 level	directly	 from	 the	neural	 tissue	and	 to	extract	 reliable	MRCPs	439	
features.	This	allowed	for	a	single-trial	analysis	precluded	in	standard	EEG	analyses	usually	deployed	440	
in	 the	 investigation	 of	 RP	 (8,20,21)	 that	 support	 the	 SDP	 hypothesis.	 From	 a	 time-domain	441	
perspective,	the	key	finding	in	the	single	trial	analysis	of	switch	trials	is	that	the	temporal	aspects	of	442	
the	MRCP	peak,	but	not	its	amplitude,	could	accurately	predict	switch	response	times.	This	is	at	odds	443	
with	previous	EEG	reports	that	showed	a	significant	difference	in	the	amplitude	of	cortical	potentials	444	
depending	 on	 the	 speed	 and	 strength	 of	 the	 movement	 (53,54).	 The	 difference	 between	 our	 and	445	
previous	 results	 could	 be	 due	 to	 the	 different	 methods	 employed	 in	 the	 recording.	 LFPs	 indeed	446	
represent	 the	 extracellular	 activity	 of	 neural	 populations,	 and	 they	 closely	 track	 responses	 in	 a	447	
restricted	 area	 of	 the	 neural	 tissue.	 EEG,	 in	 turn,	 captures	 a	 more	 spatiotemporally	 extended	 yet	448	
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attenuated	LFP	 that	 integrates	several	 square	millimeters	of	 superficial	 cortical	activity	and	 it	may	449	
reflect	more	diffuse	macroscopic	effects	(43).	450	
Another	methodological	advantage	of	detecting	single-trial	time	domain	features	is	the	possibility	to	451	
align	 individual	 trials	 to	 the	 dynamics	 of	 endogenous	 events.	 This	 is	 a	 necessary	 step	 to	 compare	452	
oscillatory	 patterns	 across	 different	 conditions	 and	 subjects,	 as	 it	 has	 been	 shown	 that	 phase	453	
synchrony	 measures	 are	 sensitive	 to	 inter-subject	 and	 intra-subject	 temporal	 variability	 (19).	 In	454	
addition,	previous	studies	have	shown	that	 locking	to	endogenous	events	rather	than	to	exogenous	455	
ones	 (i.e.	 stimulus	 presentation)	 can	 reveal	 important	 and	 otherwise	 hidden	 dynamics	 (12).	 By	456	
aligning	individual	trials	to	the	MRCP	peak,	we	found	that	phase	synchrony	in	the	theta	band	across	457	
trials	predicted	switching	actions,	where	higher	synchrony	is	associated	with	faster	trials.	This	result	458	
suggests	that	action	initiation	is	locked	to	stereotypical	phase	profiles	in	the	theta	range,	suggesting	a	459	
mechanism	by	which	neurons	 in	 the	medial	 frontal	 cortex	 synchronize	 to	 convey	cognitive	 control	460	
signals	 to	 downstream	motor	 areas.	 This	 also	 defines	 a	 contrast	 between	 our	 results	 and	 the	 SDP	461	
hypothesis,	 by	 virtue	 of	 analyzing	 signals	 relative	 to	 an	 internal	 reference,	 i.e.	 MRCP,	we	 reveal	 a	462	
systematic	 phase	 code	 orchestrating	 action	 control	 that	will	 appear	 stochastic	when	 referenced	 to	463	
external	or	overt	events	such	as	stimuli	or	responses.	464	
Importantly,	we	have	shown	that	high	synchronicity	is	prominently	and	consistently	observed	in	the	465	
SMAs	but	significant	differences	were	also	observed	in	the	anterior	cingulate	cortex	and	the	temporal	466	
lobe	 of	 individual	 subjects	 (fig.	 2a).	 This	 result	 suggests	 that	 the	 SMAs	do	not	 operate	 in	 isolation	467	
during	 action	 switching,	 but	 form	 part	 of	 a	 broader	 functional	 network	 that	 involves	 sensory	 and	468	
mnemonic	processes.	Indeed	it	has	been	suggested	that	the	dorsal	part	of	the	ACC	could	play	a	major	469	
role	in	conflict	resolution	by	facilitating	the	selection	of	task	relevant	information	during	high	conflict	470	
decisions	 (31,55).	The	consistency	between	 the	activity	 in	 the	ACC	and	SMAs	we	observe	 (fig.	3-a)	471	
