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 2

ABSTRACT.  27 

Background: Gene regulation is critical for proper cellular function. Next-generation 28 

sequencing technology has revealed the presence of regulatory networks that regulate gene 29 

expression and essential cellular functions. Studies investigating the epigenome have begun to 30 

uncover the complex mechanisms regulating transcription. Assay for transposase-accessible 31 

chromatin by sequencing (ATAC-seq) is quickly becoming the assay of choice for many 32 

epigenomic investigations. However, whether intervention-mediated changes in accessible 33 

chromatin determined by ATAC-seq can be harnessed to generate intervention-inducible 34 

reporter constructs has not been systematically assayed.  35 

Results: We used the insulin signaling pathway as a model to investigate chromatin regions 36 

and gene expression changes using ATAC- and RNA-seq in insulin-treated Drosophila S2 37 

cells. We found correlations between ATAC- and RNA-seq data, especially when stratifying 38 

differentially-accessible chromatin regions by annotated feature type. In particular, our data 39 

demonstrated a strong correlation between chromatin regions annotated to distal promoters (1-40 

2 kb from the transcription start site) and downstream gene expression. We cloned candidate 41 

distal promoter regions upstream of luciferase and demonstrate insulin-inducibility of several of 42 

these reporters.  43 

Conclusions: Insulin-induced chromatin accessibility determined by ATAC-seq reveals 44 

enhancer regions that drive insulin-inducible reporter gene expression. 45 

 46 
Keywords: Drosophila melanogaster, S2 cells, insulin, RNA-seq, ATAC-seq 47 
 48 

Background 49 

Gene regulation is essential to the development and maintenance of life. Gene regulatory 50 

networks describe the interplay between regulatory regions, such as promoters and 51 

enhancers, and expression of their target genes [1]. Deciphering how specific regulatory 52 
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regions control gene transcription can provide insights into biological processes such as cell 53 

type differentiation [2, 3], responses to addictive substances [4], and other cell functions.  54 

The advent of new sequencing techniques has led to a greater understanding of how genes 55 

are differentially expressed. RNA-seq has provided a broader and more detailed picture of 56 

complex transcriptional states and responses [5, 6]. While genome-wide RNA-seq experiments 57 

can yield information on the many genes that are differentially transcribed in different 58 

conditions, these rich datasets reveal little about the regulatory mechanisms involved in 59 

directing these expression changes. 60 

Epigenomic assays such as chromatin immunoprecipitation (ChIP-seq), DNAse-seq, and 61 

assay for transposase-accessible chromatin by sequencing (ATAC-seq) can interrogate 62 

chromatin accessibility and identify transcription factor binding sites [7–9]. The relationship 63 

between chromatin accessibility and transcription is complicated. Previous studies show little 64 

overlap between corresponding differences in chromatin and transcription [10–12], which 65 

highlights the complex interactions between the chromatin state and downstream gene 66 

expression. Furthermore, few studies have analyzed if changes in open chromatin induced by 67 

an intervention occur in transcriptional enhancers that can be coupled to heterologous minimal 68 

promoters to engineer intervention-inducible reporter constructs.  69 

Here, we sought to characterize the relationship between ATAC-seq and RNA-seq data in 70 

more detail, with particular focus on whether intervention-induced changes in chromatin 71 

accessibility can accurately predict gene expression. We used the insulin signaling pathway as 72 

a model because the insulin receptor activates multiple downstream signaling pathways [13–73 

15] resulting in widespread changes to the chromatin state [16] and gene expression [17]. Our 74 

data from Drosophila S2 cells show that ATAC-seq and RNA-seq datasets are correlated, 75 

mainly driven by the ATAC-seq peaks/reads located in gene promoter regions. We also show 76 

that DNA regions with increased accessibility after insulin treatment can be harnessed to 77 

generate insulin-inducible reporter constructs. 78 
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Results 79 

ATAC-seq and RNA-seq changes in insulin-exposed S2 cells 80 

To investigate the concordance in changes in gene expression and chromatin accessibility, we 81 

exposed serum-starved Drosophila S2 cells to insulin or vehicle and harvested the cells 4 82 

hours later for ATAC-seq and RNA-seq analysis. We determined genome-wide changes in 83 

open chromatin by ATAC-seq and identified 9726 high-confidence peaks (i.e., regions of 84 

accessible DNA mapped to the nuclear genome) in the insulin-exposed S2 cells, and 9560 in 85 

the vehicle-exposed S2 cells. Merging the control and experimental peak sets resulted in 86 

