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Abstract 

Short association fibres (SAF) of the human brain are estimated to 

represent over a half of the total white matter volume, and their 

involvement has been implicated in a range of neurological and psychiatric 

conditions. This population of fibres, however, remains relatively 

understudied in the neuroimaging literature. Some of the challenges 

pertinent to the mapping of SAF include their variable anatomical course 

and close proximity to the cortical mantle, leading to partial volume effects 

and exacerbating the influence of the gyral bias. This work considers the 

choice of scanner, acquisition, voxel size, seeding strategy and filtering 

techniques to propose a whole-brain, surface-based 
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tractography approach with the aim of providing a method for investigating 

SAF ≤30-40 mm. The framework is designed to: (1) ensure a greater cortical 

surface coverage through spreading streamline seeds more uniformly; (2) 

introduce precise filtering mechanics which are particularly important 

when dealing with small, morphologically diverse structures; and (3) allow 

the use of surface-based registration for dataset comparisons which can be 

superior to volume-based registration in the cortical vicinity. The 

indexation of surface vertices at each streamline end enables direct 

interfacing between streamlines and the cortical surface without 

dependence on the voxel grid. SAF tractograms generated using recent test-

retest data from our institution are carefully characterised and measures of 

consistency using streamline-, voxel- and surface-wise comparisons 

calculated to inform researchers and serve as a benchmark for future 

methodological developments. 

Keywords: Short association fibers, U-fibers, superficial white matter, 

tractography, surface, consistency 

 
1. Introduction 

Functional integration of the brain subunits is mediated in part by the 

white matter (Neubert et al. (2010)), which comprises a vast network of 

connections between neuronal populations and has been shown to exhibit 

change in response to physiological processes (Scholz et al. (2009); Hihara 

et al. (2006); Dubois et al. (2014); de Groot et al. (2015); Slater et al. 

(2019)) and disease (Mito et al. (2018); Datta et al. (2017); de Schipper et 

al. (2019)). The white matter is typically divided into projection, 
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commissural and association fibres. It is estimated that the association 

fibres dominate the white matter (Schüz and Braitenberg (2002)), 

connecting the cortical areas within hemispheres. They are in turn 

subdivided into long and short range (local) fibre, sometimes also 

distinguishing neighbourhood association fibres (Schmahmann and Pandya 

(2006)). The long-range fibres course in the depth of the white matter, 

connecting distant areas of the hemisphere and forming distinct bundles 

that have largely consistent anatomy across individuals. Conversely, the 

short association fibres (SAF) connect adjacent cortical areas. Their most 

superficial component is often referred to as the U-shaped fibres and 

described as a thin band that runs immediately beneath the sixth layer of 

the cortex (Schmahmann and Pandya (2006)) encompassing a single gyrus 

or sulcus (Schüz and Braitenberg (2002)). It is established that 

neighbouring cortical areas exhibit the strongest structural connectivity 

(Markov et al. (2014)). Further, it is estimated that only A10% of the 

cortico-cortical connections belong to the long fascicles, with the volume of 

the U-shaped fibres possibly as much as A60% of the total white matter 

volume (Schüz and Braitenberg (2002)). It is remarkable therefore that in 

the neuroimaging literature SAF have only started to gain more attention 

recently (Ouyang et al. (2017)). 

 

Abbreviation Meaning/Interpretation 

ACT Anatomically-constrained tractography 

CVB Between-subject coefficient of variation 

CVW Within-subject coefficient of variation 

dMRI Diffusion magnetic resonance imaging 

DSI Diffusion spectrum imaging 
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DTI Diffusion tensor imaging 

FA Fractional anisotropy 

fODF Fibre orientation distribution function 

FWHM Full-width half-maximum 

GG Grey-grey filter 

GMWMI Grey matter - white matter interface 

GWG Grey-white-grey filter 

HARDI High angular resolution diffusion imaging 

HH Hemisphere-hemisphere filter 

ICC Intraclass correlation coefficient 

LCHT Local cortical half-thickness 

MCC Mid-cortical coordinate 

PSM Pial surface mesh 

SA ”State-of-the-art” acquisition 

SAF Short association fibres 

ST ”Standard” acquisition 

TDI Track density imaging 

WSM White surface mesh 

Table 1: Table of abbreviations 

Diffusion MRI (dMRI) is the preferred method for studying structural 

properties and connectivity of white matter pathways in vivo. Its sensitivity 

to the random microscopic motion of water molecules (Stejskal and Tanner 

(1965)) enables judgement to be made regarding the local directional 

architecture and microstructural properties (Pierpaoli et al. (1996)) of the 

fibers. 

