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Abstract 

Long-term stress has a profound impact on the human brain and cognition, and trait anxiety influences 

stress-induced adaptive and maladaptive effects. However, the neurocognitive mechanisms underlying 

long-term stress and trait anxiety interactions remain elusive. Here we investigated how long-term 24 

stress and trait anxiety interact to affect dynamic decisions during working-memory (WM) by altering 

functional brain network balance. In comparison to controls, male participants under long-term stress 

experienced higher psychological distress and exhibited faster evidence accumulation but had a lower 

decision-threshold during WM. This corresponded with hyper-activation in the anterior insula, less 28 

WM-related deactivation in the default-mode network, and stronger default-mode network decoupling 

with the frontoparietal network. Critically, high trait anxiety under long-term stress led to slower 

evidence accumulation through higher WM-related frontoparietal activity, and increased decoupling 

between the default-mode and frontoparietal networks. Our findings provide neurocognitive evidence 32 

for long-term stress and trait anxiety interactions on executive functions with (mal)adaptive changes. 

 

Keywords: stress, anxiety, network balance, dynamic decision, fMRI  
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Introduction 

Now, more than ever, increasing exposure to psychosocial stress has become an unavoidable part of 

our contemporary society as the pace of life rapidly accelerates. Exposure to sustained stress can have 

a profound impact on the brain and cognition through activation of stress-sensitive neuromodulatory 40 

systems and the release of stress hormones1, 2. The adverse effects of long-term stress on higher-order 

cognitive functions are widely documented2, 3. Yet, long-term stress has also been associated with no 

impairment or even enhanced cognitive functions4. Thus, long-term stress can lead to either beneficial 

forms of learning that promote adaptation or detrimental effects that presage maladaptation, likely 44 

depending on the level of stress resilience or vulnerability of each individual5, 6. Trait anxiety, a stable 

disposition to interpret a wide range of environmental events in a negative way, has been recognized 

as a vulnerable factor7, 8, which could account for the seemingly paradoxical effects of stress. 

Neurocognitive models of human anxiety suggest that high trait-anxious individuals tend to make 48 

additional effort to prevent shortfalls in performance effectiveness (i.e., accuracy) with deficits 

becoming evidence in processing efficiency (i.e., reaction times, RTs) on tasks involving executive 

function and deliberate dynamic decision processing such as WM 9, 10, 11. However, how trait anxiety 

and long-term stress interact to affect dynamic decisions during WM remains unclear. Considering 52 

both long-term stress and trait anxiety provides a better understanding of the profound effects of 

long-term stress on the brain and cognition than either in isolation. 

 

Recent advances in computational modeling of trial-by-trial decision making enable us to identify 56 

latent dynamic computations in various cognitive domains including WM12, 13. Research in 

sequential-sampling theory posits that WM (i.e., the N-back task), analogous to speeded 
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decision-making, can be modeled as an evidence accumulation process during which effective 

information (namely evidence) extracted from a stream of inherently noisy observations are rapidly 60 

accumulated until sufficient evidence reaches the threshold to make a decision and the choice 

response is then executed14. Drift diffusion model (DDM), in particular, is used to decompose 

participant’s choice responses in a given task into latent decision-making dynamics modulated by 

several free parameters. Of these parameters, the speed of evidence accumulation refers to ‘drift rate’ 64 

reflecting the ability to extract effective information from perceived inputs15, and ‘decision threshold’ 

represents the amount of accumulated evidence to reach a decision. The frontal-parietal network (FPN) 

regions, particularly the dorsolateral prefrontal cortex (dlPFC) in the middle frontal gyrus and the 

inferior parietal sulcus (IPS), are responsible for evidence accumulation16. Single-cell recordings in 68 

non-human primates have also established a link between latent evidence accumulation and neural 

firing rates in the dlPFC and the IPS17, 18, 19. These FPN regions are also the major targets of stress 

hormones such as glucocorticoids and catecholamines through which neuronal excitability and 

network connectivity in the PFC are affected20, 21. As a vulnerable phenotype of stress-related mental 72 

illness, high trait anxiety has been linked to deficient processing efficiency anchored onto the FPN 

critical for executive function22. Yet, how long-term stress and trait anxiety interact to affect the FPN 

in the dynamic decision process remains open. 

 76 

The engagement of FPN regions during WM is usually accompanied by disengagement of core 

regions of the default mode network (DMN), especially the posterior cingulate cortex and medial 

prefrontal cortex. These DMN regions has been implicated in mind-wandering and allocation of 

resources to internal thoughts23. Greater disengagement of the DMN regions has been linked to better 80 
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WM performance24, suggesting its role in suppression of irrelevant thoughts to support externally 

goal-directed tasks. Less DMN deactivation has been observed under acute stress and anxious 

individuals25, implying deficient reallocation of resources from internal thoughts to external tasks. 

Moreover, the salience network (SN) has been implicated in triggering a shift of neurocognitive 84 

resources to prioritize affective processing over deliberate executive functions including WM26. 

Indeed, hyper-activation in the anterior insula and dorsal anterior cingulate cortex (dACC), core nodes 

of the SN, have been reported by many studies in anxious individuals23. Although reduced 

disengagement of the DMN and hyper-activation in the SN has been observed under acute stress27, 88 

whether or not sustained exposure to stress leads to a similar effect on the DMN and SN remains 

unclear. 

 

Beyond local activation, human WM relies on nuanced functional coordination among large-scale 92 

brain networks of the FPN, SN and DMN to support constantly maintaining and updating of relevant 

information according to ever-changing cognitive/environmental demands. In particular, functional 

antagonism or decoupling between FPN and DMN regions plays a crucial role in support of 

goal-directed WM processing while suppressing task-irrelevant internal thoughts and 96 

mind-wandering28. Evidence from dynamic functional interactions suggests that the SN is responsible 

for regulating a balance between FPN engagement and DMN disengagement to facilitate access to 

externally oriented stimuli and inhibit internally oriented attention during WM29. Unbalanced 

functional organization of these networks, with either hypo- or hyper-connectivity, has been seen in 100 

anxious individuals or under stress12, 30. However, how trait anxiety modulates the effects of long-term 

stress on functional balance of these networks during WM remains open. 
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Here we address the questions proposed above by leveraging fMRI and computational modeling of 104 

trial-by-trial decision responses to investigate how long-term stress and trait anxiety interact to affect 

dynamic decision computations during WM processing (Fig. 1a). In the long-term stress group, 

thirty-six* male participants were recruited from those who have been preparing for the upcoming 

competitive Chinese National Postgraduate Entrance Exam (CNPEE) for at least 6 months. Exposure 108 

to such an exam has been proven as a natural long-term psychosocial stressor by our and other 

laboratories31, 32. In the control group, thirty-two† male participants matched in age and education 

who were not preparing for the CNPEE and did not have exposure to other major stressors in past 6 

months were recruited. Participants underwent fMRI scanning while performing a numerical N-back 112 

task with a block design consisting of 0- and 2-back conditions (Fig. 1b). Trait anxiety and 

psychological distress were assessed by the State-Trait Anxiety Inventory33 and Symptom Checklist 

