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Abstract 1 

The oral microbiota contains billions of microbial cells, which could contribute to 2 

diseases in a number of body sites. Challenged by eating, drinking and dental 3 

hygiene on a daily basis, the oral microbiota is regarded as highly dynamic. Here, 4 

we report significant human genomic associations with the oral metagenome from 5 

more than 1,915 individuals, for both the tongue dorsum and saliva. Five genetic 6 

loci, APPL2, SLC2A9 and MGST1 associated with tongue dorsum, LOC102723769-7 

OR11H1-POTEH and MTRNR2L1-LOC105371703-MIR4522 associated with 8 

salivary microbial features, reached study-wide significance (p < 3.16 × 10-11). 9 

Further analyses confirmed 6 genome-wide significant loci shared between tongue 10 

dorsum and saliva. For example, the dental caries pathogen Prevotella 11 

melaninogenica associated with MARK2-RCOR2; the periodontitis bacteria 12 

Treponema associated with CCL26-CCL24 and Porphyromonas associated with 13 

CSMD1 at both niches. Human genetics account for at least 10% of oral 14 

microbiome differences between individuals. Machine learning models showed that 15 

polygenetic risk score dominated over oral microbiome in predicting predisposing 16 

risk of dental diseases such as dental calculus and gingival bleeding. These 17 

findings indicate that human genetic differences are one explanation for a stable or 18 

recurrent oral microbiome in each individual. 19 

 20 

Introduction 21 

A health individual swallows 1-1.5 liters of saliva every day1, the microbes in which 22 

could colonize the gut of susceptible individuals2-5. Oral metagenomic shotgun 23 

sequencing data has been available from the Human Microbiome Project (HMP)6 , 24 

for rheumatoid arthritis7 and colorectal cancer3. Other diseases such as liver 25 

cirrhosis, atherosclerotic cardiovascular diseases, type 2 diabetes, and colorectal 26 

cancer studied by metagenome-wide association studies (MWAS) using gut 27 

microbiome data also indicated potential contribution from the oral microbiome in 28 

disease etiology2,8-11. 29 

 30 

Controversy over human genetic versus environmental determination of the fecal 31 

microbiome is being clarified by an increasing number of studies12-17. The strongest 32 

signal in cohorts of European ancestry is the association between LCT1 and 33 

Bifidobacterium, explained by metabolism of lactose by the commensal bacterium. 34 

These large-scale genome-wide association studies have mainly focused on fecal 35 

microbiome, however, the influence of host genetics on the composition and 36 

stability of the oral microbiome is still poorly understood. Several studies based on 37 

16S rRNA amplicon sequencing and microarrays have reported that human oral 38 

microbiota is influenced by both host genetics and environmental factors18-21. Only 39 

two studies have identified human genes that affected oral microbial communities. 40 

One study identified that IMMPL2 on chromosome 7 and INHBA-AS1 on 41 
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chromosome 12 could influence microbiome phenotypes19. The other study reported 42 

that gene copy number (CN) of the AMY1 locus correlated with oral and gut 43 

microbiome composition and function22. These two studies used 16S rRNA 44 

amplicon sequencing for a small number of samples. Therefore, host genetics 45 

affecting the human oral microbiome and their impact on disease remain to be 46 

investigated. 47 

 48 

Here, we presented the first large-scale metagenome-genome-wide association 49 

studies (M-GWAS) using high-depth sequencing data for both whole genome and 50 

oral metagenome, in a cohort of 2,984 healthy Chinese individuals, of which all 51 

individuals had whole genome data and over 1,915 individuals had matched tongue 52 

dorsum and salivary samples. A large number of concordant associations were 53 

identified between genetic loci and the tongue dorsum and salivary microbiomes. 54 

The effects of environmental factors and host genes on oral microbiome 55 

composition were investigated. Host genetics explained more variance of 56 

microbiome composition than environmental factors. The findings underscore the 57 

value of M-GWAS for in situ microbial samples, instead of focusing on feces.  58 

 59 

 60 

Results 61 

The oral microbiome according to metagenomically assembled microbial 62 

genomes 63 

The 4D-SZ cohort (multi-omics, with more data to come, from Shenzhen, China) at 64 

present have high-depth whole-genome sequencing data from 2,984 individuals 65 

(mean depth of 33×, ranged from 21× to 87×, Supplementary Table 1, 66 

Supplementary Fig. 1). Among these, over 1,915 individuals had matched tongue 67 

dorsum and salivary samples for M-GWAS analysis. 68 

 69 

Shotgun metagenome sequencing was performed for the 3,932 oral samples, with 70 

an average sequencing data of 20.07 ± 7.66 Gb for 2,017 tongue dorsum and 15.68 71 

± 3.21 Gb for 1,915 salivary samples (Supplementary Table 1, Supplementary 72 

Fig. 1). The microbiome composition was determined according to alignment to a 73 

total of 56,213 metagenome-assembled genomes (MAGs) that have been 74 

organized into 3,589 species-level clusters (SGBs) together with existing genomes, 75 

of which 40% (1,441/3,589) was specific in this cohort23. Both the tongue dorsum 76 

and the salivary samples contained the phyla Bacteroidetes (relative abundance of 77 

37.2 ± 11.3% for tongue dorsum and 40.1 ± 10.2% for saliva, respectively), 78 

Proteobacteria (30.1 ± 16.5% and 30.6 ± 13.1%, respectively), Firmicutes (20.5 ± 79 

8.2% and 17.7 ± 6.7%, respectively), Actinobacteriota (4.3 ± 3.4% and 2.6 ± 2.0%, 80 

respectively), Fusobacteriota (4.0 ± 1.9% and 3.3 ± 1.4%, respectively), 81 

Patescibacteria (in Candidate Phyla Radiation, CPR, 2.5 ± 1.6% and 3.1 ± 1.6%, 82 
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respectively) and Campylobacterota (1.1 ± 0.9% and 1.3 ± 0.8%, respectively) 83 