supports	this	hypothesis	and	the	existence	of	a	functional	connection	between	the	two	areas	(55,56).	472	
In	addition,	it	has	been	recently	shown	that	the	medial	frontal	cortex	can	flexibly	recruit	the	medial	473	
temporal	 lobe	 during	 decision-making	 by	means	 of	 phase	 synchrony	 in	 the	 theta	 band	 (34).	 This	474	
dynamic	 functional	 link	between	mnemonic	 and	motor	processes	 could	 explain	 the	higher	 ITPC	 in	475	
the	temporal	lobe	found	in	our	data	(fig.	3-A)	and	suggests	the	involvement	of	this	area	in	supporting	476	
the	mnemonic	aspects	 related	 to	 the	 task	 (e.g.	 to	 recall	what	action	 should	be	performed	when	an	477	
unexpected	cue	is	presented).		478	
More	generally,	phase	coding	has	been	acknowledged	in	the	human	hippocampus	and	temporal	lobe	479	
in	mnemonic	processes.	In	particular,	(57)	found	that	oscillations	in	the	theta	band	reset	their	cycle	480	
after	stimulus	presentation,	 leading	 to	strong	patterns	of	 inter-trial	phase	coherence	 that	correlate	481	
with	memory	 encoding.	 Similar	 phase	 resets	 in	 the	 theta	 range	 are	 found	 in	 frontal	 circuits	 with	482	
greater	synchrony	underlying	correct	 trials	 (58)	and	are	 thought	 to	mediate	attentional	 shifts.	The	483	
temporal	patterns	 found	 in	our	study	could,	 therefore,	be	 the	result	of	a	switch	cue	 induced	phase	484	
reset,	encoding	action	related	information,	where	the	magnitude	of	the	reset	and	its	entrainment	of	485	
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local	 activity	 drives	 faster	 motor	 responses.	 The	 cycle	 of	 theta	 oscillations	 could	 indeed	 carry	486	
patterns	of	information	by	modulating	the	amplitude	of	higher-frequencies	in	the	gamma	range	(24).	487	
Theta-gamma	code	is	believed	to	represent	a	fundamental	information-processing	mode	of	the	brain	488	
responsible	for	sequential	item	encoding	long-term	and	working	memory	within	memory	areas	(59).		489	
Recently,	 signatures	 of	 the	 theta-gamma	 code	 have	 been	 found	 in	 frontal	 cortical	 circuits	 during	490	
cognitive	 control	 tasks.	 (12)	 for	 example,	 found	 increased	 theta-gamma	 phase-amplitude	 coupling	491	
between	prefrontal	and	motor	regions	when	decisions	followed	higher	order	rules.	Few	reports	have	492	
linked	phase	coding	to	single	trial	behavioral	performance,	as	 in	(15)	where	the	strength	of	phase-493	
amplitude	 coupling	 in	 frontal	 and	 parietal	 regions	 correlated	 with	 reaction	 times	 during	 the	494	
allocation	of	visuospatial	attention.	Similarly,	we	report	distinct	theta-gamma	coupling	modulated	by	495	
behavioral	 performance	which	 suggests	 that	 theta	 range	 activity	 reflects	 a	 cognitive	 control	 signal	496	
that	entrains	the	gamma	frequency	activity	of	local	neuronal	populations	(35).	497	
Altogether	these	results	contribute	to	a	growing	body	of	literature	that	identifies	frontal	theta	phase	498	
coding	 as	 a	 mechanism	 promoting	 cognitive	 control	 of	 behavior	 (11).	 Low-frequency	 oscillations	499	
indeed	 could	 be	 a	 means	 of	 information	 exchange	 across	 distant	 populations	 within	 the	 same	500	
functional	network	(13,35).	 	For	example,	 (16)	 found	fronto-parietal	 theta	synchrony	 in	primate	 in	501	
primate	 to	 be	 predictive	 of	 the	 ability	 to	 correctly	 switch	 from	 automatic	 to	 deliberate	 control.	502	
However,	 differently	 from	our	 analysis,	 they	 did	 not	 find	 a	 relationship	with	 the	 response	 time.	 A	503	
similar	synchronization	pattern	was	found	between	the	medial	 frontal	cortex	and	the	basal	ganglia	504	