In the past few years, a number of dMRI-based studies have shown that 

SAF are affected by age and sex (Phillips et al. (2013)) as well as pathology 

including autism (d’Albis et al. (2018)), schizophrenia (Phillips et al. (2011), 
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encephalitis (Phillips et al. (2018)) and epilepsy (O’Halloran et al. (2017); 

Liu et al. (2016); Govindan et al. (2013)), among others. dMRI methods used 

to study SAF can be broadly divided into those that do not use tractography 

and those that do. The former typically sample measures of microstructure 

in the superficial white matter as defined by regions of interest (Nazeri et al. 

(2013)) or uniformly along the cortical surface (Phillips et al. (2013, 2018, 

2011); Liu et al. (2016)). This approach avoids any biases of tractography 

and can be less affected by the differences in cortical folding through the 

use of surface registration (Fischl et al. (1999)) but it does not discriminate 

between SAF and the superficial component of the long-range connections. 

On the other hand, tractography-based methods capitalise on local fibre 

orientation modelling which allows reconstruction of streamlines providing 

information about white matter morphology (Mori and Van Zijl (2002)). 

Numerous challenges, such as the inability to resolve multiple fibre 

directions in regions with complex fibre configurations, can create 

ambiguity and lead to a high number of false positive and false negative 

results during streamline generation (Maier-Hein et al. (2017)). Recent 

advances in image acquisition (Jones et al. (2018)) and processing as well as 

development of advanced fibre orientation estimation (Tournier et al. 

(2007); Dhollander et al. (2016); Jeurissen et al. (2014)) and streamline 

integration and filtering algorithms (Smith et al. (2012); Daducci et al. 

(2015); Smith et al. (2015)) have improved the quality of tractography. 

Despite this, available tools are typically used to study whole-brain 

tractograms or focus on the deep white matter bundles that show 

consistent organisation across individuals and thus the performance of 

these tools for investigating SAF remains uncertain. 
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2. Challenges in SAF reconstruction 

2.1. Tractogram generation 

The study of SAF is confounded by a number of anatomical 

considerations and methodological limitations (for an overview, see 

Guevara et al. (2020); Jeurissen et al. (2017); Rheault et al. (2020); Reveley 

et al. (2015)) which span initial tractogram generation, SAF-specific filtering 

and analysis. The tractogram generation step faces the challenges of partial 

volume effects (due to the proximity of SAF to the cortex and CSF spaces) 

and complex local anatomy with multiple regions of crossing, bending, 

kissing, and fanning fibres. The subcortical location makes SAF potentially 

more sensitive to the so-called “gyral bias” - the phenomenon in 

tractography where many more streamlines terminate in the gyral crowns 

as opposed to the sulcal fundi (Li et al. (2010); Nie et al. (2011); Chen et al. 

(2012); Cottaar et al. (2021)). It remains unclear just how much of this 

effect is explained by methodological shortcomings (and can be improved) 

rather than underlying anatomy (see Van Essen et al. (2014) for a detailed 

discussion of the subject). SAF may in fact be promoting gyral bias by 

diverting tracking in the subcortical white matter in a tangential orientation 

(Reveley et al. (2015)). This tendency may prove beneficial for SAF 

tractography as tracking is encouraged along the natural SAF course. On the 

other hand, it is just as true for SAF as it is for tractography in general that 

sulcal fundi and/or gyral walls become harder to reach, affecting the 

distribution of streamlines on the cortical surface. The effect may be even 

more pronounced for SAF than the long tracts as the latter only adjoin the 

cortex in their periphery while SAF by definition may be affected 

throughout their full extent. Specifically in the context of Ushaped fibers, the 
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gyral bias has been demonstrated even when state-of-the-art acquisition 

and tractography were used (Movahedian Attar et al. (2020)). It is therefore 

important to investigate strategies aimed at addressing this effect. 

 

2.2. Tractogram filtering 

From the filtering perspective, SAF may be defined locally based on 

manual dissections or functional MRI signal-derived cortical regions of 

interest (Movahedian Attar et al. (2020)), whilst for globally (brain-wise) 

defined SAF, the filtering criteria typically involve size, shape and/or 

cortical parcellation. Despite the existence of studies examining the 

histopathology of SAF in isolated brain regions, the absence of a detailed 

anatomical knowledge regarding the distribution and consistency of SAF on 

a whole-brain level or even a universally accepted definition (Ouyang et al. 