(Supplementary Fig. 2a-b).These seven phyla cover between 99.7% (tongue 84 

dorsum) and 98.7% (saliva) of the whole community, indicating that the two oral 85 

sites share a common core microbiota. Consistent with HMP results using 16S 86 

rRNA gene amplicon sequencing24, the salivary samples presented a higher alpha 87 

diversity than tongue dorsum samples (mean Shannon index of 6.476 vs 6.228; 88 

Wilcoxon Rank-Sum test p�<�2.2�×�10−16; Supplementary Fig. 2c). The 89 

microbiome compositions calculated by beta-diversity based on genus-level Bray–90 

Curtis dissimilarity slightly differed (explained variance R2 = 0.055, p < 0.001 in 91 

permutational multivariate analysis of variance (PERMANOVA) test; 92 

Supplementary Fig. 2d).  93 

 94 

Host genetic variants strongly associated with the tongue dorsum 95 

microbiome 96 

With this so-far the largest cohort of whole genome and whole metagenome data, 97 

we first performed M-GWAS on the tongue dorsum microbiome. With the 1,583 98 

independent tongue dorsum microbial taxa (r2 < 0.8 from 3177 taxa total), and 10 99 

million human genetic variants (minor allele frequency (MAF) ≥ 0.5%), 1,677 100 

associations involving 345 independent loci (r2 < 0.2) reached genome-wide 101 

significance (p < 5 × 10-8). With a more conservative Bonferroni-corrected study-102 

wide significant p value of 3.16 × 10-11 (= 5 × 10−8 / 1,583), we identified 3 genomic 103 

loci, namely APPL2, SLC2A9 and MGST1, associated with 5 tongue dorsum 104 

microbial features involving 112 SNP-taxon associations (Fig. 1a). These 105 

associations showed remarkable evidence of polygenicity and pleiotropy (Fig. 1b). 106 

There was no evidence of excess false positive rate in the GWAS analysis 107 

(genomic inflation factors λGC ranged from 0.981 to 1.023 with median 1.005; 108 

Supplementary Fig. 3a). All genome-wide significant associations were listed in 109 

Supplementary Table 2. 110 

 111 

The strongest association was on rs1196764 located in the APPL2 locus, correlated 112 

with dozens of microbial taxa, with positive associations with three species, namely 113 

Prevotella jejuni (p = 6.89 × 10-14), unclassified SGB (uSGB) 3339 belonging to the 114 

genus Oribacterium (p = 9.99 × 10-12) and uSGB 315 belonging to the genus 115 

Solobacterium (an anaerobic gram-positive bacterium associated with colorectal 116 

cancer25; p = 2.12 × 10-11). APPL2 encoded a multifunctional adapter protein that 117 

binds to various membrane receptors, nuclear factors and signaling proteins to 118 

regulate many processes, such as cell proliferation, immune response, endosomal 119 

trafficking and cell metabolism.  120 

 121 

The second strongest association was on rs3775944 (p = 5.09 × 10-13), which is a 122 

perfect proxy for the exonic variant rs10939650 (r2 = 0.99) in SLC2A9. Minor alleles 123 

of these variants negatively correlated with Oribacterium uSGB 1215. SLC2A9 is a 124 
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urate transporter and SLC2A9 polymorphisms have been reported associated with 125 

serum uric acid and urine uric acid concentration in multiple studies26-28. We also 126 

looked at these top loci in Biobank Japan29,30, and SLC2A9 was correlated with 127 

lower serum uric acid concentration (Supplementary Fig. 4; p = 5.56 × 10-184), 128 

ischemic stroke (p = 1.73 × 10-4), urolithiasis (p = 2.02 × 10-4) and pulse pressure (p 129 

= 6.86 × 10-4). The negative associations with serum uric acid concentration (p = 130 

6.74 × 10-6) and urine pH (p = 8.75 × 10-4) were confirmed in this cohort. Notably, 131 

SLC2A9 locus not only negatively correlated with serum uric acid, but also 132 

negatively correlated with its associated bacteria Oribacterium uSGB 1215 that was 133 

observed increasing risk of serum uric acid (β = 0.08; p = 3.15 × 10-5). Similarly, 134 

LPL was associated with abundance of Haemophilus D parainfluenzae A (p = 1.59 135 

× 10-8) and triglyceride concentration (Supplementary Fig. 4; p = 5.93 × 10-56), and 136 

consistently Haemophilus D parainfluenzae A correlated with triglyceride 137 

concentration (p = 7.70 × 10-16). These findings suggested that host genes, 138 

microbiomes and gene-microbiome interactions might codetermine host phenotype. 139 

 140 

Variants in MGST1 were identified as the third strongest signal, with minor alleles 141 

negatively associated with Streptococcus uSGB 2460 (p = 1.50 × 10-11), followed by 142 

family Streptococcaceae and other eight Streptococcus SGBs, such as S. infantis 143 

and S. pseudopneumoniae. These variants were also positively associated with red 144 

blood cell count (p = 2.51 × 10-5) and asthma (p = 5.03 × 10-5) in Biobank Japan. 145 

Consistently, 84% (237/282) of the Streptococcus spp. were observed correlated 146 

with red blood cell count (p < 0.05), such as S. mitis (p= 1.99 × 10-12) and S. 147 

pseudopneumoniae (p = 4.51 × 10-12). These results suggested that commensal 148 

Streptococcus species might utilize red blood cells as camouflage to avoid being 149 

engulfed by phagocytic immune cells in addition to the well-known group A 150 

Streptococcus (S. pyogenes)31. Our results also supported previous findings that 151 