90 (SCL-90)34 one day prior to the fMRI experiment. A Bayesian hierarchical version of the DDM 

(HDDM) was implemented to identify latent dynamic decisions during WM processing. Brain 116 

activation and network approaches were employed to identify how long-term stress and trait anxiety 

alter functional brain network balance during WM, including task-invoked activation/deactivation, as 

well as inter-network coupling amongst core nodes of the FPN, SN and DMN. Based on 

neurocognitive models of stress and anxiety, we expected that individual differences in trait anxiety 120 

would modulate the effects of long-term stress on latent dynamic decisions during WM, likely 

involving altered brain functional balance among the FPN, DMN, and SN regions at WM-related 

                                                               

* The final sample size was included for further fMRI data analyses in the stress group. 
† The final sample size in the control group. Details are provided in the Methods. 
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activation, deactivation, and network coupling levels.   
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Results 124 

Effects of long-term stress and trait anxiety on psychological distress 

We first investigated how long-term stress and trait anxiety affect psychological distress. Participants’ 

trait anxiety and psychological distress scores are listed in Table S1. No scores reached clinical levels 

of psychopathology based on SCL-90 norms41. Two-sample t-test revealed higher psychological 128 

distress in the stress than control group [t(65) = 2.08, p = 0.041](Fig. 1a). Moreover, individuals with 

higher trait anxiety exhibited greater psychological distress within both the stress [r(34) = 0.65, p < 

0.001] and control groups [r(29) = 0.41, p = 0.02](Fig. 1b), even after regressing out state anxiety 

[stress: r(34) = 0.48, p = 0.004, control: r(29) = 0.47, p = 0.008]. Further analysis with Fisher’s 132 

z-transformed correlation coefficients revealed no group difference [z = 0.05, p = 0.96]. Prediction 

analyses based on machine learning using four-fold balanced cross-validation with linear regression 

confirmed that higher trait anxiety was predictive of greater distress after controlling for state anxiety 

in both groups (stress: r(predicted, observed) = 0.46, p = 0.002; control: r(predicted, observed) = 0.29, p = 0.036). 136 

These results indicate that individuals under long-term stress experience greater psychological distress 

than controls, with higher trait anxiety predictive of more distress in general. 

 

Effects of long-term stress on WM performance and latent dynamic decision measures  140 

Next, we investigated how long-term stress affects WM performance and latent model-based 

measures. Separate 2-by-2 analyses of variance (ANOVAs) were conducted for accuracy and average 

RTs with Group (stress vs. control) as between-subject factor and WM load (0- vs. 2-back) as 

within-subject factor. These analyses revealed a main effect of WM load for accuracy and RTs [both 144 

F(1, 66) ≥ 5.21, p ≤ 0.026], with lower accuracy and slower RTs as task demands increased from 0- to 
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2-back condition [t(66) =9.33, p < 0.0001]. Critically, we also observed a main effect of Group for 

RTs [F(1,66) = 5.37, p = 0.024], which was mainly driven by faster RTs in the 2-back condition in the 

long-term stress group than controls [t(95.2) = -2.40, p = 0.018], though this was less pronounced in 148 

the 0-back condition [t(95.2) = -1.77, p = 0.08]. There was no main effect of Group on accuracy, nor 

Group-by-WM interactions for accuracy and RTs [all F(1, 66) ≤ 2.57, p ≥ 0.11]. 

  

We then investigated the effects of long-term stress on model-based measures during WM by fitting 152 

the HDDM to trial-by-trial RTs separately for 0- and 2-back conditions across participants. The model 

comparisons were performed for a total of 15 plausible model variants (Fig. S4). This yielded a model 

allowing for changes in parameters including drift rate v, decision threshold a, non-decision time t, 

and starting point z between conditions to provide the best fit and good convergence (Table S3, Fig. 156 

S5). Separate 2 (Group)-by-2 (WM-load) ANOVAs for model-based latent measures revealed a main 

effect of Group for drift rate [F(1, 66) = 8.91, p = 0.004] and decision-threshold [F(1, 66) = 4.15, p = 

0.046]. Compared to controls, individuals under long-term stress exhibited faster drift rate [t(129) = 

2.38, p = 0.019] with comparable decision threshold [t(83) = -1.44, p = 0.15] in the 2-back condition, 160 

and faster drift rate [t(129) = 2.17, p = 0.032] but less stringent threshold [t(83) = -2.39, p = 0.019] in 

the 0-back condition. The statistics for other measures are provided in Table S4. Both drift rate and 

decision threshold exhibited high correlations and the predictive ability to RTs in the 2-back condition 

(Table S10-11), indicating that model parameters can be recovered from the actual RTs. Together, these 164 

results indicate prominent effects of long-term stress on RTs during WM, along with faster drift rate 

mainly in moderate task demand but lower decision threshold in low task demand.  
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Long-term stress shifts the balance between WM-related brain activation and deactivation  168 

We further investigated how long-term stress affects brain systems during WM processing using 

whole-brain 2 (Group)-by-2 (WM-load) ANOVA. By contrasting the 2- with 0-back condition, we 

replicated robust WM-related activation and deactivation in core regions of the FPN and DMN 

respectively (whole-brain family wise error corrected P < 0.05) (Fig 3a). Importantly, a contrast 172 

reflecting the main effect of Group revealed a robust hyper-activation in the anterior insula (Fig 3b) 

and the middle occipital cortex extending into the cuneus (Fig. S9) in individuals under long-term 

stress, compared to than controls (Table S12) (voxel-wise P < 0.001, cluster P < 0.05 corrected). We 

also observed a Group-by-WM interaction in a set of distributed regions in the SN and DMN (Fig. 176 

4a-b, Table S13). To verify whether these regions were engaged in WM-related (de)activation, we 

performed a conjunction analysis between the two contrasts reflecting Group-by-WM interaction and 

WM-related (de)activation (Methods). This revealed significant clusters in the dACC and the anterior 

insula (Fig 4b, Table S13) with greater WM-related activation in these regions in the long-term stress 180 

group than controls (voxel-wise P < 0.005, cluster P < 0.05 corrected). In the opposite contrast, we 

observed clusters in the DMN, with less WM-related deactivation in the medial prefrontal cortex 

(MPFC) and posterior cingulate cortex (PCC) in the long-term stress group than controls (Fig 4a, 

Table S13) (voxel-wise P < 0.005, cluster P < 0.05 corrected). These results indicate that long-term 184 

stress leads to hyper-activation in the SN regions, but less WM-deactivation in the DMN regions.  