(2017)) complicates development and validation of non-invasive methods 

dedicated to the study of this subset of the white matter. For instance, the 

length definition of SAF (or U-shaped fibres) varies across sources. Some 

authors have focused on the relatively long streamlines of 20-80 mm 

(Guevara et al. (2017); Kai and Khan (2019)) or more (Román et al. (2017)), 

mainly concerning the bundles connecting neighbouring gyri; while others 

(Song et al. (2014); Movahedian Attar et al. (2020)) included the smaller 

range of 3-30 mm based on the classification by Schüz and Braitenberg 

(2002). Next, although using streamline similarity measures (typically 

shape and distance metrics) as filtering criteria (Román et al. (2017); 

O’Halloran et al. (2017); Kai and Khan (2019)) may appear appealing, this 

may lead to exclusion of otherwise valid streamlines as SAF have been 

demonstrated to exhibit complex, diverse morphology (Movahedian Attar et 
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al. (2020)) and varying spatial overlap (Zhang et al. (2010)); this is 

particularly true for shorter (<35 mm) streamlines (Román et al. (2017)). 

The use of cortical parcellations (division of the cortical mantle into discrete 

areas) can carry uncertainties of its own. The choice of parcellation scheme, 

termination criteria during tracking, and the way streamlines are associated 

with individual parcels all influence the result (Yeh et al. (2019)). 

Streamlines with both ends in the same parcel, particularly if larger parcels 

and discrete borders are used, can form the bulk of SAF tractograms and 

must not therefore be excluded from analysis. 

2.3. Tractogram comparison 

Group-wise analysis of SAF is challenged by inter-subject variations in 

cortical folding (Rademacher (2002)). Even the sulci known to exhibit more 

anatomical consistency across individuals (such as those corresponding to 

the primary somatosensory areas (Rademacher (2002)) demonstrate 

individual morphological differences up to 1-2 cm in a common reference 

frame (Steinmetz et al. (1989)). The trajectories of short (up to 40 mm) 

superficial streamlines appear to be strongly influenced by the gyral pattern 

(Bajada et al. (2019)). Taken together, one should expect low consistency 

when comparing SAF tractograms composed of shorter streamlines 

between individuals based on their shape or spatial distribution alone. 

Connectome-based comparisons using cortical parcellations are possible 

yet again they face the same challenges as described above. 

Our aim was to develop a methodological framework suitable for 

wholebrain tractography of SAF ≤30−40 mm. We hypothesised that 

distributing streamline seeds more evenly on the cortical surface as well as 
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employing surface-based filtering techniques may facilitate a more well-

distributed final tractogram. We also aimed to investigate whether higher 

angular resolution, higher b-values and increased number of shells would 

make tracking more sensitive to the complex configuration of the 

subcortical white matter and enhance tissue type discrimination therefore 

better handling partial volume effects. To produce SAF-specific tractograms, 

we introduced simple, anatomy-driven filtering criteria that did not require 

manual dissection/pruning or the use of additional shape/parcellation-

based priors. The tractograms were then assessed for within-subject 

consistency to evaluate the framework, coupled with between-subject 

analyses to inform the reader of what could be expected during the use of 

the method for population studies. It is also hoped that these data will 

facilitate ongoing methodological developments by acting as a source for 

benchmarking. 

3. Material and methods 

3.1. Proposed surface-based SAF tractography framework 

The overall workflow is summarised in Figure 1. A FreeSurfer-generated 

fine cortical mesh (Fischl (2012)) is used to place streamline seeds in dMRI 

space. Tracking is performed using a probabilistic tracking algorithm with 

fibre orientation distribution functions (fODFs) generated from upsampled, 

multishell, high b-value DWI data. As this work focuses on short association 

fibres specifically, the maximum streamline length is set to 40 mm. 

By definition, a streamline representing association fibres must satisfy 

the following criteria: (1) both ends terminate in the neocortex; (2) both 
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ends terminate in the same hemisphere; (3) the streamline courses through 

the white matter. Three respective filters ensuring these three criteria are 

met are applied to the initial tractogram. First, for each streamline end the 

closest point on the mid-cortical mesh is identified. The streamline 

terminates within the cortex if the distance to this closest point is smaller 

than half of the cortical thickness at that point. Second, a prior knowledge of 

which hemisphere each surface point belongs to ensures that the streamline 

starts and ends in the same hemisphere. Finally, the course within the white 

matter is confirmed by identifying two intersections with the white matter 

surface. 

The following paragraphs detail each of the steps described. 