10269 peaks. The largest variance in this dataset (6 samples; 2 treatments x 3 replicates) 87 

arose from insulin treatment, as shown by principal component analysis (PCA; Fig. 1A). In 88 

parallel, we identified 10287 transcripts in vehicle- and insulin-exposed S2 cells using RNA-89 

seq. PCA indicated that the largest variance between the 6 samples resulted from insulin 90 

treatment (Fig. 1B). Because ATAC-seq provides a view of chromatin accessibility along all 91 

features of genes, we evaluated the feature distribution of both the treatment and the control 92 

ATAC-seq data (Fig. 1C). We observed the same genome features in the control and treated 93 

data, but the relative proportion of features was significantly different (χ2 = 19.6, df = 10, p = 94 

0.03). This difference largely resulted from a change in the proportion of peaks annotated to 95 

distal (1-2 kb from the TSS) and proximal (≤1 kb) promoters, which increased from 8% to 9% 96 

and 58% to 60%, respectively. These results suggest that insulin signaling recruits additional 97 

regulatory features by changing chromatin accessibility.  98 

 99 

ATAC-seq and RNA-seq reads show weak correlation driven by ATAC-seq peaks in 100 

proximal promoters  101 

We next asked whether RNA transcript levels were correlated with ATAC-seq reads and 102 

whether the feature annotation of those ATAC-seq peaks, i.e. where in a gene they were 103 

located, mattered for any levels of correlation. 8621 out of 10269 ATAC-seq peaks were 104 
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mapped to a gene, and we plotted these ATAC-seq peak reads against the RNA-seq reads for 105 

each peak (thus duplicating many RNA-seq data points, since each gene has a median 106 

number of 2 (Quartile1-3: 2-4) ATAC-seq peaks mapped to it. Overall, RNA-seq and ATAC-107 

seq peak reads showed a highly significant (p = 2.2e-16), but weak correlation (Pearson 108 

correlation coefficient R = 0.1; Fig 2A). When we stratified this analysis by the 11 ATAC-seq 109 

peak gene features, only the peak reads in the ≤1 kb promoter class correlated with RNA-seq 110 

reads (R = 0.2, p = 2.2e-16; Fig. 2B). This would suggest that more highly transcribed genes 111 

require a greater extent of DNA accessibility in their promoters, which might be expected for 112 

efficient transcriptional initiation.    113 

 114 

Differential gene expression and DNA accessibility correlate for multiple ATAC-seq 115 

peak feature annotations 116 

Next, we determined the insulin-induced changes in DNA accessibility and RNA expression. In 117 

the ATAC-seq peak set, 773 peaks were significantly differentially accessible (false discovery 118 

rate, FDR < 0.1) between the insulin-exposed and the control samples. 364 of the peaks were 119 

more accessible upon insulin exposure, while 409 peaks were less accessible after exposure 120 

to insulin (Fig. 3A). The feature distribution of those differential peaks was very similar to the 121 

feature distribution in the whole ATAC-seq peak dataset (χ2 = 6.13, df = 10, p = 0.80; Fig. 3B), 122 

though we did not detect distal downstream elements (1-2 and 2-3 kb downstream) in the 123 

differentially accessible peaks. We also examined the significant gene expression changes 124 

from the RNA-seq dataset. In this dataset, 3616 genes were differentially expressed (FDR < 125 

0.05) between the insulin-exposed and control samples. 2056 genes were upregulated after 126 

insulin exposure, while 1560 were downregulated (Fig. 3C).  127 

Then, we investigated the correlation between all ATAC-seq and RNA-seq log2 fold changes 128 

after insulin treatment. The overall correlation between the two datasets was significant, but 129 

weak (R = 0.05, p = 1.8e-06; Fig. 4A). Performing the same analysis after stratifying by feature 130 
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type showed correlations between the differential RNA-seq transcripts and the differential 131 

ATAC-seq features in addition to ≤1kb promoters (R = 0.096,  p = 5.7e-13), including 132 

significant (though weak) correlations with ATAC-seq peaks in different promoter types (2-3 kb 133 

from the TSS: R = 0.15, p = 5.4e-4 and 1-2 kb from the TSS: R = 0.13, p = 9.0e-05). 134 