Streptococcus spp. are often involved in diseases of the respiratory tracts such as 152 

asthma32. 153 

 154 

M-GWAS of the salivary microbiome confirm and extend human genetic 155 

contribution to the oral microbiome 156 

The saliva may appear more dynamic than the tongue dorsum, and the microbiome 157 

composition involves multiple niche in the oral cavity33. We next tried M-GWAS 158 

analysis for the saliva microbiome. With the 1,685 independent salivary microbial 159 

taxa (r2 < 0.8 from 3,677 taxa total), and 10 million human genetic variants (MAF ≥ 160 

0.5%), 2,455 associations involving 374 independent loci (r2 < 0.2) reached 161 

genome-wide significance (p < 5 × 10-8). Similar to tongue dorsum M-GWAS 162 

analyses, the genomic inflation factors of these salivary M-GWAS tests showed no 163 

inflation (λGC ranged from 0.978 to 1.022 with median 1.002; Supplementary Fig. 164 

3b). All genome-wide significant associations were listed in Supplementary Table 165 

3. With a more conservative Bonferroni-corrected study-wide significant p-value of 166 
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2.97× 10-11 (= 5 × 10−8 / 1,685), we identified 2 study-wise significant independent 167 

loci (Fig. 2a). One genetic locus, spanning three genes LOC102723769, OR11H1 168 

and POTEH, associated with species F0422 uSGB 392 belonging to family 169 

Veillonellaceae (leading SNP rs4911713; p = 2.11 × 10-12). The other locus, 170 

MTRNR2L1-LOC105371703-MIR4522, associated with genus Eggerthia (leading 171 

SNP rs36186689; p = 8.85 × 10-12). This locus regulated the expression of 172 

FLJ36000 in both brain cerebellar hemisphere (p = 6.74× 10-6) and testis (p = 8.58× 173 

10-12). The two loci were most associated with serum testosterone level and work 174 

stress, respectively, while searching GWAS summary statistics from Biobank Japan 175 

and this study. In addition, we found four loci associated with both salivary 176 

microbiome and metabolic traits or diseases at genome-wide significance: 177 

DPEP2/NFATC3 that associated with species Lancefieldella sp000564995 was 178 

linked to high density lipoprotein cholesterol (HDLC); PDXDC2P-NPIPB14P 179 

associated with species Centipeda sp000468035 linked to thyroid abnormality; 180 

LARP1 associated with species Aggregatibacter kilianii linked to mean corpuscular 181 

hemoglobin; SMARCA1 associated with species Veillonella parvula linked to 182 

pharyngeal mucosal congestion (PMC) (Supplementary Fig. 5). 183 

 184 

Among 345 and 374 independent loci associated with tongue dorsum and salivary 185 

microbiome (p < 5 × 10-8), respectively, 6 loci were shared between them (Fig. 2b): 186 

MARK2-RCOR2 associated with Prevotella (most associated species P. 187 

melaninogenica for tongue dorsum and P. uSGB 1369 for saliva), APPL2 188 

associated with Oribacterium uSGB 3339, LOC105374972-NRSN1 associated with 189 

Lancefieldella uSGB 2019; CCL26-CCL24 associated with Treponema uSGB 706; 190 

and CSMD1  associated with Porphyromonas (most associated species P. uSGB 191 

2049 for tongue dorsum and P. uSGB 414 for saliva). RTTN-SOCS6 associated 192 

with Firmicutes uSGB 1705. 339 loci were genome-wide significant for the tongue 193 

dorsum samples, and also showed p-values between 0.01 and 5 × 10-8 for the 194 

salivary samples. For example, SLC2A9, a determinant of low   uric acid (UA) 195 

concentration, showed the strongest association with SGBs belonging to 196 

Oribacterium (p = 5.09 × 10-13) and Lachnoanaerobaculum (p = 4.69 × 10-9) in 197 

tongue dorsum samples, and also relative low association with that of Oribacterium 198 

(p = 0.001) and Lachnoanaerobaculum (p = 1.0 × 10-4) in salivary samples. Similarly, 199 

SHB-ALDH1B1 and SGBs of genus Streptococcus, PAG1-FABP5 and 200 

Pseudomonas E marginalis, GJB6-CRYL1 and Capnocytophaga sp002209445, 201 

AQP7P1-LINC00537 and uSGB 297 belonging to genus Catonella, all exhibited 202 

stronger associations in tongue dorsum samples (p < 5 × 10-9) than in saliva (p > 203 

0.001). Likewise, 368 loci were genome-wide significant for the saliva, and also 204 

showed p-values between 0.05 and 5 × 10-8 for the tongue dorsum, although the top 205 

two study-wide significant loci for saliva didn’t reach suggestive significance in 206 

tongue dorsum samples (p > 1 × 10-5). Our M-GWAS of the salivary microbiome 207 

further confirm and extend human genetic contribution to the oral microbiome. 208 

These results suggested tongue and salivary microbiome as niches in one oral 209 

cavity shared high level of host genetic similarity in co-evolution process.  210 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.443017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.443017


 211 

Gene set enrichment analysis for oral M-GWAS signals 212 

To explore the potential functions of the identified M-GWAS signals for tongue 213 

dorsum and salivary, we annotated the genetic associations and performed 214 

functional mapping and gene sets enrichment analysis with the DAVID34 and 215 

FUMA35 platform (Methods), followed by disease enrichment and tissue expression 216 

analysis.  M-GWAS analysis returned 221 and 261 genes (<20kb for associated 217 

genetic loci) for tongue dorsum and salivary microbiome, respectively. Functional 218 

mapping of their separately related genes in DAVID database suggested that 219 

tongue dorsum associated host genes mainly enriched in phosphatidylinositol-220 

related pathways including phosphatidylinositol signaling system, biosynthesis, 221 

dephosphorylation and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 222 

activity, and Ca2+ pathway including calcium ion binding, calcium channel regulator 223 

activity and voltage-gated calcium channel activity (Supplementary Table 4). 224 

Phosphatidylinositol signaling system have been reported to be higher in the gut 225 

microbiota of centenarians36 and consistently decreased in saliva microbiota of RA 226 

patients37. Saliva associated host genes mainly enriched in cardiomyopathy 227 

including arrhythmogenic right ventricular-, hypertrophic- and dilated 228 

cardiomyopathy, glycerophospholipid metabolism and choline metabolism in cancer 229 