(60).	505	
Low-frequency	oscillatory	patterns	could	also	be	the	result	of	cortical	 travelling	waves	 in	 the	theta	506	
and	 alpha	bands	 that	 have	been	 identified	 as	 a	mechanism	 through	which	 information	propagates	507	
throughout	 cortical	 networks	 (61).	 Importantly,	 the	 spatial	 and	 temporal	 consistency	 of	 travelling	508	
waves	 in	 the	 prefrontal	 cortex	 has	 been	 shown	 to	 have	 a	 facilitatory	 effect	 on	 working	 memory	509	
retrieval,	with	greater	synchrony	predicting	faster	responses	(21).	Our	results	suggest	a	similar	effect	510	
within	supplementary-motor	circuits	with	phase	synchrony	having	a	facilitatory	effect	on	deliberate	511	
behavior.	Contrary	to	this	hypothesis,	it	has	been	suggested	that	medial-frontal	theta	oscillations	may	512	
also	reflect	inhibitory	control	by	mediating	action-slowing	during	situations	of	conflict	and	error	(9).	513	
In	 particular,	 human	EEG	 studies	 testing	 interference	 tasks	 reported	 increased	power	 in	 the	 theta	514	
range	 during	 high-conflict	 trials	 correlating	with	 an	 increase	 in	 response	 time,	 both	 prospectively	515	
and	 retrospectively	 (i.e.	post-error	 slowing)	 (8–10).	Even	 though	we	did	not	 explicitly	 test	 for	 this	516	
aspect	within	our	paradigm,	we	cannot	confirm	the	role	of	theta	as	a	signature	of	inhibition	for	three	517	
reasons.	Firstly,	our	analysis	did	not	reveal	any	distinctive	role	of	theta	oscillatory	power.	In	addition,	518	
theta	oscillatory	phase	alignment	was	found	to	reduce	rather	than	increasing	the	response	time	on	519	
deliberate	 switch	 trials.	 Finally,	 in	 our	 experiment,	 the	 detected	 pattern	 of	 synchronized	 activity	520	
emerged	 by	 aligning	 the	 LFP	 of	 each	 trial	 to	 the	 peak	 of	 an	 action	 related	 event.	 If	 theta	521	
synchronization	 represented	 an	 inhibitory	 signal,	 this	 event	 would	 not	 be	 strictly	 dependent	 on	522	
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action	execution	and	it	would	be	expected	to	rise	consistently	earlier	than	the	peak	of	the	MRCP	(62).	523	
This	discrepancy	might	again	be	due	 to	 the	differences	 in	 resolution	and	specificity	of	 iEEG	versus	524	
EEG	recordings.		525	
Overall,	our	results	suggest	that	within	frontal	cortical	networks,	theta	oscillations	encode	a	control	526	
signal	 that	 promotes	 the	 execution	 of	 deliberate	 actions.	 In	 particular,	we	propose	 that	 the	 power	527	
and	 phase	 of	 theta	 oscillations	 may	 reflect	 different	 functional	 roles,	 where	 the	 former	 locally	528	
encodes	 a	 general	 conflict	 signal	 and	 the	 latter	 serves	 as	 a	 long-range	 communication	 channel	529	
facilitating	 cognitive	 control	 (63).	 This	 proposal	 is	 in	 agreement	with	 recent	 accounts	 of	 cognitive	530	
control	that	essentially	see	action	selection	(i.e.	 facilitation)	and	inhibition	as	two	faces	of	the	same	531	
coin	and	 therefore	postulate	complementary	neural	mechanism	underlying	 these	 functions	(64,65)	532	
such	as	the	power	and	phase	of	theta	band	oscillations.	This	further	confirms	that	phase	coding	is	a	533	
fundamental	representational	format	deployed	by	the	brain.	534	
	535	
	536	
METHODS	537	
	538	
Data	collection	539	
	540	
Data	 were	 collected	 from	 three	 right-handed	 subjects	 with	 intractable	 epilepsy,	 temporarily	541	
implanted	with	intracranial	electrodes	(iEEG)	as	a	part	of	a	pre-operation	procedure	to	localize	the	542	
seizure	 focus.	 Electrode	 placement	was	 determined	 by	 the	 surgeons	 based	 on	 the	 clinical	 need	 of	543	
each	patient.	544	