Furthermore, there were significant anticorrelations in ATAC-seq peaks for downstream 135 

elements (1-2 kb: R = -0.67, p = 0.035) and distal intergenic regions (R = -0.14, p = 0.0011; 136 

Fig. 4B). When we restricted the analysis to only the significant changes (FDR < 0.1) in ATAC-137 

seq peaks, the overall correlation for all features increased 8-fold (R = 0.42, p = 4.2e-14; Fig. 138 

5A), as did the correlations of several feature types (Fig. 5B). In particular, the correlation with 139 

promoters 1-2 kb from the TSS (R = 0.65, p = 1.3e-4) increased by approximately 5-fold. 140 

Conversely, the anticorrelations with peaks in downstream and distal intergenic regions 141 

disappeared. Together, these results suggest that DNA accessibility in distal promoters is 142 

involved in mediating changes in transcription.  143 

 144 

Functional testing of significant differentially accessible ATAC-seq peaks 145 

We next wanted to test whether any of the DNA regions from significantly more accessible 146 

ATAC-seq peaks could drive insulin-induced expression. We cloned a number of ATAC-seq 147 

peaks in front of a luciferase gene with a minimal promoter and transfected S2 cells with these 148 

vectors for 48 h. The cells were serum-starved for 18 h and then treated with 10 μM insulin or 149 

vehicle for 4 h. We selected three groups of four ATAC-seq peaks each: first, we chose the 150 

four peaks with the largest log2 fold change, indicating increased accessibility after insulin 151 

treatment (Additional File 1). Of the four tested plasmids, one showed significantly increased 152 

luciferase activity after insulin treatment: 3L114 (p = 0.016; Fig. 6A).  Because ATAC-seq 153 

peaks in distal promoters were the most strongly correlated with differential gene expression in 154 

our above analysis (Fig. 5B), we next chose four peaks with the highest log2 fold change from 155 

distal promoter regions that were significantly more accessible after insulin. Of the tested 156 
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peaks, 2 produced significantly increased luciferase activity after insulin treatment: 2L225 (p = 157 

0.0033) and 2R111 (p = 0.025; Fig. 6B). Lastly, because introns often contain regulatory 158 

regions that contain instructive DNA for expression [18], we chose the four intron regions with 159 

the largest log2 fold changes for luciferase assays. One ATAC-seq peak resulted in 160 

significantly increased luciferase activity: X216 (p = 0.05) (Fig. 6C). These data show that DNA 161 

regions with increased accessibility upon insulin treatment can indeed drive insulin-induced 162 

increases in expression when placed in front of a heterologous promoter.  163 

 164 

Limited predictability of the levels of expression and inducibility    165 

Out of the twelve ATAC-seq peaks we cloned and tested, all led to significant – though 166 

variable – levels of luciferase expression, while only four caused significant insulin-inducibility. 167 

To determine whether the luciferase expression levels and inducibility by insulin was 168 

predictable from our ATAC-seq and RNA-seq datasets, we analyzed the correlation between 169 

the –omics data and luciferase activity. First, we asked if expression levels of luciferase were 170 

correlated with ATAC-seq peak reads, but found no correlation (Fig. 7A), even when we 171 

stratified the data according to distal promoter- (Fig. 7B) or intron-derived ATAC-seq peaks 172 

(Fig. 7C). Similarly, RNA-seq counts did not correlate with S2 luciferase luminescence (Fig. 173 

7D-F). Next, we asked whether the log2 fold changes in the –omics data sets correlated with 174 

the relative inducibility of luciferase by insulin (measured as insulin/vehicle ratios). Again, we 175 

failed to observe significant correlations of S2 inducibility with log2 fold changes in ATAC-seq 176 

(Fig. 8A) and RNA-seq (Fig. 8B) reads, even when we analyzed only the cloned peaks that led 177 

to significant insulin-induced changes (Fig. 8C,D). 178 

 179 

DISCUSSION 180 

Next-generation sequencing has enabled an unprecedented amount of genome-wide  181 

information on RNA transcript levels and DNA accessibility. ATAC-seq data provides 182 
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accessibility information from distinct features/regions of a gene, thereby suggesting gene 183 

regions that act as functional enhancers (or suppressors) of gene expression. Here, we 184 

investigated the correlation between genome-wide changes in DNA accessibility and transcript 185 

levels and found significant correlations that were mostly driven by proximal and distal 186 

promoter regions. Cloning some of these DNA regions with increased accessibility upon insulin 187 

stimulation showed that some of them indeed act as transcriptional enhancers, demonstrating 188 

that genome-wide ATAC-seq can be harnessed to clone functionally-active insulin-response 189 

elements.          190 

To investigate the functional relevance of differential DNA accessibility, we first determined 191 

genome-wide ATAC-seq reads in Drosophila S2 cells from serum-starved and insulin-exposed 192 

conditions (Fig. 1). The insulin receptor activates several downstream pathways, including the 193 