3.1.1. Streamline generation 

The FreeSurfer white matter surface mesh (WSM) typically contains 

A1.5 vertices/mm2 for a total of A250K vertices (points) for both 

hemispheres (excluding the medial wall) and an average face (triangle) area 

of 0.32 mm2 (range: 0.07-0.7 mm2, top and bottom 2% excluded) 

representing a reasonably dense and even spread; this can be further re-

meshed if needed. Vertex coordinates in each hemisphere are transformed 

to dMRI space with ANTs (Avants et al. (2009)) using the inverse warp (see 

subsubsection 3.2.1) and concatenated into a single array used to initiate 

seeding with MRtrix 3.0 (Tournier et al. (2019)). To this end, MRtrix was 

modified such that it could read coordinates from the array and use them as 

seeds with equal weights during tractogram generation. This seeding 

mechanism was verified by visual inspection of the seed distribution on T1-

weighted volumes co-registered to dMRI space and by comparing the input 
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and output seed coordinates (data not shown). Next, tracking is performed 

using the second-order integration probabilistic algorithm iFOD2 (Tournier 

et al. (2010)) due to the expected large number of fibre crossings and 

challenging morphology; probabilistic tracking has previously been 

demonstrated to result in improved gyral bias (Nie et al. (2011)) and 

greater spatial overlap of SAF (Guevara et al. (2020)). The “seeds” 

parameter is set to 5 million to ensure an adequate number of streamlines 

per vertex. An additional restriction on the maximum streamline length of 

40 mm is used to be consistent with the SAF definition of Schüz and 

Braitenberg (2002) and accounting for the fact that intracortical portions 

are later truncated (see section 3.1.2). Other parameters are left as their 

default settings in the MRtrix implementation of iFOD2 (max angle: 45°, step 

size: 0.5 mm, threshold: 0.05, FOD power: 0.25). 

 

3.1.2. Streamline filtering 

Grey-grey (GG) filter. To identify streamlines starting and ending in the 

neocortex, midcortical coordinates (MCC) are defined by averaging 

coordinates of the matching WSM and pial surface mesh (PSM) vertices. 

Next, local cortical half-thickness (LCHT) is defined as the Euclidean 

distance between the MCC and the corresponding WSM vertex to account 

for local variation in cortical thickness. Both ends of each streamline in the 

initial tractogram are then evaluated for “intracortical position” by (1) 

identifying the closest MCC, (2) measuring the Euclidean distance to it, (3) 

comparing this distance to the LCHT measure of said MCC. The 

“intracortical position” is confirmed if the streamline terminates in a sphere 

centred on the MCC and with the radius LCHT (also see Appendix B). 
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Figure 1: Pipeline summary. After seeding from white surface mesh (WSM) coordinates 

(top row, 1-3), tractograms are filtered (top row, 4) to ensure each streamline starts and 

ends in the neocortex (grey-grey filter) of the same hemisphere (hemisphere-hemisphere 

filter) and escapes into white matter along the way (grey-white-grey filter). The grey-grey 

filter (bottom row, 1-3) functions by finding the closest midcortical coordinate (MCC, 

average of matching WS and pial coordinates) for each streamline end (with K-means 

clustering of MCCs for speed - bottom row, 1). A streamline end is considered in grey 

matter if it lays within the local cortical half-thickness of its MCC (bottom row, 3). Then, 

two intersections with WSM (one either end) are sought (bottom row, 4) at which point the 

intracortical portion is truncated. The optional surface-based analysis is conducted after 

the filtering (top row, 5). 

To improve computational efficiency, all MCC are clustered with the 

Kmeans algorithm using squared Euclidean distances (Arthur and 

Vassilvitskii (2006)); finding the centroid closest to a streamline end means 

the closest MCC has only to be identified within the cluster of that centroid 

(see Appendix C for details). 
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Hemisphere-hemisphere (HH) filter. The original hemispheric membership 

(left or right) of all cortical vertices and thus MCC is known; the 

hemispheric allocation of each streamline end becomes apparent once its 

closest MCC is identified during GG filtering. This filter acts by only selecting 

streamlines whose both ends reside in the same hemisphere. 

Grey-white-grey (GWG) filter. After ensuring all streamlines terminate 

intracortically, the last filter needs only to follow streamlines back and 

detect escape into white matter. Streamlines travel some distance within 

the cortex before this escape happens (mean per subject: 3-4 mm, median: 

2-3 mm), typically resulting in a non-correspondence between the MCC 

associated with a streamline’s end and the streamline’s intersection with 

WSM. Due to the possibility of this occurring on a subvoxel scale, and 

because the exact point of intersection with WSM is of interest, filtering is 

performed by detecting intersections between streamline segments and 

WSM faces instead of applying a simple white matter mask. As considering 

all segments of all streamlines with all WSM faces would be extremely 

inefficient, intersections between bounding boxes are used in the initial step 

to significantly restrict the search space. The pseudocode is provided below: 

for each hemisphere: 

for each streamline: 

define the bounding box find all surface faces 

within the bounding box define a bounding 

box for each identified face define a bounding 

box for each individual streamline segment 

register intersection between face and 
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segment bounding boxes for each bounding 

box intersection: 

check for segment-triangle intersection take the first 

intersection at either end of the streamline 

Segment-triangle intersection detection is performed using signed volumes 

but as this is approximately three times slower compared to bounding 

boxes (of segment and face), the latter is done first. In addition to detecting 

escape into white matter, GWG filter allows to associate each streamline 

end with its nearest WSM vertex and truncate streamlines at that point if 

desired (enabled in this work). 