(Supplementary Table 5).  230 

 231 

The GAD_Disease (Genetic Association Disease Database) segment analysis 232 

in DAVID showed that both tongue dorsum and saliva M-GWAS signals were 233 

enriched in cardiometabolic diseases and traits such as tobacco use disorder, 234 

myocardial infarction, triglycerides, blood pressure, lipoproteins, coronary artery 235 

disease, and nervous system diseases such as schizophrenia, bipolar disorder, 236 

psychiatric disorders and Parkinson’s disease (Tables S4 and S5).  Positional 237 

mapping in GWAS catalog using FUMA tool showed the similar diseases enriched 238 

results with that of using GAD catalog in DAVID. Genotype-Tissue Expression 239 

(GTEx) analysis on saliva microbiome associated host genes exhibited an 240 

enrichment for genes expressed in brain (anterior cingulate cortex BA24 and 241 

substantia nigra) and cells of EBV-transformed lymphocytes (Supplementary Fig. 242 

6).  243 

 244 

Host genetics influence oral microbiome more than environment 245 

We first investigate the contribution of environmental factors to oral microbiome β-246 

diversity (based on genus-level Bray–Curtis dissimilarities), by using host metadata 247 

including age, gender, BMI, dietary, lifestyle, drug use and health status questions, 248 

as well as blood measurements. We selected 340 independent variables out of the 249 
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total 423 environmental factors for association analysis (correlation r2 < 0.6). A total 250 

of 35 and 53 factors were significantly associated with β-diversity (BH-adjusted 251 

FDR�<�0.05) for tongue dorsum and salivary samples, respectively, via 252 

PERMANOVA analysis (Supplementary Fig. 8; Supplementary Tables 6 and 7). 253 

Of these, high sugar and high fat food frequency and dental calculus were the 254 

strongest associated factors for both tongue dorsum and salivary microbial 255 

compositions. A high sugar diet increased the abundances of some specific bacteria 256 

such as Streptococcus mutans that metabolized sugar to acids and caused dental 257 

caries. In this cohort, high sugar and high fat food frequency significantly increased 258 

the abundances of Gemella haemolysans (β = 0.21; p =2.92 × 10-19) and 259 

Streptococcus parasanguinis (β = 0.18; p = 7.56 × 10-16) in salivary samples. In total, 260 

35 and 53 factors were able to infer 6.36% and 7.78% of the variance of 261 

microbiome β-diversity for tongue dorsum and salivary samples, respectively. When 262 

calculating the cumulative explained variance of β-diversity by using all the 263 

independent environmental variables, we found that 12.85% and 15.54% of the 264 

variance can be explained for tongue dorsum and salivary samples, respectively.   265 

 266 

We next evaluated the effect of host genetics on oral microbiome compositions.  We 267 

performed association analysis for α-diversity and β-diversity using 10 million 268 

genetic variants (MAF ≥ 0.5%). Six genome-wide significant loci were identified for 269 

α-diversity for oral microbiome (Supplementary Table 8). Four loci, NFIB, 270 

LINC02578, LOC105373105 and EIF3E, associated with α-diversity of tongue 271 

dorsum samples. Two loci, SLC25A42 and LINC02225, associated with α-diversity 272 

of salivary samples. In the association analysis between genetic variation and 273 

microbiome β-diversity, we found one locus for tongue dorsum samples and one 274 

locus for salivary samples with marginal genome-wide significance (p < 5 × 10-8; 275 

Supplementary Fig. 9), respectively. One SNP, rs545425011 located in DNAJC12 276 

was associated with microbial composition of tongue dorsum (p = 1.07 × 10-8). 277 

When searching its correlations with microbial taxa, it was mostly negatively 278 

associated with Leptotrichia A sp000469505 and Prevotella saccharolytica 279 

(Supplementary Table 9), however, positively associated with Rothia SGBs such 280 

as R. mucilaginosa which was dominant in tongue dorsum and often observed in 281 

large patches toward the exterior of the consortium. The other SNP, rs73243848 282 

located in G2E3-AS1 was associated with salivary microbial composition (p = 2.35 × 283 

10-8). It was mostly positively associated with Prevotella uSGB 2511 and family 284 

Bacteroidaceae (Supplementary Table 10). 285 

 286 

The above analysis found that 53 and 35 factors (BH P <0.05) explained 7.78% and 287 

6.36% of the β-diversity variance for salivary and tongue dorsum microbiome, 288 

respectively. By applying the same number of SNPs that were most closely 289 

associated with β-diversity, we identified 14.14% and 10.14% of the β-diversity 290 

variance could be inferred for salivary and tongue dorsum microbiome, respectively 291 

(Supplementary Fig. 10). The findings suggested host genetics is likely to 292 

influence oral microbiome more than environment.  293 
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Host genetics and oral microbiome predict dental diseases 294 