PI3K [19] and Ras/ERK [20] pathways, which have various effects on the chromatin state [21, 194 

22] and gene expression [23] during several cellular processes including cell growth, protein 195 

synthesis, and gluconeogenesis [24]. Thus, activating insulin signaling provided a way to 196 

identify broad chromatin and gene expression changes, which allowed us to integrate these 197 

physiological changes and determine whether chromatin regions that become more open after 198 

insulin signaling could predict gene regulation. We found significant overall correlations 199 

between ATAC-seq reads and transcript levels, driven by ATAC-seq peaks in proximal 200 

promoters (Fig.  2). In ATAC-seq, genome regions with increased accessibility result in a 201 

higher mapped read count [9]. Because promoter regions are critical for the initiation of 202 

transcription, these genomic regions are generally accessible for actively-transcribed genes 203 

[25]. Thus, proximal promoter regions largely drive the overall correlation between ATAC-seq 204 

and RNA-seq counts that we observed. These data indicate that normalized counts can 205 

identify correlations between chromatin and gene expression, but these correlations are likely 206 

limited to promoter regions for actively transcribed genes. 207 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.05.06.443010doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443010
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

When we analyzed correlations between all insulin-induced log2 fold changes in ATAC-seq 208 

peak and transcript reads (Fig. 3), changes in open chromatin in distal (1-2 and 2-3 kb away 209 

from the TSS) promoter regions also correlated significantly with changes in transcript levels 210 

(Fig. 4). This suggests that the application of insulin recruits additional distal promoters that 211 

participate in promoting transcription. Conversely, other distal promoter regions become less 212 

accessible, and the linked genes are less transcribed with insulin. These distal and proximal 213 

promoter correlations with transcript levels became even stronger when we only analyzed 214 

ATAC-seq peaks that changed significantly with insulin (Fig. 5). These results suggest that 215 

perturbations that cause differential gene expression occur via recruitment of additional 216 

regulatory promoter features. The correlations between differential transcript levels and 217 

differentially accessible promoter regions were all positive, suggesting that these regions play 218 

a role in the downstream differential gene expression. However, these data do not exclude the 219 

possibility that in some genes, insulin might lead to increased accessibility at promoters which 220 

are then bound by transcriptional repressors, leading to decreased transcription. Indeed, 221 

numerous ATAC-seq peak/transcript data points are in quadrants of anticorrelation (Fig. 5), 222 

and the insulin-induced transcription factor FOXO is known to have transcriptional repressor 223 

activity [26, 27]. Future experiments focusing on such anticorrelated data pairs/genes might 224 

reveal DNA regions that lead to insulin-induced transcriptional repression. 225 

Our main goal was to determine whether we could harness our ATAC-seq data to generate 226 

insulin-inducible reporter plasmids. We selected ATAC-seq peaks based on our correlation 227 

analysis of differentially-accessible chromatin regions and differential transcript expression. We 228 

particularly focused on more distal promoters (1-2 kb from the TSS) because the correlation 229 

increase was the largest for this feature. Distal promoter regions may include regulatory 230 

regions such as enhancers or repressors that are critically involved in regulating gene 231 

expression [28]. Our results suggested that these regions can drive differential gene 232 

expression (Fig. 6). We also selected peaks with relatively large log2 fold changes in intron 233 
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peaks. In Drosophila, intronic regions often contain regulatory sequences [18], thus altering 234 

chromatin accessibility in genome regions associated with introns is one mechanism to control 235 

gene expression [29]. Finally, we selected peaks with the largest log2 fold changes, 236 

irrespective of feature type. In each of these three categories we found peaks that led to 237 

significant insulin-induced increases in reporter gene expression. However, none of the three 238 

categories seemed obviously more promising for predicting insulin-inducibility. Furthermore, 239 

neither read counts nor log2 fold changes in ATAC-seq or RNA-seq were predictive of insulin-240 

inducibility (Figs. 7, 8). This suggests that while ATAC-seq data can be successfully harnessed 241 

to generate insulin-inducible reporter constructs, their efficacy is not obviously predictable and 242 

will require larger datasets to understand which ATAC-seq peaks can be utilized to generate 243 

functionally relevant transgenes. Indeed, previous studies investigating putative enhancer 244 

elements identified candidates based on overlap with known histone marks (H3K4me1, 245 