3.2. Framework evaluation 

Evaluation was divided into the following sections. First, the effect of 

surface seeding was compared against a voxel-based method to establish 

whether it had merit for subsequent steps. Next, the roles of scanner, 

acquisition and voxel size on framework performance were evaluated for 

parameter optimisation. Finally, a set of experiments was carried out to 

evaluate within- and between-subject consistency of SAF tractograms 

obtained using the proposed framework. 

3.2.1. Data acquisition and pre-processing 

Effects of scanner, acquisition, voxel size. Parameters of interest were 

evaluated using a dedicated dataset (Tax et al. (2019)) of the same 14 

subjects (4 males and 10 females, age range 16-30) acquired on two 

different 3T scanners with different maximum gradient amplitudes (MGA): 

Siemens Connectom (MGA=300 mT/m) and Siemens Prisma (MGA=80 
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mT/m). Two acquisition protocols were used: “standard” (ST) and “state-of-

the-art” (SA), with the latter having higher spatial and angular resolution 

achieved with multiband-acquisition and the stronger gradients to shorten 

TE. This, in turn, enabled a higher signal-to-noise ratio per unit time for a 

given b-value, allowing for utilisation of higher b-values which are more 

sensitive to intraaxonal water displacement (Jones et al. (2018); Setsompop 

et al. (2013); Genc et al. (2020)). Written informed consent was given by all 

subjects. 

 

Repeatability. Repeatability data from the MICRA study (Koller et al. 

(2020)) were used for framework evaluation. In short, after a written 

informed consent, brain MR data of six healthy adults (3 males and 3 

females, age range 24-30) were obtained using the Siemens Connectom 

(MGA=300 mT/m) scanner. In comparison with the previous cohort, the 

MICRA protocol had a lower spatial resolution but more shells, a larger 

maximum b-value, and a larger total number of non-collinear directions 

(Table 2). Each participant was imaged five times using the same protocol 

within a two-week period at approximately the same time of day. 

Pre-processing. Acquisition parameters for all protocols are summarised 

in Table 2. Spin-echo echo-planar dMRI images were corrected for slicewise 

intensity outliers (Sairanen et al. (2018)), signal drift (Vos et al. (2017)), 

Gibbs artifact (Kellner et al. (2016)), eddy current distortion and motion 

artifact (Andersson and Sotiropoulos (2016)), echo-planar image distortion 

(Andersson et al. (2003)), and gradient non-linearities (Glasser et al. 

(2013); 
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Rudrapatna et al. (2018)). Pre-processed data were upsampled to 1×1×1 

mm3 (Dyrby et al. (2014)) and, for parameter evaluation, downsampled to 

2×2×2 mm3. Diffusion tensor estimation in each voxel was performed with 

nonlinear least squares. The fODF (Tournier et al. (2007)) was derived 

using 3-tissue response function estimation (Dhollander et al. (2016)) and 

subsequent multi-shell multi-tissue constrained spherical decomposition 

(Jeurissen et al. (2014)) with harmonic fits up to the eighth order. The 

quality of the pre-processing steps as well as fODFs were visually confirmed 

for all subjects. 

 

Parameters ST-300 mT/m SA-300 mT/m ST-80 mT/m SA-300 mT/m MICRA 

Scanner Siemens Connectom Siemens Connectom Siemens Prisma Siemens Prisma Siemens Connectom 

Resolution (mm3) 2.4×2.4×2.4 1.2×1.2×1.2 2.4×2.4×2.4 1.5×1.5×1.5 2×2×2 

Directions (per b-value) 30 60 30 60 # 

b-values (s/mm2) 1200 1200 1200 1200 200 

 

3000 3000 3000 3000 500 

  

5000 

 

5000 
1200 

2400 

4000 

6000 

TE/TR (ms) 89/7200 68/5400 89/7200 80/4500 59/3000 

# MICRA dataset had 20, 20, 30, 61, 61, 61 noncollinear direction per b-value, respectively. 

Table 2: Acquisition parameters utilised for dMRI sequences in the two cohorts studied. 

Anatomical data (Siemens MPRAGE1 sequence, voxel size: 1×1×1 mm3, 

TR/TE 2300/2.81 ms) were run through the FreeSurfer 7.1 package (Fischl 

(2012)) which includes standard T1-weighted volume pre-processing steps. 