 

Long-term stress and trait anxiety alter latent dynamic decisions through fronto-parietal 

activity 188 

We then investigated whether trait anxiety modulates the effects of long-term stress on RTs and drift 
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rate observed above. No direct associations of trait anxiety with RTs or drift rate were observed in 

either group (Table S5). Given the prominent effects of long-term stress on drift rate in the 2-back 

condition, we investigated how trait anxiety modulates neural correlates of drift rate in this condition 192 

under long-term stress compared to controls. Whole-brain independent sample t-test was conducted 

for WM-related activity maps between the two groups with drift rate as a covariate of interest. This 

analysis revealed a cluster in the IPS (voxel-wise P < 0.005, cluster P < 0.05 corrected), with higher 

WM-related activity in this region associated with slower drift rate in the long-term stress group [r(34) 196 

= -0.48, p = 0.003], but an opposite pattern in the control group [r(30) = 0.40, p = 0.024](Fig 5a). 

Further analysis for Fisher’s z-transformed correlations revealed a group difference [z = -3.71, p < 

0.001]. When restricting our analysis to the stress group (see Methods for the rationale), we also 

observed a significant cluster in the MFG (voxel-wise P < 0.005, cluster P < 0.05 corrected), with 200 

higher WM-related activity in this region associated with slower drift rate under long-term stress (r(34) 

= -0.52, p = 0.001), but no reliable correlation in controls (r(30) = 0.19, p = 0.31) (group difference: z 

= -3.02, p = 0.003). Prediction analyses confirmed that higher activity in the IPS and MFG was 

predictive of slower drift rate in the long-term stress group (Table S11). Parallel analyses for decision 204 

threshold revealed no reliable correlation with WM-related brain activity. 

 

We then investigated whether trait anxiety modulates the correlations between WM-related 

fronto-parietal activity and drift rate under long-term stress in comparison to controls. Although drift 208 

rate displayed no reliable correlation with trait anxiety in either group [r ≥ -0.09, p ≥ 0.60], we 

observed positive correlations of trait anxiety with WM-related fronto-parietal activity in the 

long-term stress group (IPS: r(34) = 0.48, p = 0.003; MFG: r(34) = 0.39, p = 0.02) but not controls 
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(IPS: r(30) = 0.11, p = 0.54; MFG: r(30) = -0.14, p = 0.44) (Fig 5a&b). Prediction analyses confirmed 212 

that higher trait anxiety was predictive of higher activity in the IPS and MFG (Table S11). Further 

tests revealed a group difference in correlations for the MFG (z = 2.16, p = 0.03) but not IPS (z = 1.62, 

p = 0.11). 

 216 

Given higher activity in the IPS and MFG were reliably associated with higher trait anxiety and 

slower drift rate in the long-term stress group, one may conjuncture that WM-related activity in these 

regions could act as a mediator to account for an indirect association between trait anxiety and drift rate. 

We thus implemented multi-group structural equation models (SEMs) to test potential mediation 220 

effects of WM-related activity in the IPS and MFG on the indirect associations between trait anxiety 

and drift rate in the long-term stress and control groups. These analyses revealed significant mediation 

effects of WM-related frontoparietal activity [IPS: indirect Est. = -0.016, 95%CI = [-0.034, -0.006]; 

MFG: indirect Est. = -0.013, 95%CI = [-0.029, -0.003] on the indirect association between trait 224 

anxiety and drift rate under long-term stress (Fig 5a&b) but not controls (Fig S7, Table S7). Critically, 

further analyses revealed significant group differences in the mediation effects for the IPS (Est. = 

-0.018, 95%CI = [-0.038, -0.005]) and MFG (Est. = -0.012, 95%CI = [-0.028, -0.001]). Parallel 

analyses for state anxiety, however, exhibited no group differences in the mediation effects for the IPS 228 

(Est. = -0.007, 95%CI = [-0.020, 0.006]) and MFG (Est. = -0.008, 95%CI = [-0.025, 0.003]) 

between long-term stress and controls (Table S8). Together, these results indicate that individuals with 

higher trait anxiety are prone to exhibit slower evidence accumulation than controls mediated through 

higher frontal-parietal activity during WM under long-term stress.    232 
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Long-term stress and trait anxiety alter large-scale functional brain network balance during 

WM  

To further investigate how long-term stress and trait anxiety affect functional coordination of 236 

large-scale brain networks during WM decision processing, we analyzed intra- and inter-network 

coupling and decoupling among the FPN, DMN and SN regions in the long-term stress group and 

controls. The FPN, DMN and SN nodes were independently defined to avoid double dipping or 

selection biases, then intra- and inter-network coupling metrics were computed for each participant 240 

(Fig 6a). Separate 2 (Group)-by-2 (WM-load) ANOVAs were conducted for these network data. For 

intra-network coupling, we found a main effect of WM-load for the FPN [F(1, 66) = 4.17, p = 0.045], 

but no long-term stress effects nor Group-by-WM interactions were found [all F(1,66) ≥ 0.78, p > 

0.10] (Table S21). 244 

 

For inter-network coupling, we found a main effect of WM-load for both FPN-DMN decoupling 

[F(1,66) = 12.79, p < 0.001] and SN-DMN coupling [F(1,66) = 4.67, p = 0.034] with increased 

decoupling in the 2- than 0-back condition (all t(66) > 3.00, p < 0.01). Moreover, we found a main 248 

effect of Group [F(1, 66) = 3.36, p = 0.028] only for FPN-DMN decoupling, with greater decoupling 

under long-term stress than controls [t(66) = -2.25, p = 0.028 (Fig 6b). However, no Group-by-WM 

interaction was observed (Table S21). Control analyses using nodes from meta-analysis of previous 

studies yielded similar effects (Fig. S8). Critically, individuals with higher trait anxiety exhibited 252 

stronger FPN-DMN decoupling under long-term stress [r(34) = -0.36, p = 0.034], but an opposite 

pattern was found in controls [r = 0.32, p = 0.079] in the 2-back condition even after controlling for 

state anxiety (Fig 6c). Prediction analyses confirmed that higher trait anxiety was predictive of 
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stronger FPN-DMN decoupling under long-term stress (Table S11). Further analysis revealed a 256 

significant group difference [z = -2.78, p = 0.005], indicating a prominent interaction between trait 

anxiety and long-term stress on FPN-DMN decoupling. Interestingly, higher FPN-DMN decoupling 

was associated with lower drift rate in the stress group [r(34) = 2.19, p = 0.036]. No mediation effects, 

however, were observed among trait anxiety, FPN-DMN decoupling, and drift rate in either group. 260 

These results indicate that long-term stress leads to increased FPN-DMN decoupling, and higher trait 

anxiety is predictive of stronger FPN-DMN decoupling in those under long-term stress but not in 

controls.  