H3K27ac, etc. identified by ChIP-seq), known enhancers associated with annotated genes of 246 

interest [30–32], or used massively parallel reporter assays [33]. In contrast, our goal was to 247 

determine whether ATAC-seq alone could predict downstream transcription using on feature-248 

based or fold change-based selection. Importantly, these previous studies showed similar 249 

success rates to ours. Peaks with increased chromatin accessibility after insulin treatment that 250 

did not result in insulin-induced luciferase activity may represent regulatory elements that are 251 

involved in setting up poised transcription or may contain repressor regions that pause 252 

transcription. In contrast, peaks causing increased luciferase activity may represent sequences 253 

that are sufficient to initiate transcription or activate promoter clearance [34–36]. Additional 254 

studies using ChIP-seq to identify the histone marks at our tested peak sequences will be 255 

required to determine whether they are enhancers involved in poised versus active 256 

transcription. 257 

 258 

CONCLUSIONS 259 
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Our investigation shows that ATAC-seq data can be harnessed to isolate regulatory DNA 260 

regions that are both expressed and inducible.  However, because chromatin peaks may be 261 

one of several regulatory sequences [18, 28], these chromatin regions cannot be easily 262 

predicted by analysis of these genome-wide –omics data alone and must be functionally 263 

validated. Still, our data show the feasibility of using ATAC-seq to generate active transgenes 264 

that are inducible by an intervention or by a diseased state to drive a reporter, or even a 265 

disease-antidote gene. 266 

 267 

METHODS 268 

Cell culture 269 

Drosophila S2 cells (Drosophila Genomics Resource Center, Bloomington, IN, USA) were 270 

cultured in Schneider's Drosophila Medium (ThermoFisher, Waltham, MA, USA) supplemented 271 

with 10% fetal bovine serum (ThermoFisher) at 25 °C. Cells were cultured in Schneider's 272 

medium without FBS for 24 h before experiments. Then, cells were incubated with 10 μM 273 

insulin (Sigma Aldrich, St. Louis, MO, USA) or vehicle (25 mM HEPES, pH 8.2) for 4 h at 25 274 

°C. 275 

 276 

ATAC-seq 277 

S2 cells were incubated with 3 μM DAPI for 10 min. 60,000 cells per sample were sorted using 278 

a BD FACS Aria flow cytometer (BD Biosciences, San Jose, CA, USA). DAPI-negative cells 279 

were collected into ice-cold PBS (pH 7.4). After sorting, the samples were washed once with 280 

ice-cold PBS and centrifuged at 500 g for 5 min at 4 °C. ATAC-seq libraries were prepared as 281 

previously described [37]. Briefly, 50 μL lysis buffer (10 mM Tris-HCl 7.4, 10 mM NaCl, 3 mM 282 

MgCl2, 0.1% NP40) was added to each sample, and the sample was centrifuged at 500 g for 283 

10 min at 4 °C. The supernatant was removed, and the nuclei pellet was tagmented using a 284 

Nextera DNA Library Prep kit (Illumina, Inc., San Diego, CA, USA) as previously described. 285 
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Then, the tagmented DNA was purified using a Qiagen MinElute PCR Purification Kit (Qiagen, 286 

Germantown, MD, USA). The purified DNA was PCR amplified for 5 cycles using a Nextera 287 

DNA Library Index kit (Illumina) and Phusion HF Master Mix (New England BioLabs, Inc., 288 

Ipswich, MA, USA) with the following protocol: 72 °C for 5 min, 98 °C for 30 sec, and 5 cycles 289 

of 98 °C for 10 sec, 63 °C for 30 sec, and 72 °C for 1 min. A 5-μL aliquot of the pre-amplified 290 

reaction was analyzed by qPCR using SsoFast EvaGreen Supermix (Bio-Rad Life Science, 291 