Data	were	 recorded	 at	 the	 Epilepsy	Monitoring	Unit	 of	 the	Hospital	 del	Mar,	 Barcelona,	 Spain.	 All	545	
subjects	 provided	 the	 informed	 consent	 to	 participate	 in	 the	 study	 in	 accordance	with	 the	 ethical	546	
committee	 of	 the	 Pompeu	 Fabra	 University	 as	well	 as	 Hospital	 del	Mar.	 All	 iEEG	 recordings	were	547	
performed	using	a	standard	clinical	EEG	system	(XLTEK,	subsidiary	of	Natus	Medical)	with	a	500	Hz	548	
sampling	rate.	A	uni-	or	bilateral	implantation	was	performed	using	12	to	16	intracerebral	electrodes	549	
(Dixi	Médical,	Besançon,	France;	diameter:	0.8	mm;	5	to	15	contacts,	2	mm	long,	1.5	mm	apart)	that	550	
were	stereotactically	inserted	using	robotic	guidance	(ROSA,	Medtech	Surgical,	Inc).	551	
	552	
To	 identify	 the	 anatomical	 position	 of	 the	 electrode	 contacts	 we	 used	 the	 3D	 Slicer	 software(66).	553	
With	the	registration	tool,	we	coregistered	(rigid	body,	6	degrees	of	freedom)	the	post-implantation	554	
CT	scan	to	the	pre-implantation	MRI.	We	then	added	the	electrode	fiducials	on	a	glass	model	of	each	555	
patient's	brain	obtained	with	the	segmentation	tool	of	the	Freesurfer	bundle	(67).	To	obtain	a	single	556	
model	we	coregistered	all	studies	on	the	MNI152	template	provided	by	the	Freesurfer	bundle	using	a	557	
semi-automated	registration	process	of	3D	Slicer.	Briefly,	we	calculated	a	 linear	 transform	with	12	558	
degrees	 of	 freedom	 by	 superposing	 and	 morphing	 each	 patient's	 brain	 MRI	 onto	 the	 MNI	 brain	559	
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template,	then	we	used	the	transform	matrix	to	translate,	shift,	skew	and	resize	all	other	studies	(CT	560	
scan,	and	unaltered	MRI)	accordingly.	Since	the	3D	Slicer	interface	shows	the	MNI	coordinates	when	561	
hovering	 the	 mouse	 pointer,	 we	 could	 identify	 structures	 touched	 by	 electrode	 contacts	 both	 by	562	
visual	inspection	and	by	referring	to	the	aforementioned	coordinates.	563	
	564	
	565	
Behavioral	task	566	
	567	
The	 behavioral	 task	 was	 a	 variation	 of	 the	 standard	 Serial	 Reaction	 Time	 Task	 (SRTT),	 a	 type	 of	568	
paradigm	that	promotes	automation	of	sequential	motor	behavior	(17).	Differently	from	the	original	569	
task,	 however,	 here,	 in	 a	 small	 subset	 of	 trials,	 the	 sequential	 automated	 action	 was	 occasionally	570	
interrupted	 by	 a	 cue	 that	 required	 the	 subjects	 to	 switch	 to	 a	 different	 goal	 instructed	 at	 the	571	
beginning	of	the	experiment.	572	
The	task	comprised	a	maximum	of	500	experimental	 trials	preceded	by	60	trials	of	 training.	There	573	
were	two	types	of	trials:	automatic	and	switch.	Every	trial	started	with	a	waiting	period	of	700	ms	+-	574	
200	ms	during	which	the	screen	remained	blank.	After	this,	subjects	were	presented	with	a	virtual	4	575	
by	4	square	keyboard.	576	
During	 automatic	 trials,	 a	 sequence	 of	 five	 keys	 was	 highlighted	 sequentially	 (green	 cue)	 upon	577	
button-press.	Subjects	were	 instructed	to	press	the	cued	key	as	rapidly	as	possible	until	 the	end	of	578	
the	 sequence.	Each	 trial	 terminated	at	 the	end	of	 the	 sequence,	 and	 the	 following	one	 started.	The	579	
sequence	 was	 pseudorandomly	 generated	 at	 the	 beginning	 of	 the	 experiment	 to	 respect	 a	 spatial	580	
uniform	distribution	over	the	keyboard	and	it	was	maintained	constant	throughout	the	experiment.	581	
Switch	trials	started	with	the	same	highlighted	key	as	the	automatic	trials	(green	cue),	and	the	next	582	
step	in	the	sequence	was	highlighted	upon	a	button	press.	Differently	from	automatic	trials,	however,	583	