 264 

 

Discussion 

In this study, we investigated the neurocognitive mechanisms of how long-term stress and trait 

anxiety interact to affect dynamic decision computations during WM. We found that long-term stress 268 

led to higher psychological distress, faster RTs, and faster drift rate, but a lower decision-threshold 

than controls, with higher trait anxiety predictive of greater distress. These effects occurred with 

general hyper-activation in the anterior insula, greater WM-related activation in SN regions, and less 

WM-related deactivation in DMN regions. Moreover, individuals with higher trait anxiety were prone 272 

to slower drift rate via higher WM-related activity in FPN regions in the long-term stress but not 

control group. Long-term stress also led to stronger DMN decoupling with the FPN than controls, 

with higher trait anxiety predictive of stronger FPN-DMN decoupling in those under long-term stress. 

Our findings provide a neurocognitive account for the interplay of long-term stress and trait anxiety 276 

on latent dynamic decisions during WM, via altered functional brain network balance among FPN, 
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DMN and SN regions.  

 

As expected, individuals in the long-term stress group experienced higher psychological distress than 280 

controls, indicating the effectiveness of our natural long-term stress paradigm. Moreover, individuals 

with higher trait anxiety experienced more psychological distress in general, even after controlling for 

state anxiety. These results are in line with previous findings on sustained distress and other symptoms 

in chronic stress35, which agrees with the psychological view of trait anxiety as a vulnerable 284 

phenotype of stress-related psychopathology7, 8. Behaviorally, individuals under long-term stress 

exhibited faster RTs but comparable accuracy during WM than those in controls. Higher drift rate in 

the 2-back condition but a less stringent decision threshold in the 0-back condition was further 

observed by computational modeling of trial-by-trial decisive responses. In accordance with 288 

integrative models of stress, anxiety, and cognitive performance9, 36, our results show that sustained 

exposure to exam stress may not impair performance effectiveness (i.e., comparable accuracy), and 

may enhance processing efficiency (i.e., faster RTs and drift rate) under moderate task demand 

conditions. However, enhanced efficiency differs from previously reported cognitive deficits of 292 

chronic stress2, 3. Two factors are critical to reconcile this discrepancy. First, according to the 

Yerkes–Dodson law, the effects of stress on behavioral performance exhibits a nonlinear inverted-U 

shape curve as a function of stress severity and task difficulty. Thus a beneficial effect can be reached 

at moderate levels of stress and task demands37. In this view, our observed faster RTs and drift rate 296 

may reflect enhanced processing efficiency at moderate WM-load in those under exam stress. 

Likewise, one previous study reported that stressed participants reacted faster at moderate WM-load38. 

Additionally, our observed less stringent decision threshold under low task demand may reflect 
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stress-induced tendency to a liberal response bias39.  300 

 

Another factor is the interplay of long-term stress with trait anxiety that entails an individual’s 

resilience and vulnerability to maladaptation7, 40. When taking individual’s trait anxiety into account, 

lower trait-anxious individuals exhibited relatively faster drift rate in those under long-term stress than 304 

in controls (Figure S6), while accuracy remained at a comparable level across groups and anxiety 

levels. In other words, stress-induced faster drift rate is driven by low-trait anxious individuals, 

suggesting that a beneficial form of adaptation to sustained exam stress is likely driven by enhanced 

processing efficiency in those individuals. This is consistent with previous studies on stress 308 

vulnerability reporting that some individuals seem to act as “resilient” agents who can develop 

adaptive strategies to cope with stress6, 7, 40. Furthermore, our observations on high trait-anxious 

individuals may reflect the recruitment of compensatory strategies to prevent shortfalls in accuracy 

according to an influential model of cognitive trait anxiety and performance41. As we discuss later, the 312 

interplay of long-term stress and trait anxiety on drift rate was further modulated by a shift in brain 

functional balance at WM-related (de)activation and network (de)coupling levels.  

 

At the brain activation level, individuals under long-term stress exhibited a general hyper-activation in 316 

the anterior insula regardless of WM load. Similar hyper-activation was reported by previous studies 

on hyper-vigilance in those experiencing distress, as well as in anxious individuals in healthy and 

psychiatric populations42. Thus, our observed hyper-activation may reflect an increase in emotional 

awareness of distressed feelings43. Similar hyper-activation has been linked to increased sensitivity to 320 

sensorimotor processing, which could explain the aforementioned liberal response bias under 
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long-term stress. Moreover, long-term stress led to greater WM-related activation in core nodes of the 

SN including the anterior insula and dACC, but less WM-related deactivation in the DMN regions. 

The anterior insula and dACC are thought to support salience processing, emotional awareness of 324 

distress, and executive function25, 44. Based on the dual competition model of emotion-cognition 

interaction45, such SN regions are responsible for reallocating neural resources to resolve competition 

between emotional processing and executive function. Thus, greater SN engagement under long-term 

stress may reflect recruitment of additional effort to cope with stress reactivity and to regulate 328 

stress-induced distress feelings along with related thoughts that are irrelevant to the WM task. 

Stress-induced task-irrelevant internal thoughts were indicated by accompanying less DMN 

deactivation, which parallels the empirical findings of aberrant DMN suppression in psychiatric 

diseases such as depression46. It is possible that our observed less WM-related DMN deactivation may 332 

interact with greater SN activation to accomplish the WM task while suppressing distress feelings and 

irrelevant thoughts. 

 

With respect to long-term stress and trait anxiety interactions on brain-behavior relationships, 336 

individuals with higher trait anxiety under long-term stress exhibited an indirect association with 

slower drift rate through higher WM-related frontoparietal activity but not those in controls. The lack 

of a mediation effect in the control group suggests that the FPN serves as a mediator only in 

individuals under long-term stress. Such mediation effects parallel the cognitive models of anxiety 340 

and related studies showing that high trait anxiety impairs processing efficiency but not performance 

effectiveness on tasks involving executive function under stressful conditions9. As discussed earlier, 

anxious individuals may recruit additional resources as a compensatory strategy to achieve 
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comparable performance effectiveness10, 11, 41. Given the dlPFC and IPS have been associated with 344 

drift rate in the process of evidence accumulation in human and non-human primate studies with 

single cell recording17, 18, 47, our observed higher frontoparietal engagement provides neuroimaging 

evidence to suggest that higher trait-anxious individuals under long-term stress tend to recruit more 

neural resources to maintain comparable performance at the cost of the speed of evidence 348 

accumulation to make correct decisions. Specifically, when performing the 2-back task under a 

normative condition, one must constantly update and maintain the most recent 2-items in mind and 

accumulate sufficient evidence extracted from each rapidly presented stimulus to ensure a correct 

decision whether the current item is a target or not48. Under stress, however, high trait-anxious 352 

individuals experienced more distress likely with a hypervigilant state as indicated by hyper-activation 

in the SN. This might have impeded efficient extraction of target-relevant information due to potential 

confounds by feelings of distress, irrelevant thoughts, or other noise. Hence, more time is needed to 

accumulate sufficient evidence to reach a decision, thereby slowing the speed of evidence 356 

accumulation. Indeed, recent studies reported that the negative impact of trait anxiety extends beyond 

aversive feelings and involves impediment of ongoing goal-directed behaviors. This then results in an 

impaired capacity to disengage from the previously relevant sensory information to overcome 

distracting stimuli12, 41.  360 

 