For the repeatability cohort, the longitudinal stream designed for repeated 

acquisitions was used (Reuter et al. (2012)). One subject lacked a 
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T1weighted volume for one of the sessions; instead, the within subject 

template (referred to as “base” in the longitudinal stream) was used, 

resulting in a total of six “base” and twenty-nine final (referred to as “long”) 

sets. The quality of produced surface meshes was visually inspected at 

every step and corrected where necessary as per the standard FreeSurfer 

protocol. dMRI-derived fractional anisotropy (FA) volumes were non-

linearly registered to FreeSurfer T1-derived “brain” volumes using ANTs; 

coordinates of surface vertices were then brought into DWI space using the 

inverse transform and registration quality was visually confirmed in each 

case. An average subject was created for group analyses from the six “base” 

sets with FreeSurfer’s make average subject command and used as a 

common space template for 

all “long” sets (surface co-registration done with surfreg). 

3.2.2. Effects of surface seeding 

Choice of benchmark and tractogram generation. It was hypothesised 

that voxel masks result in less even seed placement hence biasing the 

spatial distribution of the resultant streamlines. Additionally, voxel-based 

filtering can lead to smaller regions being excluded or misrepresented due 

to the discrete nature of the voxel grid (Appendix A). To investigate how 

surface seeding compared to voxel-based methods, the established MRtrix 

ACT/GMWMI was used for benchmarking. 

To approximate the tractogram generated with surface seeding, MRtrix 

ACT/GMWMI pipeline was modified in the following way. First, FreeSurfer’s 

“aseg” volume was transformed to dMRI space using the already available 

registration and nearest neighbour interpolation (preserving segmentation 
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labels). This acted as the input into MRtrix’s FreeSurfer-based five-tissue-

type (5TT) segmented tissue image generation algorithm (Smith et al. 

(2012)). The 5TT image was then manipulated such that the cerebellar 

cortex and the amygdala/hippocampus were excluded from the grey matter 

volume (matching the cortical areas used in surface seeding), while the 

deep nuclei as well as the ventricles were added to the white matter volume 

with their original volumes set to null. The manipulation effectively forced 

all streamlines to start and end at the neocortex. Following this, a grey 

matter-white matter interface (GMWMI) volume was generated and seeding 

performed in the usual way until the total number of streamlines for 

ACT/GMWMI matched the same number generated with surface seeding 

(see subsubsection 3.1.1); analogously, streamline length was confined to 

≤40 mm. 

 

Tractogram comparison. The initial tractograms generated with the two 

methods looked very different (not shown) because surface seeding on its 

own does not use anatomical priors as streamline termination/rejection 

criteria; however, after GG filtering the compartments of the white matter 

occupied by streamlines became comparable (Appendix D). For these 

experiments, only the grey-grey filter was employed as it carried out the 

majority of the filtering and the difference in this filter’s outcome drastically 

affected other filters’ performance. 

First, coordinates of the seeds that resulted in streamlines were 

recorded and plotted against the white matter surface mesh to provide a 

qualitative assessment of seed distribution. Next, to evaluate distribution of 

streamlines near the cortex, a single voxel-thick mask was created using the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


19 

outer voxels of the white matter. The mask was applied to the normalised 

track density imaging (TDI) maps (Calamante et al. (2010)) produced using 

the two methods and only the voxels that were present in both were further 

considered. TDI maps were visually inspected, after which variation in the 

distribution of the subcortical streamlines’ density was further assessed by 

plotting histograms of voxel TDI values normalised to 0-1 range. This 

provided an overview of how variable subcortical streamline density was 

on a wholebrain level. Local variability was then assessed by recording the 

coefficient of variation of normalised TDI values within each voxel’s 

neighbourhood (6-connected voxel patches up to 5×5×5 in size) and 

similarly plotting these as histograms. Finally, GG filter was applied to the 

ACT/GMWMI-generated tractograms and the difference was evaluated on 

the following characteristics: (1) number of streamlines surviving filtering; 

(2) cortical coverage (proportion of vertices with streamlines); (3) number 

of streamlines associated with each vertex; (4) proportion of “covered” 

surface representing gyri (estimated as proportion of streamline-linked 

surface vertices with a negative FreeSurfer “sulc” value). 

3.2.3. Effects of scanner, acquisition, voxel size 

For this set of experiments, the end point of seeding was generation of 

5M streamlines (as opposed to 5M seeds) before filtering could begin. This 

allowed for a better appreciation of the interaction between the parameters 

in question and the filtering. 