Inc., Hercules, CA, USA) and an Applied Biosystems 7900HT qPCR instrument 292 

(ThermoFisher) using the following protocol: 1 cycle of 98 °C for 30 sec and 40 cycles of 98 °C 293 

for 10 sec, 63 °C for 30 sec, and 72 °C for 1 min. Then, the pre-amplified PCR mixture was 294 

amplified for another 10 cycles (corresponding to 1/3 maximum fluorescence from the qPCR 295 

assay) using the same thermocycling parameters. After amplification, the libraries were 296 

purified using AMPure XP beads (Beckman Coulter Life Sciences, Indianapolis, IN, USA). 297 

Libraries were sequenced on an Illumina HiSeq 2500 instrument using 50-bp single-end reads. 298 

 299 

RNA-seq 300 

Total RNA was isolated from S2 cells using a PureLink RNA purification kit (ThermoFisher). 301 

Then, rRNA was removed from each sample with a Ribo-Zero rRNA Removal kit (Illumina). 302 

RNA libraries were constructed using a NEBNext Ultra II RNA Library Kit for Illumina and 303 

NEBNext Multiplex Oligos for Illumina, Primer Set 1 (New England Biolabs). Libraries were 304 

sequenced on an Illumina HiSeq 2500 instrument using 50-bp single-end reads. 305 

 306 

ATAC-seq data analysis 307 

ATAC-seq Fastq files were aligned to the dm6 genome assembly 308 

(http://ftp.flybase.net/releases/FB2018_06/dmel_r6.25/fasta/) using Novocraft Novoalign with 309 

the following settings: --NonC -o SAM -r Random. SAM files were processed to BAM format, 310 

sorted, and indexed using Samtools [38]. BAM files were reads per million-normalized and 311 
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converted to bigWig files using the Bio-ToolBox ‘bam2wig.pl’ program 312 

(https://github.com/tjparnell/biotoolbox/blob/master/scripts/bam2wig.pl). Peak calling was 313 

performed on the bigWig files by utilizing the Multi-Replicate Macs ChIPseq pipeline 314 

(https://github.com/HuntsmanCancerInstitute/MultiRepMacsChIPseq) with the following 315 

settings: --dupfrac 0.2 --size 200 --cutoff 2 --peaksize 300 --peakgap 200. Called peaks were 316 

annotated in R with the ChIPseeker package [39]. Count data for called peaks was collected 317 

from processed BAM files using the Bio-ToolBox ‘get_datasets.pl’ program 318 

(https://metacpan.org/pod/distribution/Bio-ToolBox/scripts/get_datasets.pl). The count data 319 

was then used to identify differentially accessible regions with the R package DEseq2 [40]. 320 

 321 

RNA-seq data analysis 322 

RNA-seq fastq files were aligned to the BDGP6 genome assembly using the STAR aligner [41] 323 

with the following settings: --twopassMode Basic --outSAMtype BAM SortedByCoordinate --324 

outWigType bedGraph --outWigStrand Unstranded --clip3pAdapterseq 325 

AGATCGGAAGAGCACACGTCTGAACTCCAGTCA. The resulting sorted BAM files were 326 

indexed using Samtools (Li et al., 2009). FeatureCounts was used to collect count data for 327 

BDGP6 genes using the following command: -T 16 -s 2 [42]. Count data for all replicates and 328 

experimental conditions were combined into a single count matrix in R. The count matrix was 329 

subsequently used to identify differentially expressed genes with the R package DEseq2 [40].  330 

 331 

Integration analysis of ATAC-Seq and RNA-Seq datasets 332 

The ATAC-seq peak data were compared to the RNA-seq data to determine how chromatin 333 

accessibility influenced gene expression. The raw RNA-seq and ATAC-seq counts for each 334 

sample were compared using the gene annotation of the ATAC-seq peak and the assigned 335 

RNA-seq gene. The raw count value was averaged by experimental condition and genomic 336 

assay type. Then, the RNA-seq and ATAC-seq datasets were compared using the annotated 337 
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genes and the log2 fold change values for each peak/gene in the respective genomic assay. 338 

ATAC-seq peaks with an FDR < 0.1 and genes detected by RNA-seq with an FDR < 0.05 were 339 

used to compare the differentially accessible peaks and differentially expressed genes. 340 