one	of	 the	 intermediate	 steps	of	 the	 sequence	 (i.e.	 step	2-4	 selected	at	 random)	highlighted	 in	 red	584	
(switch	 cue).	 Upon	 presentation	 of	 the	 switch	 cue,	 subjects	 were	 required	 to	 halt	 the	 ongoing	585	
sequence	 of	 movements	 as	 fast	 as	 possible	 and	 press	 an	 alternative,	 uncued	 key.	 Participants	586	
received	 all	 the	 instructions	 prior	 to	 the	 beginning	 of	 the	 experiment.	 Feedback	was	 provided	 for	587	
neither	 the	correct	nor	 incorrect	performance.	The	 training	phase	only	comprised	automatic	 trials,	588	
whereas	 the	 experimental	 phase	 included	 a	 combination	 of	 automatic	 and	 switch	 trials	 pseudo-589	
randomly	interspersed	every	7	+-2	trials.	590	
The	experimental	setup	ran	on	a	portable	capacitive	screen	fixed	to	the	hospital	overbed	table.	The	591	
tablet	 included	 a	 custom-made	 Java-based	 application	 running	 the	 experimental	 task	 and	 logged	592	
behavioral	 performance	 at	 50	 Hz	 whereas	 task	 synchronization	 with	 the	 neural	 recordings	 was	593	
achieved	 through	 serial	 communication	 with	 the	 recording	 system.	 Subjects	 sat	 in	 a	 comfortable	594	
position	 that	 avoided	 motor	 constraints	 to	 the	 arm.	 After	 receiving	 the	 instructions,	 subjects	595	
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underwent	 a	 short	 session	 that	 exemplified	 the	 task.	 After	 this,	 the	 experimental	 session	 started.	596	
Subjects	could	withdraw	at	any	point	during	the	task.		597	
	598	
	599	
Electrophysiology	pre-processing	600	
	601	
All	 electrophysiological	 data	 were	 preprocessed	 in	 Matlab	 (EEGLAB	 toolbox)	 and	 subsequently	602	
analyzed	in	Python	using	custom	scripts	based	on	the	Numpy	,	Scipy	,	SkLearn	and	MNE	libraries.		603	
Data	were	 initially	 filtered	using	 a	 two-way	 zero	phase-lag,	 FIR	bandpass	 filter	 (2-200	HZ)	 and	an	604	
additional	 notch	 filter	 (window	 =	 2Hz)	 at	 50Hz,	 100Hz	 and	 150Hz	 to	 remove	 AC	 current	605	
contamination	 and	 respective	 harmonics.	 Following	 this	 step,	 the	 signals	 were	 individually	 re-606	
referenced	to	the	average	potential	of	all	electrodes	for	each	subject.		607	
After	 filtering,	 artifacts	 derived	 from	 strong	 muscle	 activity	 or	 interference	 due	 to	 contact	 with	608	
electrical	 devices	 were	 identified	 by	 visual	 inspection	 and	 respective	 epochs	 rejected.	 To	 reduce	609	
remaining	 artifacts	 (i.e.	 cardiac	 artifacts,	 muscle	 twitches),	 we	 applied	 a	 combination	 of	 Principal	610	
Component	Analysis	(PCA)	and	independent	component	analysis	(ICA).	In	brief,	we	performed	PCA	611	
on	all	 channels	 and	 identified	 those	 components	which	accounted	 for	>	98%	of	 the	variance.	 Such	612	
components	 were	 subsequently	 decomposed	 into	 the	 same	 number	 of	 independent	 components	613	
through	ICA.	At	this	point,	each	component	time	series	was	visually	inspected	and	components	that	614	
reflected	signal	artifacts	were	rejected.	The	selection	of	artifact	components	was	based	on	a	careful	615	
inspection	of	their	power	spectrum,	correlation	with	other	physiological	measures	(i.e.	ECG),	and	the	616	
relation	to	the	temporal	structure	of	the	experiment.	The	rejection	was	performed	by	setting	the	ICA	617	
weight	associated	to	the	artifact	component	to	0.	The	signal	was	further	reconstructed	by	inverting	618	
the	 ICA	 operation	 and	 the	 subsequent	 PCA	 operation	 after	 having	 renormalized	 the	 remaining	619	
weights.	620	
	621	
	622	
Amplitude	analysis	623	
	624	