According to the neurobiological models of stress, the major targets of stress-sensitive hormones 

include regions of the FPN critical for drift rate during WM processing49. Given the link of high trait 

anxiety to stress sensitivity and stress hormone release8, we thus speculate that excessive stress 364 

hormones might in part account for the higher activity in the IPS and MFG in trait-anxious individuals 
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under long term-stress. By extending such neurobiological accounts, our findings provide new 

insights suggesting that high trait anxiety per se does not necessarily lead to cognitive deficits. Rather, 

high trait anxiety works in concert with long-term stress to determine the (mal)adaptive effects on 368 

human brain and cognition. Together, under long-term stress, a slower speed of evidence 

accumulation in higher trait-anxious individuals may reflect less efficient evidence accumulation in 

the process of dynamic decisions during WM, likely via increased FPN engagement in order to make 

correct responses.  372 

 

At the brain network level, we found greater FPN-DMN decoupling during WM under long-term 

stress than controls. Empirical evidence from previous studies has demonstrated that such increased 

decoupling likely reflects more effort to suppress task-irrelevant internal thoughts and mind 376 

wandering50. Likewise, stronger FPN-DMN decoupling here may reflect recruitment of additional 

effort to suppress task-irrelevant internal thoughts, while performing the goal-directed WM task. This 

notion is also in line with our observed faster RTs and drift rate under long-term stress. Critically, 

individuals with higher trait anxiety exhibited stronger decoupling between DMN and FPN regions in 380 

those under long-term stress but not in controls, and such stronger decoupling was then associated 

with slower drift rate. This again provides evidence to suggest that high trait-anxious individuals 

might recruit additional resources relying on FPN-DMN decoupling, along with the elevated FPN 

activity mentioned above, to make correct responses and prevent a shortfall in accuracy at the cost of 384 

processing efficiency. Notably, the SN, especially the anterior insula and dACC, is thought to play a 

role in generating control signals to regulate switching between the FPN engagement in goal-directed 

tasks and DMN disengagement from irrelevant thoughts and mind wandering29, 44, 51. Although we did 
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not find effects of long-term stress and/or trait anxiety on SN coupling with other networks, this 388 

switching mechanism is still relevant to account for our observed hyper-activation of the SN, along 

with less WM-related deactivation in the DMN and the increased DMN-FPN decoupling under 

long-term stress. Such alterations in functional brain network balance may reflect shifted attention out 

of internally-driven mental activity (i.e., stress-related distress feelings) in order to make correct 392 

decision during a WM task. 

 

It is worth noting that although trait and state anxiety are recognized as two distinct constructs in 

psychometric theory, they are inherently inter-correlated and thus challenging to dissociate. 396 

Nevertheless, our conclusions on trait anxiety still hold after controlling for state anxiety. Notably, the 

mediation effects of WM-related fronto-parietal activity on an indirect association between high trait 

anxiety and slower drift rate are only present in those under long-term stress. Such mediation effects 

are not present for those with higher state anxiety. The following limitations should be considered. 400 

First, we only included male participants to mitigate potential confounds related to menstrual cycles52, 

which limits the generalizability of our findings. Second, individual’s intelligence may complicate our 

observed effects of long-term stress and trait anxiety on WM, though null effects of long-term stress 

or trait anxiety on WM accuracy may neutralize this concern. Third, individuals exposed to long-term 404 

exam stress might experience sleep disruption and other stressors that could complicate our findings. 

Fourth, our block design for the WM task precludes trial-by-trial parametric modulation analyses 

linked to computational measures. Because there are a relatively small number of trials in our WM 

task, we used the HDDM given its suitability for estimating model parameters with few trials across 408 

participants53. In fact, our validation analyses showed a good model fit as reported by previous 
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studies54, 55, indicating that model parameters can be reliably recovered from actual RTs. Future 

studies with novel designs are needed to resolve these limitations. 

 412 

In conclusion, our study demonstrates that long-term stress and trait anxiety interplay to affect latent 

dynamic decisions during WM by altering brain network balance in core regions of the SN, FPN, and 

DMN. Our findings point toward a neurocognitive model suggesting that trait anxiety modulates 

latent decision-making dynamics during WM under long-term stress. This may inform personalized 416 

assessments and preventions for stress-related (mal)adaptation. 

 

 

  420 
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Methods 

Participants:  

Seventy-two healthy male senior college students participated in this study. Thirty-eight participants 

(age range: 20-24 years old, mean ± S.D. = 21.57 ± 0.83) in the long-term stress group were recruited 424 

1-3 weeks before a highly competitive Chinese National Postgraduate Entrance Examination 

(CNPEE). An independent cohort of 34 male participants matched in age and education (age range: 

20-24 years old, mean ± S.D. = 21.61 ± 0.92) who did not participate in the CNPEE or have any other 

anticipated stressor were recruited to the control group. Inclusion criteria for long-term exam stress 428 

were as follows (Figure S1): (1) Participants had been preparing for the upcoming competitive 

CNPEE for at least 6 months. (2) Participants had to provide the CNPEE certificate registered more 

than 6 months before the experiment. (3) They had to participate the experiment within a 1 to 3-week 

time window before the CNPEE to ensure that they were experiencing high levels of psychosocial 432 

stress. We didn’t included female participants in order to mitigate potential confounds of their 

menstrual cycles52. Informed written consent was obtained from all participants prior to the 

experiment, and the study protocol was approved by the Institutional Review Board for Human 

Subjects at Beijing Normal University. Four participants (two in each group) were excluded from 436 

further analyses due to head movement more than one voxel in translation or in rotation.  

 

General experimental procedure and working memory (WM) task  

Both psychological distress and trait anxiety measures were administrated one day before the fMRI 440 

experiment to mitigate potential confounding effects for their self-reports that may suffer from bias 

during times of acute stress in the task experiment. On the experimental day, participants were 
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instructed to practice the task before fMRI scanning56. We used the 0- and 2-back conditions only, in 

order to create a robust contrast between low and moderate task demands to gain the differences in 444 

modeling parameters, brain activation, and connectivity measures between these two conditions. 

Participants then underwent fMRI scanning while performing the N-back task.  

 

The entire N-back task included ten blocks, which alternated between five 0-back blocks and five 448 

2-back blocks, interleaved by a jittered fixation that ranged from 8 to 12 sec. Each “block” refers to an 

experimental condition that consists of a sequence of items presented continuously for an extended 

time interval to maintain a steady state of certain cognitive processing such as 0- or 2-back condition 

here. In each block, a pseudorandomized sequence that included 15 digits was presented, with a 400 452 

ms duration of each digit, followed by an inter-stimulus-interval of 1400 ms. Each block started with a 

cue indicating the 0-back or 2-back condition. In the 0-back task, participants were instructed to detect 

whether the current item was ‘1’. In the 2-back task, participants were asked to decide whether the 

current item had appeared two positions back in the sequence (Figure 1b). When detecting a target, 456 

participants were required to press a button with their index finger as quickly and accurately as 

possible, and to withhold their response for target-absent trials. There were 21 targets and 17 targets 

for the 0- and 2-back conditions respectively.  