Pearson correlation analysis was performed between the log2 fold change values of the 341 

genomic assays and between the average raw count values of the genomic assays (controlling 342 

for the experimental condition). 343 

 344 

Plasmid construction and transformation 345 

A multiple cloning site (MCS) was cloned into the backbone pDEST VanGlow-GL vector [43]. 346 

Then, we removed the mini-white+ cassette using the restriction enzymes AflII (3L137, 3R131, 347 

X216, 3L114, 2L796, 3L981, 2L220, 2R177, 2L225, and FOXO TFBS) or SmaI and PmlI 348 

(X950, 2L846, and 2R111). The digested plasmids were incubated with T4 ligase for 15 min at 349 

room temperature and purified by 1% gel electrophoresis. The plasmids were linearized using 350 

AvrII and PacI (sites contained in MCS; all enzymes from New England BioLabs).  351 

Genomic DNA was purified from S2 cells using a Monarch Genomic DNA Purification kit. 352 

Candidate chromatin peak sequences and 100-200 bp flanking sequences [32] (Additional File 353 

1) were amplified using Phusion High-Fidelity PCR MasterMix (primer sequences are listed in 354 

Additional File 2) and a C1000 thermocycler (Bio-Rad Life Science). The peak sequences 355 

were amplified for 98 °C for 5 min, followed by 35 cycles of 98 °C for 30 sec, 52-68 °C gradient 356 

for 30 sec, 72 °C for 4 min, and a final incubation for 5 min at 72 °C. The amplified fragments 357 

were purified on 1% agarose gels and extracted using a Monarch Gel Purification kit and 358 

cloned into linearized VanGlo-GL-MCS plasmid using NEBuilder HiFi Assembly master mix. 359 

The assembled plasmids were transformed into DH5α cells and grown overnight. Clones were 360 

screened by restriction digestion using EcoRI-HF. Sequences were confirmed by Sanger 361 

sequencing at GeneWiz (South Plainfield, NJ, USA). Confirmed plasmids were transformed 362 
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into S2 cells using TransIT Insect Transfection Reagent (Mirus Bio, Madison, WI, USA). 363 

Transformed cells were grown for 48 h before use in experiments. 364 

 365 

Luciferase assays 366 

Transformed S2 cells were serum starved for 24 h and treated with insulin or vehicle as 367 

described above (Cell culture). Then, luciferase activity was assayed using a Luciferase 368 

Reporter Substrate Assay Kit-Firefly (Abcam, Cambridge, MA, USA). Luminescence was 369 

detected with a BioTek Synergy HTX microplate reader (BioTek Instruments, Winooski, VT, 370 

USA) and Gen5 2.01.17 software (BioTek Instruments). 371 

 372 

Statistical analysis 373 

Statistical differences in relative luminescence data were analyzed by Student's t-tests with at 374 

least three biological replicates using GraphPad Prism 9.0 software. Differences between 375 

genome feature proportions were analyzed using χ2 tests included in R [44] Correlations were 376 

analyzed using Pearson correlation tests included in R. Heatmaps were generated using the R 377 

package ComplexHeatmap [45]. PCA plots were created using the R package pcaExplorer 378 

[46]. Correlation plots were produced with the R package ggpubr 379 

(https://github.com/kassambara/ggpubr). 380 

 381 
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 528 

 529 
FIGURE CAPTIONS 530 

Figure 1. Insulin induces widespread alterations in chromatin accessibility and 531 

transcription. Serum-starved S2 cells were treated with vehicle or insulin for 4 h, and nucleic 532 

acids were isolated and analyzed. A) Principal component analysis of chromatin accessibility 533 

determined by ATAC-seq. B) Principal component analysis of transcript expression by RNA-534 

seq.  C) Proportions of each genomic feature type in all annotated chromatin peaks analyzed 535 

by ATAC-seq in S2 cells after treatment with insulin or vehicle. 536 

 537 
Figure 2. Chromatin peaks annotated to proximal promoters drive the correlation 538 

between normalized ATAC-seq and RNA counts. A) Transcripts identified by RNA-seq were 539 

overlapped with chromatin peaks annotated to the same genes. The normalized ATAC- and 540 

RNA-seq counts were log scaled and analyzed using Pearson correlation analysis. B) 541 

