Abstract
Blood-brain barrier (BBB) integrity is critical for proper function of the central nervous system (CNS). Here, we showed that the endothelial Netrin1 receptor Unc5B controls BBB integrity by maintaining Wnt/β–catenin signaling. Inducible endothelial-specific deletion of Unc5B in adult mice led to region and size-selective BBB opening. Loss of Unc5B decreased BBB Wnt/β–catenin signaling, and β–catenin overexpression rescued Unc5B mutant BBB defects. Mechanistically, Netrin1 enhanced Unc5B interaction with the Wnt co-receptor LRP6, induced its phosphorylation and activated Wnt/β–catenin downstream signaling. Intravenous delivery of antibodies blocking Netrin1 binding to Unc5B caused a transient disruption of Wnt signaling and BBB breakdown, followed by neurovascular barrier resealing. These data identify Netrin-Unc5B signaling as a novel regulator of BBB integrity with potential therapeutic utility for CNS diseases.
Competing Interest Statement
A.E., K.B., L.G. and L.P-F. are inventors on two patent application submitted by Yale University that covers the use and generation process of Unc5B blocking antibodies, and their application.