The dynamic and polymicrobial oral microbiome is a direct precursor of diseases 295 

such as dental calculus and gingival bleeding. To understand the aggregate effect 296 

of host genetic variants and oral microbiome on dental diseases, we constructed 297 

models using genetic polygenic risk scores (PRS) and oral microbiome separately, 298 

as well as their combination, to predict dental diseases.  We found 2 of the 6 dental 299 

diseases occurred in over 5% individuals to be significantly associated with the oral 300 

microbiome (Fig. 3a; FDR p< 0.001). Either of salivary and tongue dorsum 301 

microbiome explained 20% of the variance for dental calculus. Salivary and tongue 302 

dorsum microbiome explained 13% and 15% of the variance for gingival bleeding, 303 

respectively. Compared with oral microbiome, the genetic PRS showed significantly 304 

higher predictive efficiency with a mean R2 of 45%, ranging from the lowest of 25% 305 

for gingival bleeding to highest of 60% for teeth loss. Furthermore, when 306 

incorporating the oral microbiome into PRS model, the predictive efficiency is 307 

slightly improved, with a 4% increasement of R2 for dental calculus and a 6% 308 

increasement of R2 for gingival bleeding (Fig. 3b). 309 

 310 

The discriminative efficiency for dental diseases was also evaluated using area 311 

under the curve (AUC; Fig. 3c). Salivary and tongue dorsum microbiome had a 312 

good discrimination for dental calculus (AUC=0.81 and 0.80, respectively), and a 313 

median discrimination for gingival bleeding (AUC=0.72 and 0.73, respectively). The 314 

models of PRS had AUC of 0.93-0.94 for 5 of the 6 dental diseases, except for 315 

gingival bleeding (AUC=0.78). Incorporating the oral microbiome into PRS model 316 

resulted in improved discrimination with AUC increasing from 0.94 to 0.97 for dental 317 

calculus and from 0.78 to 0.83 for gingival bleeding. These results may help explain 318 

why some people are genetically predisposed to the major dental diseases. 319 

 320 

 321 

Discussion 322 

In summary, we performed the first large-scale M-GWAS for oral microbiome and 323 

report unequivocal human genetic determinants for the oral microbiome. Our M-324 

GWAS analysis identified a big amount of concordant association signals shared by 325 

tongue dorsum and salivary microbiome, with all genome-wide significant 326 

associations in one niche (Fig. 2b; p < 5 × 10-8) were also at least nominally 327 

significant in the other niche (p < 0.01), consistent with our and previous findings 328 

that tongue dorsum and salivary microbiome communities exhibited high levels of 329 

similarity38,39, especially in micron-scale structure of oral niches33,40. Consistent with 330 

previous studies24,41, the salivary microbiome showed higher alpha diversity than 331 

tongue dorsum. In combination with the fact that saliva comes into contact with all 332 

surfaces in the oral cavity and represents a fingerprint of the general composition of 333 

the oral microbiome, these results suggested that salivary microbiome is more 334 
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diverse and likely more dynamic. Thus, host genetic associations that are stronger 335 

with the salivary than the tongue dorsum community will further invite other omics 336 

studies, especially the proteome and the nitrogen cycle that could impact microbial 337 

growth. 338 

 339 

Host-associated microbial communities are influenced by both host genetics and 340 

environmental factors. The debate centers on the relative contributions of host 341 

genetic and environmental factors to human microbiome. Twins modeling have 342 

demonstrated that some taxa of the human oral microbiome are heritable18,19, 343 

however, some studies indicated oral microbiome variances were shaped primarily 344 

by the environment rather than host genetics20,21. With this high-depth whole 345 

genome and metagenomic sequencing and high-quality assembled oral microbiome 346 

samples, we found that significant environmental factors explained 6.36%-7.78% of 347 

the β-diversity variance for oral microbiome, however, the same number of 348 

significant SNPs could infer 10.14%-14.14% of the β-diversity variance for oral 349 

microbiome (Supplementary Fig. 7 and 9). These findings indicated host genetics 350 

is likely to influence oral microbiome more than environment.  351 

 352 

As the genetics are already there at birth, oral hygiene would be more important for 353 

people who are more likely to develop dental diseases and beyond. Despite 354 

different aetiologias, dental calculus and gingival bleeding are both driven by a 355 

combined function of the oral microbiota and host factors. However, dental caries, 356 

teeth defect and loss were mainly determined by host genetics and less influenced 357 

by oral microbiome in this cohort. These results help us to better understand the 358 

pathogenic mechanisms and aided the design of personalized therapeutic 359 

approaches for different oral diseases. These results also provide a rational for 360 

repeatedly taking oral samples, to study the mostly stable human genome, long-361 

term trends and short-term dynamics in the oral microbiome.   362 

 363 

 364 

 365 

 366 

Methods 367 

Study subjects 368 

All the adult Chinese individuals in this cohort were recruited for a multi-omics study, 369 

with some volunteers having samples from as early as 2015, which would constitute 370 

the time dimension in ‘4D’. The cohort included 2,984 individuals with blood 371 

samples collected during a physical examination in 2017 in the city of Shenzhen 372 

and all these individuals were enlisted for high-depth whole genome sequencing 373 

(Supplementary Table 1). 3,932 (2,017 tongue dorsum and 1,915 saliva) oral 374 

samples from this cohort were newly collected for whole metagenomic sequencing 375 
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between 2017 to 2018 (Supplementary Table 1). The protocols for blood and oral 376 

collection, as well as the whole genome and metagenomic sequencing were similar 377 

to our previous literature5,23,42. For blood sample, DNA was extracted using 378 

MagPure Buffy Coat DNA Midi KF Kit (no. D3537-02) according to the 379 

manufacturer’s protocol. Tongue dorsum and salivary samples were collected with 380 