 460 

Psychological measurements of long-term stress 

The State-Trait Anxiety Inventory33, one of the most commonly used scales to measure trait anxiety 

level in healthy populations, was collected both in the stress and control groups. The Symptom 

Checklist (SCL-90) was used to evaluate psychological distress including symptoms of 464 
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psychopathology under long term stress57. One outlier larger than 2.5 standard deviations from the 

control group was excluded for SCL data. 

 

Drift diffusion modeling for trial-by-trial decision responses in WM 468 

The DDM conceptualizes decision-making as an evidence accumulation process in which effective 

evidence is extracted from the representations of stimuli that are inherently variable and noisy, and 

gradually accumulated over time until sufficient evidence reaches the decision threshold and a choice 

is executed (Fig 2a). For the 2-back task, such evidence accumulation process can be considered as 472 

accumulating effective information in mind on the exact position of each item in order to make a 

precise decision whether the current item appeared two positions back in the sequence. The DDM was 

then implemented to decompose participants’ trial-by-trial RTs during WM into latent processes 

which were modulated by the following free parameters: 1) drift rate v reflects the speed of evidence 476 

accumulation which depends on the presented stimulus and task difficulty; 2) decision threshold a 

determines how much evidence has to be accumulated until a decision in made and thus reflects the 

level of cautiousness; 3) non-decision time t reflects processes unrelated to the decision (e.g., sensory 

processing in visual areas and motor execution of the choice); 4) starting point z reflects the prior 480 

response bias or preference toward one choice over the other58. 

 

The DDM is known as a de-facto standard for the two-alternative forced choice tasks, in which the 

two choices correspond to the upper and lower decision boundaries respectively59. Recent advances 484 

have extended the DDM to many task paradigms with one choice such as Go/no-Go task, as RTs of 

no-Go condition cannot be measured60, 61. Likewise, we fitted the DDM to trial-by-trial RTs for hits 
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(target items with successful response) and false alarms (non-target trials with response) in 0- and 

2-back conditions. The DDM parameters were then estimated by the HDDM across participants for its 488 

suitability to a relatively small number of trials, according to the most recent simulation data by 

systematic comparisons of multiple drift models53. Critically, the hierarchical modeling formulated in 

the Bayesian framework allows us to simultaneously estimate parameters on both group and 

individual levels, in a way that individual parameters were drawn from the group distribution58. 492 

Differences in RTs between 0- and 2-back conditions, and between stress and control groups, 

implicate changes in one or more DDM parameters between task conditions and groups. To examine 

whether the four parameters varying 0- and 2-back conditions led to greater biases between different 

models, 15 variants of the DDM with different parameter constraints were established for both stress 496 

and control groups (Figure S4). Model comparisons were conducted by using Deviance Information 

Criterion (DIC)58. For each model, Markov chain Monte Carlo (MCMC) sampling methods were 

applied to perform Bayesian inference by generating 20000 samples and discarding the first 2000 

samples as burn-in. The best model is determined by the minimum DIC. We further employed the 500 

Gelman-Rubin statistic to assess the convergence of the model. Note that a difference of 10 in DIC is 

considered acceptable62. The value of �� computed for all parameters were close to 1.0 and less than 

1.01, indicating good convergence where successful convergence is indicated by values < 1.158. The 

four parameters of each participant from the best fitted model were then submitted to subsequent 504 

analyses. 

 

Behavioral data analysis 

Two-sample t-tests were conducted to compare the differences in trait anxiety and psychological 508 
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distress between groups. Correlation analyses were conducted to compute the relationships of trait 

anxiety with psychological distress and latent dynamic decision measures from HDDM. Statistical 

tests were conducted to compare group differences in Fisher r-to-z transformed correlation 

coefficients. Separate AVNOAs were conducted to examine the effects of long-term stress on 512 

conventional and latent computational measures for the 0-back and 2-back conditions. Mixed factorial 

ANOVAs were conducted using the “afex” R package63, and the Greenhouse-Geisser correction was 

applied whenever a non-sphericity assumption was violated. 

 516 

 

Imaging data acquisition  

Participants were scanned in a Siemens 3.0-Tesla TRIO MRI scanner (Erlangen, Germany) at the 

Brain Imaging Center of the National Key Laboratory of Cognitive Neuroscience and Learning at 520 

Beijing Normal University. Functional images were acquired with a gradient-recalled echo planar 

imaging sequence (axial slices 33, repetition time 2000 ms, echo time 30 ms, flip angle 90°, slice 

thickness 4 mm, gap 0.6 mm, field of view 200 × 200 mm, and voxel size 3.1 × 3.1 × 4.6 mm3). 

Functional imaging session lasted 464 seconds during the N-back WM task. To improve individual 524 

coregistration and spatial normalization, a high-resolution anatomical image was acquired in the 

sagittal orientation using a T1-weighted 3D magnetization-prepared rapid gradient echo sequence 

(slices 192, repetition time 2530 ms, echo time 3.45 ms, flip angle 7°, slice thickness 1 mm, field of 

view 256 × 256 mm, and voxel size 1 × 1 × 1 mm3).  528 

 

Imaging data analysis 
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Preprocessing: Imaging data analysis was performed using Statistical Parametric Mapping 8 (SPM8 

https://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The first four functional volumes were discarded 532 

to enable T1 equilibration. The remaining volumes were first realigned to correct for head motion. 

The realigned volumes were then corrected for slice acquisition timing. The mean functional image 

was coregistered to each participant’s T1-weighted structural image and then normalized to a standard 

stereotaxic Montreal Neurological Institute (MNI) space with a resolution of 2 × 2 × 2 mm�. The 536 

functional images were then spatially smoothed by an isotropic Gaussian kernel with 6-mm full-width 

at half-maximum. 

 

Statistical analysis: Smoothed images were statistically analyzed under the general linear model 540 

(GLM) framework in SPM8. To assess neural activity associated with 0-back and 2-back conditions, 

these conditions were modeled separately as boxcar regressors and convolved with the canonical 

hemodynamic response function built in SPM8. Additionally, six realignment parameters from 

preprocessing were included to account for movement-related variability. The analysis included 544 

high-pass filtering using a cutoff of 1/128 Hz and a serial correlation correction using a first-order 

autoregressive model (AR[1]).  