For	 each	 subject,	 the	 filtered	 and	 artifact-free	 signal	 was	 split	 into	 epochs	 according	 to	 the	 trial	625	
structure	 of	 the	 task.	 Each	 epoch	 was	 individually	 baseline	 corrected	 by	 subtracting	 the	 mean	626	
amplitude	value	 in	a	temporal	window	of	500	ms	preceding	the	beginning	of	each	trial.	To	 identify	627	
task-selective	 channels	 displaying	 changes	 in	 the	 amplitude	 of	 the	 signal	 (i.e.	 Movement	 Related	628	
Cortical	 Potentials	 (MRCP))	 we	 extracted	 a	 set	 of	 3	 descriptors	 (absolute	 mean,	 variance	 and	629	
integral)	 and	 assigned	 binary	 labels	 to	 each	 epoch	 according	 to	 the	 trial	 type	 (0=automatic,	630	
1=switch).	 Further,	 we	 applied	 a	 classification	method	 based	 on	 the	 Linear	 Discriminant	 Analysis	631	
(LDA)	(68).	100	cross-validation	steps	were	performed	to	assess	performance	with	Fishers	F1	score	632	
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on	class-balanced	bootstraps	of	data	 samples	 (80%	training,	20%	testing).	The	channels	providing	633	
the	highest	classification	accuracy	were	 finally	 selected	as	 the	 task-related	channels.	Note	 that	 this	634	
analysis	 was	 naive	 with	 regards	 to	 the	 electrode	 location	 or	 the	 polarity	 of	 the	 event.	 This	 step	635	
allowed	us	to	narrow	down	our	analysis	to	those	contact	points	that	displayed	a	task-related	change	636	
in	the	amplitude	(a	detectable	difference	between	conditions)	for	each	subject.	637	
Spectral	 analysis	 revealed	 the	presence	of	MRCPs	 in	 the	 low-frequency	 range	between	1	 and	2	Hz	638	
(not	 shown).	 Trial-by-trial	 MRCP	 peaks	 in	 the	 switch	 condition	 were	 therefore	 identified	 by	 low-639	
passing	the	signal	up	to	2	Hz	using	a	two-ways	zero-phase	FIR	filter	and	applying	a	peak	detection	640	
algorithm	that	estimated	 the	 time	of	 the	absolute	peak	amplitude	 in	 the	 interval	between	stimulus	641	
presentation	 (switch-cue)	 and	 the	 response.	 Single-trial	 stimulus-peak	 interval,	 as	 well	 as	 peak-642	
response	 interval,	were	 further	 calculated	 by	 subtracting	 the	 stimulus	 presentation	 time	 from	 the	643	
peak	time	and	the	peak	time	from	the	response	time	respectively.	644	
Finally,	 the	 statistical	 analysis	 of	 amplitude	 differences	was	 performed	 through	 a	 T-statistics	 one-645	
dimensional	non-parametric	cluster	based	permutation	test	(30)	as	implemented	in	the	MNE	toolbox	646	
with	cluster	significance	threshold	=	0.05	and	number	of	permutations	=	1000.		647	
	648	
	649	
Spectral	Analysis	650	
	651	
Spectral	analyses	were	performed	using	a	DPSS	multi-taper	method	(69,70)	as	 implemented	 in	 the	652	
MNE	 toolbox.	 Trials	 were	 aligned	 to	 the	 relative	MRCPs	 peak	 time,	 rather	 than	 to	 the	 behavioral	653	
response,	in	order	to	avoid	artifacts	due	to	the	averaging	temporally	variable	signal	(19).	Changes	in	654	
the	 power	 with	 respect	 to	 the	 baseline	 where	 computed	 by	 z-transforming	 the	 power	 spectrum.	655	
Statistical	differences	 in	 the	 time-frequency	power	between	conditions	were	 calculated	 through	T-656	
statistics	 two-dimensional	 cluster	based	permutation	 analysis	 as	 implemented	 in	 the	MNE	 toolbox	657	
setting	cluster	significance	threshold	=	0.05	and	number	of	permutations	=	1000	(30).	658	
	659	
	660	
Inter-trial	phase	coherence	(ITPC)	661	
	662	
We	 estimated	 inter-trial	 phase	 coherence	 to	 quantify	 the	 frequency-dependent	 synchronization	663	
across	MRCP	peak-aligned	trials	through	Phase	Locking	Value	(PLV)	method	(71).	ITCP	is	computed	664	
as:	665	
	666	

𝐼𝑇𝑃𝐶 =
1
𝑁

 | 𝑒!!!