Overlapping ATAC- and RNA-seq counts from (A) were stratified by genomic feature. Pearson 542 

correlation analysis was used to identify feature-specific correlations between ATAC- and 543 
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RNA-seq counts. Here, and in following figures, ns = not significant, *p < 0.05; **p < 0.01; ***p 544 

< 0.001. 545 

 546 

Figure 3. Insulin induces differential chromatin accessibility and gene expression in S2 547 

cells. A) Heatmap of differential chromatin accessibility in significantly different chromatin 548 

peaks, stratified by feature type. Each row represents an individual chromatin peak. The 549 

values in each row were scaled to the row mean. Red indicates more-accessible chromatin 550 

regions and blue indicates less-accessible regions. B) Proportions of genomic features 551 

annotated to chromatin peaks with differential accessibility after treatment with insulin or 552 

vehicle. C) Heatmap of differential gene expression in S2 cells after treatment with vehicle or 553 

insulin. Each row represents a significantly differentially-expressed transcript. The values in 554 

each row are scaled to the row mean. Red indicates an upregulated gene and blue indicates a 555 

downregulated gene. 556 

 557 
Figure 4. Insulin-induced log2 fold changes correlate between ATAC-seq and RNA-seq. 558 

A) Chromatin peaks were overlapped with expressed transcripts. Pearson correlation analysis 559 

shows a weak correlation between log2 fold changes in chromatin accessibility and transcript 560 

expression. B) Overlapping ATAC- and RNA-seq log2 fold change values from (A) were 561 

stratified by genomic feature. Pearson correlation analysis was used to identify correlations 562 

between ATAC- and RNA-seq counts by feature.  563 

 564 
Figure 5. Significant insulin-induced changes in ATAC-seq indicates recruitment of 565 

distal promoters for transcript regulation. A) Significant Log2 fold change values from 566 

differentially-accessible chromatin peaks and differentially-expressed transcripts were 567 

analyzed by Pearson correlation analysis. B) Overlapping chromatin peaks and differentially-568 

expressed genes from (A) were stratified by feature type and reveal distal (1-2 kb) promoter 569 

accessibility as correlated with insulin-induced transcript changes.  570 
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 571 
Figure 6. Cloned DNA from differentially-accessible chromatin regions can induce 572 

luciferase activity upon insulin application. DNA was cloned in front of a minimal promoter 573 

and luciferase gene, S2 cells were transfected for 18 h and then treated with insulin or vehicle 574 

for 4 h. A) Candidate ATAC-seq peaks were selected by the largest log2 fold change. B) 575 

Chromatin peaks from promoters (1-2 kb from the TSS) were the feature that was most highly 576 

correlated with differential transcript expression. Peaks with the highest log2 fold change from 577 

this correlation were cloned upstream of luciferase for functional validation. C) Chromatin 578 

peaks with significantly different accessibility were selected from introns, a genomic feature 579 

known to contain regulatory regions. Data represent means ± standard error of three biological 580 

replicates. Differences were analyzed by Student's t-test.  581 

 582 

Fig. 7. ATAC-seq and RNA-seq counts are not correlated with functional luciferase 583 

activity. Log-transformed ATAC-seq counts (A-C) and RNA-seq counts (D-F) from S2 cells 584 

were correlated to insulin-induced luciferase activity. A) Overall correlation between counts 585 

from the tested ATAC-seq peaks and luciferase activity; B) Promoters; C) Introns. D) Overall 586 

correlations between counts from genes annotated to the tested ATAC-seq peaks and 587 

luciferase activity; E) Promoters; F) Introns. Associations were analyzed by Pearson 588 

correlation analysis. Each point represents a biological replicate, and each peak was tested in 589 

triplicate.  590 

 591 

Fig. 8. ATAC-seq and RNA-seq log2 fold changes do not predict insulin inducibility. A) 592 

ATAC-seq and B) RNA-seq log2 fold changes from S2 cells were correlated to insulin-induced 593 

luciferase activity, shown as the ratio between luciferase activity in vehicle- vs. insulin treated 594 

cells. C) Correlation between the ATAC-seq peaks driving significantly increased luciferase 595 

activity and associated ATAC-seq log2 fold changes. D) Correlation between the ATAC-seq 596 
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peaks driving significantly increased luciferase activity and RNA-seq log2 fold changes in the 597 

associated genes. Associations were analyzed by Pearson correlation analysis. Each point 598 

represents a biological replicate, and each peak was tested in triplicate.  599 
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