 

Corresponding contrast parameter images for 0- and 2-back conditions at the individual level were 548 

then submitted to a second-level group analysis using 2-by-2 factorial ANOVA, with Group 

(long-term stress vs. control) as between-subject factor and WM-load (0- vs. 2-back) as within-subject 

factor to examine the main effects of Group and WM-load, and their interaction on task-invoked brain 

response. We identified brain regions showing significant Group and WM-by-Group interaction 552 
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effects, and then applied a conjunction analysis of the minimum statistic64 with the contrasts of ‘2- > 

0-back’ and ‘0- > 2-back’ separately. This allows us to identify brain regions commonly showing 

WM-by-Group interaction and WM-related activation/ deactivation. Significant clusters were 

determined by a voxel-wise height threshold of p < 0.001 and an extent threshold of p < 0.05 556 

corrected for multiple comparisons using suprathreshold cluster-size approach based on Monte-Carlo 

simulations. Given our priori hypotheses regarding the DMN, SN and FPN regions, these regions 

were additionally investigated using a height threshold of p < 0.005 and an extent threshold of p < 

0.05 corrected for multiple comparisons. Monte-Carlo simulations were implemented using the 560 

AlphaSim procedure. Ten thousand iterations of random 3D images, with the same resolution, 

dimensions and 6-mm smoothing kernel as used our fMRI data analysis, were generated. The 

maximum cluster size was then computed for each iteration and the probability distribution was 

estimated across the 10,000 iterations. This approach allowed us to determine the minimum cluster 564 

size that controls for false positive rate for regions of interest. Parameter estimates were extracted 

from significant clusters to characterize task-invoked response as a function of WM-load, trait anxiety 

and groups using 3dmaskave built in AFNI.  

 568 

Given the prominent effect of long-term stress on drift rate in 2-back condition, we then focused on 

neural correlates of drift rate in long-term stress and control groups in the following analyses. To 

identify brain regions showing the interaction effects between group and drift rate, two-sample t-test 

was conducted for contrast images of the 2-back condition by treating drift rate as a continuous 572 

covariate with no mean centering (analogous to ACNOVA). Additionally, we also examined 

WM-related brain activity associated with drift rate but not necessarily interacting with groups, which 
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might exhibit the mediation effects in the long-term stress different from controls. Whole-brain 

regression analysis was then conducted to search for the neural correlates of drift rate in the 2-back 576 

condition in the stress group. Significant clusters were determined by the same criteria as noted above 

and corresponding parameter estimates were then extracted. Once associations between drift rate and 

brain activation were identified, we then conducted correlation analyses to examine whether such 

brain activation was also associated with individual differences in trait anxiety for both two groups. If 580 

WM-related brain activity was correlated with both drift rate and trait anxiety, structural equation 

models were then constructed to examine the potential mediation effects of WM-related brain activity 

in these regions. 

 584 

Structural equation modeling (SEM)  

Separate multi-group SEMs were conducted via MPLUS 7.4 65 to test the mediating effects of 

WM-related activity (i.e., IPS and MFG) on the association between trait anxiety and drift rate in 

long-term stress and control groups. Both direct and indirect effects of two groups and their group 588 

differences were estimated using 95% bias-corrected CIs with 10000 bootstrapped resamples66. The 

95% bias-corrected CIs without the inclusion of 0 indicates a statistically significant indirect effect at 

P < 0.0566. Several fit indices evaluating the fitness of the proposed models were provided and used 

the following guidelines for judging good fit: The root mean square error of approximation (RMSEA) 592 

is considered adequate below 0.08. The standardized root mean square residual (SRMR) refers to the 

standardized difference between the observed correlation and the predicted correlation, and 

considered acceptable with values of 0.08 or less67. The comparative fit index (CFI) considers the 

number of parameters, or paths, in the model and is considered good at 0.93 or above.  Parallel 596 
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analyses were further conducted for state anxiety.  

 

 

Prediction analysis 600 

Prediction analyses were performed by Python package “sklearn”, using a machine learning approach 

with balanced 4-fold cross-validation with 4 repeats combined with linear regression to confirm the 

conventional correlations68. The 4-fold cross-validation procedure was used to avoid overfitting that 

can occur when the leave-one-out cross-validation procedure is used on small sample sizes. We first 604 

estimated r(predicted, observed), the correlation between the values predicted by the regression model and the 

observed/actual values, using a balanced fourfold cross-validation procedure. The r(predicted, observed) is a 

measure of how well the independent variable(s) predict the dependent variable. Data were divided 

into four folds such that the distributions of dependent and independent variables were balanced 608 

across folds. A linear regression model was built using three folds, leaving out one fold. The samples 

in the left-out fold were then predicted using this model, and the predicted values were noted. This 

procedure was repeated four times, and finally an r(predicted, observed)was computed based on the predicted 

and observed values. Finally, the statistical significance of the model was assessed using 612 

nonparametric analysis. The empirical null distribution of r(predicted, observed) was estimated by generating 

500 surrogate datasets under the null hypothesis that there was no association between independent 

and dependent variables. Each surrogate dataset Di of size equal to the observed dataset was 

generated by permuting the labels (dependent variables) on the observed data points. r(predicted, observed)i 616 

was computed using the actual labels of Di and predicted labels using the fourfold cross-validation 

procedure described previously. This procedure produces a null distribution of r(predicted, observed) for the 
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regression model. The statistical significance of the model was then determined by counting the 

number of r(predicted, observed)i greater than r(predicted, observed)and then dividing that count by the number of Di 620 

datasets (500 in our case).  

 

Network analysis for task-state fMRI data 

Node definition of brain networks: Core nodes of the typical FPN, DMN and SN were derived from 624 

an automated meta-analysis of the most recent 11,406 fMRI studies in Neurosynth 

(http://www.neurosynth.org)69. The nodes in these three networks are presented in Figure 6a. Briefly, 

brain masks of the FPN, DMN and SN were first generated using three separate terms of ‘working 

memory’, ‘default mode’, and ‘salience network’, respectively. The nodes of the FPN included the 628 

DLPFC and the IPS. The nodes in the DMN included the MPFC and the PCC, and the nodes in the 

SN included the dACC and the AI. Among these ROI masks, the MPFC, PPC and dACC, locating at 

the middle line structures, form into their own joint clusters across both the left and right hemispheres. 

For the remaining masks, we combined the clusters from the left and right hemispheres into one 632 

unified mask, and time series from the left and right hemispheres were the averaged. The nodes were 

visualized with the BrainNetViewer (http://www.nitrc.org/projects/bnv/).  

 

Intra- and inter-network functional connectivity: Task-specific (i.e., 2-back) ROI-ROI functional 636 

connectivity analysis were performed using the CONN toolbox (https://www.nitrc.org/projects/conn/)70.  

Our network coupling metrics derived from the CONN package actually assess functional 

connectivity between task-invoked time series of certain given regions in each condition separately. 