Fibre orientation distribution functions. Scanner and sequence effects on 

fODF configuration were evaluated visually. For this comparison only, all 
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four datasets of a subject were registered to the same (subject-specific) 

T1weighted volume. 

Streamline angle at cortex. One of the manifestations of gyral bias is 

drastically different angulation of streamline origins/terminations with 

respect to the cortical surface depending on their position along the gyral 

blades. A typical distribution will see streamlines near-radial to the surface 

in the gyral crowns and near-tangential along the banks and the sulcal fundi 

(Cottaar et al. (2021); Van Essen et al. (2014)). To investigate how the 

differences in fODFs between scanners and sequences might affect this 

pattern, the angle between the first streamline segment and the cortex was 

plotted against the position along the gyral blade. 

Anatomical distribution of connections. To determine which type of SAF 

streamlines were most affected by the parameters of interest, position 

along the gyral blades was split into five zones (from sulcal fundi to gyral 

crowns) of equal surface areas, and undirected connectivity matrices were 

plotted with edge weights determined by streamline counts similar to the 

recent work by Cottaar et al. (2021). 

Tractogram comparison. After inspecting tractograms visually (all 

registered affinely to Connectom/SA/1 mm3 space), the effect of scanner, 

acquisition and voxel size was additionally investigated using linear mixed 

modelling with all three modelled as fixed effects and participants as the 

random effect. The outcomes were surface area seeded (%), surface area 

with SAF streamlines (%), mean number of streamlines per vertex, the 
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overall number of SAF streamlines surviving the filtering and the mean 

streamline length. 

3.2.4. Tractogram characteristics and assessment of consistency 

The following complementary approaches were chosen to evaluate the 

generated SAF tractograms: (1) general streamline metrics; (2) volume-

based track density imaging (TDI) maps; (3) surface-based projections of 

streamline metrics. The focus of these assessments was to provide a 

description of the tractograms and to test their consistency within and 

between subjects rather than producing inferences about the physiological 

properties of SAF themselves. 

General streamline measures. SAF tractograms were assessed and 

compared using the following criteria: (1) streamline count; (2) mean 

streamline length; (3) mean streamline FA derived by sampling respective 

FA volumes along each streamline with MRtrix’s tcksample command (mean 

FA across each streamline). 

TDI maps. TDI maps for each session were generated with MRtrix’s 

tckmap command. The maps were compared in average subject space by 

applying the previously obtained dMRI-to-T1 transform followed by a 

“base-to-average” transform (concatenated and performed in a single step 

using ANTs). 

Surface-based analysis. Each streamline terminated at two WSM vertices 

(one per end) allowing streamline-related metrics to be recorded at these 

vertices in native space. This enabled the use of surface-based registration 

for comparisons, which due to the complexities of cortical folding, can be 

superior to volume-based registration for these superficial structures. The 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


22 

following metrics were thus recorded: (1) number of streamlines per 

vertex; (2) cortical coverage (binarised version of the former); (3) mean 

streamline length per vertex; (4) mean FA per streamline per vertex. The 

latter can be thought of as being conceptually similar to uniform sampling 

of FA (or, indeed, any scalar) along the surface, with the exception that the 

size and shape of the sampling kernel changed informed by the streamlines 

at the vertex being sampled, and the sampling occurred exceptionally in the 

white matter. 

Results were saved in FreeSurfer “curv” format (Appendix G). Two types 

of analysis were performed: (1) using average values for all vertices of both 

hemispheres; (2) directly comparing surfaces on a per-vertex basis per 

hemisphere. For the latter, corresponding “curv” files were stacked 

(mris_preproc) and smoothed (mri_surf2surf) at 5 mm full-width at half-

maximum (FWHM). Smoothing is commonly used in neuroimaging to boost 

signal-to-noise ratio, alleviate registration misalignment, and improve 

normality of residuals (Jones et al. (2005)). As per-vertex testing was not 

sensitive to between-vertex interactions, smoothing provided an alternate 

means to account for these interactions. For all surface-based analyses, only 

the cortical surface (excluding the “medial wall” label) was studied. 

3.2.5. Statistical analysis 

To compare surface seeding with ACT, a two-tailed paired sample t-test 

was used. In subsequent experiments, consistency of SAF tractograms was 

evaluated by examining metric reproducibility, between-subject variability 

and reliability. The former two were calculated using within (CVW) and 

between (CVB) subject coefficients of variation, respectively (Laguna et al. 
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(2020)). Reliability of metrics was characterised using single measurement 

intraclass correlation coefficient for absolute agreement ICC(3,1) with 

subject effects modelled as random and session effects fixed (McGraw and 

Wong (1996)). The data were formulated with a linear mixed-effects model 

(Chen et al. (2018)). For voxel-based (TDI) and surface-based analysis, CVW, 

CVB and ICC were calculated at each voxel/vertex. All statistical analyses 

were performed in MATLAB 2015a. 