MGIEasy kit. For salivary sample, a 2x concentration of stabilizing reagent kit was 381 

used and 2 mL saliva was collected. DNA of oral samples was extracted using 382 

MagPure Stool DNA KF Kit B (no. MD5115-02B). The DNA concentrations from 383 

blood and oral samples were estimated by Qubit (Invitrogen). 500 ng of input DNA 384 

from blood and oral samples were used for library preparation and then processed 385 

for paired-end 100bp sequencing using BGISEQ-500 platform43. 386 

The study was approved by the Institutional Review Boards (IRB) at BGI-Shenzhen, 387 

and all participants provided written informed consent at enrolment.  388 

 389 

High-depth whole genome sequence for this cohort 390 

2,984 individuals with blood samples were sequenced to a mean of 33x for whole 391 

genome. The reads were aligned to the latest reference human genome 392 

GRCh38/hg38 with BWA44 (version 0.7.15) with default parameters. The reads 393 

consisting of base quality <5 or containing adaptor sequences were filtered out. The 394 

alignments were indexed in the BAM format using Samtools45 (version 0.1.18) and 395 

PCR duplicates were marked for downstream filtering using Picardtools (version 396 

1.62). The Genome Analysis Toolkit’s (GATK46, version 3.8) BaseRecalibrator 397 

created recalibration tables to screen known SNPs and INDELs in the BAM files 398 

from dbSNP (version 150). GATKlite (v2.2.15) was used for subsequent base 399 

quality recalibration and removal of read pairs with improperly aligned segments as 400 

determined by Stampy. GATK’s HaplotypeCaller were used for variant discovery. 401 

GVCFs containing SNVs and INDELs from GATK HaplotypeCaller were combined 402 

(CombineGVCFs), genotyped (GenotypeGVCFs), variant score recalibrated 403 

(VariantRecalibrator) and filtered (ApplyRecalibration). During the GATK 404 

VariantRecalibrator process, we took our variants as inputs and used four standard 405 

SNP sets to train the model: (1) HapMap3.3 SNPs; (2) dbSNP build 150 SNPs; (3) 406 

1000 Genomes Project SNPs from Omni 2.5 chip; and (4) 1000G phase1 high 407 

confidence SNPs. The sensitivity threshold of 99.9% to SNPs and 98% to INDELs 408 

were applied for variant selection after optimizing for Transition to Transversion 409 

(TiTv) ratios using the GATK ApplyRecalibration command. 410 

We applied a conservative inclusion threshold for variants: (i) mean depth >8×; (ii) 411 

Hardy-Weinberg equilibrium (HWE) P > 10-5; and (iii) genotype calling rate > 98%. 412 

We demanded samples to meet these criteria: (i) mean sequencing depth > 20×; (ii) 413 

variant calling rate > 98%; (iii) no population stratification by performing principal 414 

components analysis (PCA) analysis implemented in PLINK47 (version 1.9) and (iv) 415 

excluding related individuals by calculating pairwise identity by descent (IBD, Pi-hat 416 

threshold of 0.1875) in PLINK. No samples were removed in quality control filtering. 417 

After variant and sample quality control, 2,984 individuals with about 10 million 418 

common and low-frequency (MAF ≥ 0.5%) variants were left for subsequent 419 
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analyses. 420 

 421 

Oral metagenomic sequencing and quality control 422 

Metagenomic sequencing was done on the BGISEQ-500 platform, with 100bp of 423 

paired-end reads for all samples and four libraries were constructed for each lane. 424 

We generated 15.68 ± 3.21Gb (average ± standard deviation) raw bases per 425 

sample for salivary samples and 20.07 ± 7.66 raw bases per sample for tongue 426 

dorsum samples (Supplementary Table 1). After using the quality control module 427 

of metapi pipeline followed by reads filtering and trimming with strict filtration 428 

standards(not less than mean quality phred score 20 and not shorter than 51bp 429 

read length) using fastp v0.19.463, host sequences contamination removing using 430 

Bowtie2 v2.3.564 (hg38 index) and seqtk65 v1.3, we finally got an average of 3.1Gb 431 

(host rate:77%) and 9.9Gb (host rate:31%) raw bases per sample for salivary and 432 

tongue dorsum samples, respectively. 433 

 434 

Oral metagenomic profiling 435 

The high-quality oral genome catalogue was constructed in our previous study23. 436 

The oral metagenomic sequencing reads was mapped to oral genome catalogue 437 

(http://ftp.cngb.org/pub/SciRAID/Microbiome/human_oral_genomes/bowtie2_index) 438 

using Bowtie2 with parameters : “--end-to-end --very-sensitive --seed 0 --time -k 2 --439 

no-unal --no-discordant -X 1200”, and the normalized contigs depths were obtained 440 

by using jgi_summarize_bam_contig_depths, then based on the correspondence of 441 

contigs and genome, the normalized contig depth were converted to the relative 442 

abundance of each species for each samples. Finally, we merged all representative 443 

species relative abundance to generate a taxonomic profile for human oral 444 

population. The profiling workflow was implemented in metapi jgi_profiling module 445 

(https://github.com/ohmeta/metapi/blob/dev/metapi/rules/profiling.smk#L305). 446 

 447 

Tongue dorsum and salivary microbiome comparison 448 

The nonparametric Wilcoxon rank-sum test was used to determine statistically 449 

significant differences in species α-diversity between tongue dorsum and saliva 450 

niches. We analyze the β-diversity (based on genus-level Bray–Curtis dissimilarity) 451 

difference between the two oral niches using PERMANOVA (adonis) in the ‘vegan’ 452 

package and visualize the two oral niches groups using ordination such as non-453 

metric multidimensional scaling (NMDS) plots. 454 

 455 

Association analysis for oral microbial taxa 456 

After investigating the distributions of occurrence rate and relative abundance of all 457 

microbial taxa, we decided to filter the microbial taxa to keep those with occurrence 458 

rate over 90% and average relative abundance over 1× 10-5. After filtering, the 459 

represented genera of these microbial taxa covered between 99.63% (tongue 460 

dorsum) and 99.76% (saliva) of the whole community in the cohort. As many oral 461 

microbial taxa are highly correlated and aims to reducing the numbers of GWAS 462 

tests, we then performed a number of Spearman's correlation tests to obtain the 463 

independent taxa for M-GWAS analyses. Spearman's correlations were calculated 464 
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pairwise between all taxa, and the correlations used to generate an adjacency 465 

matrix where correlations of >0.8 represented an edge between taxa. A graphical 466 

representation of this matrix was then used for greedy selection of representative 467 

taxa. Nodes (microbiota taxa) were sorted by degree and the one with highest 468 

degree was then chosen as a final taxon (selecting at random in the case of a tie). 469 