This measure is believed to refect functional coupling among brain regions or nodes of interest under 640 
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certain cognitive task. In this view, we thus feel that the 2-back condition alone rather than the 

difference between 2- vs. 0-back condition would be better to refect FNP-DMN functional coupling, 

as the 0-back may not be optimal to serve as a baseline in the context of task-dependent functional 

connectivity. For each participant, six ROIs’ averaged time series were generated as regressors of 644 

interest. Nuisance covariates including cerebrospinal fluid (CSF), white matter (WM) and movement 

parameters were regressed from the BOLD signal using CompCor method implemented in CONN. 

Bivariate correlations were then computed between each pair of nodes, resulting in 6 x 6 correlation 

matrix for each participant in the 0-back and 2-back conditions separately (Fig. S11). 648 

 

Intra- and inter-network functional connectivity metrics were computed separately. For each 

participant, the intra-network connectivity strength in each condition was calculated by averaging 

Fisher-z transformed bivariate correlation coefficients between the weighted BOLD time series of 652 

nodes within each network. Correspondingly, the inter-network connectivity strength was computed 

by averaging Fisher-z transformed bivariate correlation coefficients of the weighted BOLD time series 

across nodes between two different networks. To further investigate how trait anxiety modulates the 

intra- and inter-network coupling patterns, regression analysis for connectivity and trait anxiety was 656 

performed by controlling state anxiety. We finally used regression analysis to explore its relationship 

with drift rate.  
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Figures and Legends 

 

Fig1. Experimental design and the effects of trait anxiety on psychological distress 904 

measurements amongst long-term stress and control groups. (a) An overview of experimental 

design illustrates the major procedures for participants from long-term stress and control groups with 

trait anxiety and SCL-90 assessments on the adaptation day (Day 1) prior to the fMRI N-back task 

(Day 2). These assessments occurred 1-3 weeks before the major exam stressor. There were 38 908 

participants (S38) in the long-term tress group and 34 (C34) in the control group. Two participants 

from each group were excluded from further analyses due to excessive head motion during fMRI 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.442883doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.442883


Main Text    
 

 40

scanning, resulting in 36 and 32 participants in the stress and control groups, respectively (b) An 

illustration of the numerical N-back task that consists of 0- and 2-back conditions, with each digit 912 

item presented for 400 ms followed by an inter-stimulus interval of 1400 ms. Participants were 

instructed to detect whether the current item was ‘1’ in the 0-back condition, and were asked to decide 

whether the current item had appeared two positions back in the sequence in the 2-back condition. (c) 

Bar graphs depict psychological distress measured by SCL-90 and trait anxiety in the long-term stress 916 

and control groups. (d) Positive correlations of psychological distress with trait anxiety in long-term 

stress and control groups. (b) Psychological distress measured by Symptom Checklist 90 (SCL90) 

significantly differed between stress and control groups. (c) Positive correlation of psychological 

distress with trait anxiety in stress and control groups. (d) Trait anxiety scores in long-term stress and 920 

control groups. Notes: SCL-90, Symptom Checklist 90; ***P < 0.001, *P < 0.05; n.s., not significant. 
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Fig 2. Effects of long-term stress on latent dynamic decision-making during WM. (a) Schematic 924 

view of the drift diffusion model (DDM) accounting for the n-back WM task with four model 

parameters: drift rate (v) indicates the rate of evidence accumulation until boundary threshold a is 

reached. The non-decision time t represents the time for stimulus encoding in addition to 

decision-making process. The starting point z reflects the prior preference toward one choice over the 928 

other. (b) Left panel: Mean reaction times (RTs) for 0- and 2- back conditions in the stress and control 

groups. Right panel: Estimated model parameter for drift rate in the DDM. Notes: Error bars 

represents SEM. Dots represent individual parameters.   

 932 
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Fig 3. Brain regions showing main effects of WM load and long-term stress. (a) Significant 

clusters in distributed brain regions showing WM-related activation (red) and deactivation (blue) by 

contrasting 2- with 0-back conditions (whole-brain FWE P < 0.05 corrected). (b) Significant clusters 936 

in the bilateral anterior insula (middle) showing the main effect of long-term stress (voxel P < 0.001, 

and cluster P < 0.05 corrected) and corresponding parameter estimates extracted from the clusters. 

Color bar indicates minimum and maximal T values. Error bars represents standard error of the mean. 

Dots represent individual parameters. FWE, family wise error rate. 940 

 

 

 

 944 

 

 

 

 948 
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Fig 4. Long-term stress shifts the balance between WM-related brain activation and 952 

deactivation. The interaction effects between long-term stress and WM loads in brain regions of the 

default mode network (DMN) and salience network (SN). (a) Significant clusters in regions of the 

DMN including posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC) (middle 

panels), with weaker WM-related deactivation under long-term stress than control (voxel P < 0.005, 956 

and cluster P < 0.05 corrected). Bar graphs depict corresponding parameter estimates only for 

visualization purpose. (b) Significant clusters in regions of the SN including the dorsal anterior 

cingulate cortex (dACC) and anterior insula (AI) (middle panels), with greater WM-related activation 

under long-term stress than controls (voxel P < 0.005, cluster P < 0.05 corrected). Bar graphs depict 960 

corresponding parameter estimates only for visualization purposes. Color bars indicate T values which 

vary from image to image. Error bars represent the standard error of mean. Dots represent individual 

data points.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.07.442883doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.442883


Main Text    
 

 44

 964 

 

Fig 5. The relation between trait anxiety, brain activity, and drift rate. (a) Left and right panels: 

Scatter plots depict the correlations of individual’s trait anxiety with WM-related parietal activity that 

in turn were correlated with drift rate in the long-term stress and control groups. Middle panel: The 968 

mediating effect of WM-related activity in the intra parietal sulcus (IPS) on the relationship between 

trait anxiety and drift rate (voxel P < 0.005, cluster P < 0.05). (b) Left and right panels: Scatter plots 

depict the correlations of individual’s trait anxiety with WM-related prefrontal activity that in turn 

were correlated with drift rate in the long-term stress and control groups. Middle panel: The mediating 972 

effect of WM-related activity in the middle frontal gyrus (MFG) on the relationship between trait 

anxiety and drift rate (voxel P < 0.005, cluster P < 0.05). Color bar indicates minimum and maximal T 

values. Notes: *P < 0.05, **P < 0.005, ***P < 0.001.  

 976 
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Fig 6. Inter-network connectivity modulated by trait anxiety under long-term stress. 

(a) Representative nodes of the three core brain networks involved in WM processing, including the 

fronto-parietal network (FPN), default mode network (DMN) and salience network (SN). (b) Bar 980 

graphs depict the main effect of long-term stress on inter-network coupling between the FPN and 

DMN in 0-and 2-back conditions, with greater FPN-DMN decoupling in the long-term stress group in 

comparison to controls. (c) Scatter plot depicts an interaction effect between long-term stress and trait 
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anxiety on FPN-DMN decoupling, with a negative correlation between decoupling strength and trait 984 

anxiety in the long-term stress group, but an opposite pattern in the control group. Solid lines 

represent the average, and shaded areas represent 95% confidence intervals. Dots represent individual 

data points. 
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