!

!!!

|	
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	667	
where	N	is	the	number	of	trials	in	one	condition	and	𝜙	represents	the	phase	estimate	at	the	nth	trial.	668	
ITCP	 is	bounded	between	0	and	1,	where	1	 represents	 full	 phase	 synchronization.	 In	order	 to	 test	669	
differences	 in	 ITCP	between	conditions,	we	used	 the	cluster-based	permutations	method	proposed	670	
by	(30).	First,	we	applied	a	z-transform	to	the	difference	in	coherence	between	conditions	(ZITPC)	that	671	
rendered	the	distribution	approximately	normal	(72):	672	
	673	

𝑍!"#$ =
𝑡𝑎𝑛ℎ!! 𝐼𝑇𝑃𝐶! − 1 𝑑𝑓! − 2 − 𝑡𝑎𝑛ℎ!! 𝐼𝑇𝑃𝐶! − 1 𝑑𝑓! − 2

1 𝑑𝑓! − 2 + 1 𝑑𝑓! − 2
	

	674	
	675	
Where	 ITPCi	 and	 dfi	 represent	 the	 inter-trial	 phase	 coherence	 and	 degrees	 of	 freedom	 for	 the	 ith	676	
condition	respectively.	To	account	for	the	positive	bias	of	ITPC,	we	used	the	same	amount	of	trials	for	677	
the	two	conditions	compared.	Second,	we	selected	those	regions	where	z>2.58	corresponding	to	the	678	
99th	percentile	of	 the	distribution.	Finally,	we	assessed	the	significance	of	 the	measured	difference	679	
against	 the	 H0	 obtained	 by	 computing	 the	 coherence	 difference	 between	 surrogate	 groups	680	
constructed	by	permuting	1000	 times	 the	original	 labels	and	extracting	 the	resulting	Montecarlo	P	681	
value.	682	
	683	
	684	
Single	trial	ITPC	685	
	686	
ITPC	is	by	definition	an	average	measure	across	multiple	trials.	An	estimate	of	the	contribution	of	the	687	
single	 trial	 to	 the	 average	 ITPC	 (STPC),	 however,	 can	 be	 obtained	 by	 computing	 the	 difference	688	
between	the	ITPC	across	all	trials	and	the	ITPC	across	all	but	one	trial	following	the	method	proposed	689	
by	(23)	and	previously	applied	by	(22).	The	Single	Trial	ITPC	(STPCi)	for	the	ith	trial	is	computed	as	690	
follows:		691	
	692	

𝑆𝑇𝑃𝐶! = 𝑁 𝑍!"#$!"" − (𝑁 − 1)  𝑍!"#$!""!! 	

	693	
where	N	is	the	number	of	trials	and	𝑍!"#$!"" 	and	𝑍!"#$!""!!	are	the	z-transformed	ITPCs	for	all	trials	and	all	694	
but	the	ith	trial	respectively.	Finally,	we	computed	the	STPC	for	each	trial	and	time-frequency	bin.		695	
The	 correlation	 coefficient	 between	 STPC	 and	 single	 trial	 reaction	 times	was	 calculated	 using	 the	696	
Spearman’s	 R,	 as	 the	 STPC	 distribution	 was	 found	 to	 violate	 the	 normality	 assumption.	 This	697	
operation	was	repeated	in	order	to	cover	the	whole	time-frequency	range,	resulting	in	an	R	map	of	698	
size	time	-	frequency.	699	
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To	 further	 compute	 the	 statistical	 significance	 of	 the	 obtained	 R	 map	 and	 to	 correct	 for	 multiple	700	
comparisons	 we	 applied	 cluster	 permutation	 analysis	 for	 each	 subject.	 In	 brief,	 for	 each	 bin	 we	701	
randomly	shuffled	the	data	on	both	the	reaction	time	and	the	STPC	dimensions	and	recomputed	at	702	
each	 permutation	 the	 Spearman’s	 R	 for	 a	 total	 of	 1000	 permutations.	 For	 each	 bin	we	 obtained	 a	703	
distribution	of	R	under	 random	condition,	which	 served	 to	 set	 the	 threshold	 of	 significance	 to	 the	704	
99%	 percentile	 of	 the	 distribution,	 corresponding	 to	 a	 p	 value	 of	 0.01.	 Further,	 each	 randomly	705	
obtained	 R	map	was	 thresholded	 according	 to	 the	 corresponding	 significant	 value,	 so	 to	 obtain	 a	706	
number	 of	 time-frequency	 clusters	 where	 the	 correlation	 coefficient	 was	 found	 significant.	 To	707	