The taxon and its connected nodes were then removed from the network and the 470 

process repeated until a final set of taxa sets were found such that each of the 471 

discarded taxon was correlated with at least one taxon. These filtering resulted in a 472 

final set of 1,583 and 1,685 independent microbial taxa for tongue dorsum and 473 

saliva, respectively, that were used for association analyses.  474 

We tested the associations between host genetics and oral bacteria using linear 475 

model based on the relative abundance of oral bacteria. Specifically, the relative 476 

abundance was transformed by the natural logarithm and the outlier individual who 477 

was located away from the mean by more than four standard deviations was 478 

removed, so that the abundance of bacteria could be treated as a quantitative trait. 479 

Next, for 10 million common and low-frequency variants (MAF≥ 0.5%) identified in 480 

this cohort, we used a linear regression model to perform M-GWAS analysis via 481 

PLINK v1.9. Given the effects of environmental factors such as diet and lifestyles on 482 

microbial features, we included all potential cofounders that were significantly 483 

associated with the β-diversity (Benjamini–Hochberg FDR�<�0.05) estimates in the 484 

below explained variance analysis, as well as the top four principal components 485 

(PCs) as covariates for M-GWAS analysis in both the salivary and tongue dorsum 486 

niches. 487 

To investigate the correlations between the identified oral microbiome-related SNPs 488 

and diseases, we downloaded the summary statistics data from the Japan 489 

Biobank29,30, a study of 300,000 Japanese citizens suffering from cancers, diabetes, 490 

rheumatoid arthritis and other common diseases. We searched the oral 491 

microbiome-related SNPs in the summary statistics data from Japan Biobank to 492 

examine their associations with diseases. 493 

 494 

Functional and pathway enrichment analysis 495 

The significant genetic variants identified in the association analysis were mapped 496 

to genes using ANNOVAR48. Given that some significant genetic variants were low-497 

frequency in the M-GWAS results, it’s most suitable to input gene lists for 498 

enrichment analysis. We mapped variants to genes based on physical distance 499 

within a 20kb window and got the gene lists for enrichment analysis. DAVID 500 

(https://david.ncifcrf.gov/) was utilized to perform functional and pathway enrichment 501 

analysis. DAVID is a systematic and integrative functional annotation tool for the 502 

analysis of the relevant biological annotation of gene lists and provide functional 503 

interpretation of the GO enrichment and KEGG pathway analysis34. The p-value 504 

<0.05 was considered statistically significant. In addition, the mapped genes were 505 

further investigated using the GENE2FUNC procedure in FUMA35 506 

(http://fuma.ctglab.nl/), which provides hypergeometric tests for the list of enriched 507 

mapping genes in 53 GTEx tissue-specific gene expression sets, 7,246 MSigDB 508 
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gene sets, and 2,195 GWAS catalog gene sets35. Using the GENE2FUNC 509 

procedure, we examined whether the mapped genes were enriched in specific 510 

diseases or traits in the GWAS catalog as well as whether showed tissue-511 

specific expression. Significant results were selected if a false discovery rate (FDR)-512 

corrected p < 0.05 was observed. 513 

 514 

Association analysis for microbiome α-diversity and β-diversity 515 

The microbiome β-diversity (between-sample diversity) based on genus-level 516 

abundance data were generated using the ‘vegdist’ function (Bray–Curtis 517 

dissimilarities). Then, we performed principal coordinates analysis (PCoA) based on 518 

the calculated beta-diversity dissimilarities using the ‘capscale’ function in ‘vegan’. 519 

Finally, associations for β-diversity (a two-axis MDS) were performed using the 520 

manova() function from the ‘stats’ package, in a multivariate analysis using 521 

genotypes and the same covariates stated above as variables. 522 

 523 

Association analysis for environmental factors  524 

As part of the 4D-SZ cohort, all participants in this study had records of multi-omics 525 

data, including anthropometric measurement, stool form, defecation frequency, diet, 526 

lifestyle, blood parameters, hormone, etc.21. A total of 423 environmental factors are 527 

available in this cohort. Environmental metadata were first log-transformed and 528 

checked for collinearity using the Spearman correlation coefficient. Collinearity was 529 

assumed if a Spearman’s ρ >�0.6 or ρ< −0.6. Collinear variables were considered 530 

redundant and one variable from each pair was removed from further analysis, 531 

resulting in a final set of 340 variables. 532 

To investigate the potential associations of top loci identified in microbiome GWAS 533 

with environmental variables especially for serum metabolites, we also performed 534 

GWAS analysis for the 340 environmental variables. Among the 340 environmental 535 

traits, the log10-transformed of the mean-normalized values was calculated for each 536 

quantitative phenotype (such as amino acids, vitamins, microelements etc.) and a 537 

linear regression model for quantitative trait implemented in PLINK v1.9 was used 538 

for association analysis. Samples with missing values and values beyond 4 s.d. 539 

from the mean were excluded from association analysis. For each binary phenotype 540 