determine	 whether	 the	 thresholded	 time-frequency	 clusters	 obtained	 from	 the	 experimental	708	
condition	 could	be	 considered	 statistically	 significant	we	 compared	 their	magnitude	with	 the	ones	709	
resulted	 from	 the	permutation	 analysis.	 To	 this	 end,	 for	 each	 cluster	we	 integrated	 the	 absolute	R	710	
value	so	to	obtain	one	magnitude	value	per	cluster.	Further	we	computed	the	distribution	of	cluster	711	
magnitudes	under	random	condition	and	calculated	its	99%	percentile,	corresponding	to	a	p	value	of	712	
0.01.	Cluster	magnitudes	in	the	experimental	condition	that	exceeded	this	threshold	were	considered	713	
statistically	significant.	Whole	brain	maps	were	obtained	by	projecting	the	average	z	score	of	those	714	
individual	contact	points	showing	a	significant	cluster	in	the	time	window	between	-0.6	and	0.4	s	in	715	
the	MNI	space.		716	
	717	
Phase-amplitude	coupling	(PAC)	718	
	719	
PAC	is	a	measure	that	quantifies	the	modulatory	effect	of	low-frequency	phase	on	higher	frequency	720	
amplitude	 as	 a	 signature	 of	 the	 interaction	 between	 their	 underlying	 processes	 resonating	 at	721	
different	frequency	bands.	PAC	was	computed	through	the	Generalized	Linear	Models	(GLM)	method	722	
(37)	that	captures	the	proportion	of	variance	explained	by	an	underlying	linear	relationship	between	723	
analytical	 amplitude	 (i.e.	 envelope,	 modulated)	 and	 phase	 (modulating)	 as	 obtained	 by	 Hilbert	724	
transforming	the	signal,	using	the	PACpy	toolbox	(https://github.com/voytekresearch/pacpy).	725	
We	restricted	our	analysis	of	PAC	to	the	ROIs	emerged	from	cluster-based	permutation	analysis	and	726	
selected	as	modulatory	frequency	band	the	significant	frequency	domain	range	for	each	subject.	Our	727	
epoch	 selection	 was	 also	 restricted	 to	 the	 temporal	 window	 of	 approximately	 400	 ms	 where	 a	728	
significant	 increase	 in	phase	 alignment	was	detected.	 For	 each	 subject,	we	obtained	one	 surrogate	729	
signal	for	fast	and	slow	trials	by	concatenating	the	respective	single	trial	windows,	so	to	achieve	the	730	
temporal	 resolution	necessary	 for	 this	 type	of	analysis.	Further,	we	computed	PAC	values	between	731	
the	selected	modulatory	phase	and	the	amplitude	of	higher	frequencies	(10-100	Hz	in	steps	of	2	Hz,	732	
modulated	frequency),	and	obtained	the	difference	between	the	two	conditions.		733	
Statistical	 significance	between	 the	 two	conditions	was	 tested	 through	z-statistics	against	 the	null-734	
hypothesis	of	samples	from	both	conditions	belonging	to	the	same	distribution.	This	was	obtained	by	735	
randomly	 permuting	 the	 conditions'	 labels	 and	 calculating	 the	 95	 percentile	 of	 the	maximum	PAC	736	
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value	 achieved	 under	 the	 assumption	 that	 the	 two	 conditions	 were	 sampled	 from	 the	 same	737	
distribution	(38).	Note	that	this	approach	could	introduce	spurious	oscillations	as	an	artifact	due	to	738	
the	concatenation	of	several	signals,	where	the	frequency	of	the	oscillation	is	directly	proportional	to	739	
the	 length	 of	 the	 segments	 concatenated.	 We	 control	 for	 this	 possibility	 by	 choosing	 temporal	740	
windows	that	may	introduce	artifacts	at	lower	frequencies	than	those	considered	in	this	analysis.	In	741	
addition,	the	same	concatenation	is	applied	equally	for	both	conditions	and	therefore	it	is	unlikely	to	742	
affect	the	comparison.	743	
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