(such as diet, lifestyle etc.), a logistic regression model was used for association 541 

analysis. Age, gender and the top four PCs were included as covariates for each 542 

association analysis. 543 

 544 

Environmental factors explained variance of oral microbiome 545 

We next searched for associations between the 340 environmental variables 546 

selected above and the oral microbiome compositions. We performed Bray-Curtis 547 

distance-based redundancy analysis (dbRDA) to identify variables that are 548 

significantly associated with β-diversity and measure the fraction of variance 549 

explained by the factors, using the ‘capscale’ function in the vegan package. The 550 

significance of each response variable was confirmed with an analysis of variance 551 

(ANOVA) for the dbRDA (anova.cca() function in the vegan package). Only the 552 
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variables that were significantly associated (Benjamini–Hochberg FDR�<�0.05) 553 

with the β-diversity estimates in the univariable models were included in the 554 

multivariable model. The additive explanatory value (in %) of significant response 555 

variables (e.g. environmental parameters, vitamins and serum amino acids etc.) 556 

was assessed with a variation partitioning analysis of the vegan package 557 

(‘adj.r.squared’ value using RsquareAdj option). 558 

 559 

Construct PRS for diseases prediction 560 

To obtain the predictions of human genetics on dental diseases, we used gradient 561 

boosting decision trees from the LightGBM (v.3.1.1) package49 implemented in 562 

Python (v3.7.8) and fivefold cross validation scheme to construct risk-prediction 563 

models.  In every fold of the fivefold cross validation scheme, we calculated the 564 

associations between SNPs and dental diseases within the training dataset, and 565 

then selected independent and significant SNPs (LD r2 < 0.2, p < 10-5) to calculate 566 

the PRS as an unweighted sum of risk alleles, and finally we trained a model on the 567 

PRS and predicted the disease risk in test dataset. During the process, we obtained 568 

the optimal values of the tuning parameters using fivefold cross validation and 569 

evaluated the results using the coefficient of determination (R2) as variance 570 

explained and AUC as disease discriminative efficiency. 571 

 572 

 573 

Data availability 574 

All summary statistics that support the findings of this study including the 575 

associations between host genetics and tongue dorsum microbiome, host genetics 576 

and saliva microbiome are publicly available from 577 

https://db.cngb.org/search/project/CNP0001664. The release of these summary 578 

statistics data was approved by the Ministry of Science and Technology of China 579 

(Project ID: **, data has been uploaded and we are waiting for the approval ID of 580 

MOST). According to the Human Genetic Resources Administration of China 581 

regulation and the institutional review board of BGI-Shenzhen related to protecting 582 

individual privacy, sequencing data are controlled-access and are available via 583 

application on request (https://db.cngb.org/search/project/CNP0001664). 584 
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Figure captions 729 

 730 

Fig. 1. Host genetic signals associated with tongue dorsum microbiome. (a). 731 

Manhattan plot shows the genetic variants associated with the tongue dorsum 732 

microbial taxa. The horizontal grey and black lines represent the genome-wide 733 

(p�=�5�×�10−8) and study-wide (p�=�3.16�×�10−11 for 1,583 independent M-734 

GWAS tests) significance levels, respectively. Three loci that associated with 735 

tongue dorsum microbiome and reached study-wide significance were marked in 736 

red. Their located genes and associated microbial taxa with p values of < 737 

3.16�×�10−11 were also listed. (b). Network representation of the 345 gene-738 

microbiome associations identified in the tongue dorsum M-GWAS at the genome-739 

wide significance. Each node represents either a gene (blue diamonds) or a 740 

microbial taxon (circles with different colors according to phylum). Each edge is an 741 

association between one gene and one microbial taxon. The bold edge represented 742 

study-wide significant associations as showed in (a). The genes that linked to at 743 

least two different microbial taxa from different phyla were also listed.  744 

 745 

Fig. 2. Host genetic signals associated with salivary microbiome. (a). 746 

Manhattan plot shows the genetic variants associated with the salivary microbial 747 

taxa. The horizontal grey and black lines represent the genome-wide 748 

(p�=�5�×�10−8) and study-wide (p�=�2.97�×�10−11 for 1,685 independent M-749 

GWAS tests) significance levels, respectively. Two loci that associated with salivary 750 

microbiome and reached study-wide significance were marked in red. Their located 751 

genes and associated microbial taxa with p values of < 2.97�×�10−11 were also 752 

listed. (b). p-values comparisons of the 345 and 374 independent loci associated 753 

with tongue dorsum and salivary microbiome (p < 5 × 10-8), respectively. The 6 754 

genome-wide significant loci shared by tongue dorsum and salivary microbiome 755 

were listed. 756 

 757 

Fig. 3. Oral microbiome and genetic PRS infer a significant fraction of the 758 

variance of dental diseases. (a) R2 estimates of six dental diseases and their 759 

significance contributed by oral microbiome, evaluated using linear model in 760 

lightGBM package. * p < 0.05, ** p < 0.01 and *** p < 0.001. (b) Predictive efficiency 761 

of six dental diseases (measured using coefficient of determination (R2)), evaluated 762 

using a linear model under five different sets of predictive features: (i) relative 763 

abundances of salivary microbial taxa; (ii) relative abundances of tongue dorsum 764 

microbial taxa; (iii) PRS calculated as an unweighted sum of risk alleles from 765 

independent and significant SNPs (LD r2 < 0.2, p < 10-5) for each oral disease; (iv) 766 

‘PRS + salivary microbiome’: PRS, relative abundances of salivary microbial taxa 767 

and (v) ‘PRS + tongue microbiome’: PRS, relative abundances of tongue dorsum 768 

microbial taxa. (c) The discriminative efficiency for six dental diseases (measured 769 

using area under the curve (AUC)), evaluated using a discriminative model under 770 

five different sets of predictive features as described in (b). 771 
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