3.3. Data/code availability statement 

• Data: please refer to Koller et al. (2020) for access to the test-retest 

data, and to Tax et al. (2019) for access to the cross-scanner and 

cross-protocol diffusion MRI data harmonisation database. 

• Code: the MATLAB code for filtering of SAF and interfacing with the 

surface will be made available upon publication at: 

https://github.com/dmitrishastin/SAF 

4. Results 

4.1. Effects of surface seeding 

Seed distribution. The distribution of seeds that resulted in streamlines 

is illustrated in relation to the WSM in the top row of Figure 2. This 

demonstrates that surface seeding produced a smaller number of unique 

seeds (being confined to the WSM vertices only) yet appeared to provide a 

more consistent GMWMI coverage observed in both gyri and sulci. 

Subcortical streamline density. Inspecting the voxel-thick subcortical TDI 

maps, surface-based method appeared to have a smaller variation in the 
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number of streamlines although there were regions that were better “filled” 

using the voxel-based approach too (Figure 2B, see Appendix E for 3D 

views). Histogram plotting (Figure 2, top graphs) showed that while voxel-

based approach performed very consistently within and between subjects, 

it also  
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Figure 2: Comparison of surface- and voxel-based seeding strategies and their effects on 

subcortical streamline density. A: distribution of seeding coordinates with each method 

(yellow) related to a section of the WSM (green) in the region of the paramedian premotor 

cortex (surface mesh with the region-defining box in the middle). Surface seeding appears 

to achieve a more spatially uniform distribution and places seeds directly on the mesh (by 

definition). B: Normalised maps of subcortical streamline densities obtained with the two 

methods. Yellow arrows point to some areas that differ between the methods. Top graph: 

histograms of normalised subcortical voxel TDI values with both methods. Bottom graph: 

histograms of coefficients of variance for each subcortical voxel of TDI values computed 

over that voxel’s neighbourhood. Each subject’s histograms were coloured consistently. 

 

resulted in a very large number of voxels that had low streamline counts 

(mean normalised value: 0.101). Surface-based method, on the other hand, 

was less consistent but resulted in more densely populated voxels (mean 

normalised value: 0.1170) (p<0.001). Comparison of local densities 

produced distributions that were very inconsistent within or between 

subjects with either method (Figure 2, bottom graphs). Mean coefficient of 

variance (calculated for each tractogram) did not differ significantly with 

either method (surface-based: 0.9984, voxel-based: 0.9320, p=0.415) 

suggesting that method choice did not change the local variation in the 

number of streamlines subcortically. 

GG-filtered tractograms. Compared to the voxel-based method (Table 

3), surface seeding resulted in a slightly larger number of streamlines 

surviving GG filtering (p=0.006). Importantly, 33% more MCCs were 

covered with streamlines (p<0.001) and each MCC was associated with a 

2.4-fold increase in streamlines on average (p<0.001). This difference was 

likely influenced by the more consistent seed placement with surface 

seeding and the fact that with the voxel-based method, streamlines did not 
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propagate into grey matter and occasionally even left a superficial rim of 

unfilled white matter (Appendix D), likely due to the incorporated 

anatomical priors. The latter would have prevented subsequent GG filtering 

from accepting some streamlines. Decreasing the fODF amplitude threshold 

during tracking did not improve this result significantly. In contrast, surface 

seeding allowed tracking to propagate in both directions with non-white 

matter sections truncated later at the GWG filtering step (not performed in 

this experiment). However, the expected gyral bias was noticed with 

surface seeding as streamlines associated with more MCCs in gyri than in 

sulci whereas the reverse was true for the voxel-based method (p<0.001). 

As subsequent experiments suggest (Figure 4, Figure 5), higher angular and 

spatial resolution of data translate to more streamlines being retained after 

filtering in gyral regions corresponding to more prominent fODFs in these 

areas (Figure 3). Whether this effect is desired remains to be investigated. 

 

Surface Seeding Voxel Seeding3
 

 

 

Mean SD Mean SD p4 

Number of streamlines generated 4.5M 0.1M 4.5M 0.1M matched 

Number of streamlines after GG filter1 1.1M 52K 1.0M 64K 0.006 

Cortical coverage (%)2 88.36 2.14 55.72 1.08 0.000 

Termination density (streamlines/vertex)2 18.39 2.55 7.68 1.06 0.000 

Prevalence of gyri in the covered surface (%)2 52.77 0.65 47.95 0.58 0.000 

1 Streamlines starting and ending in the neocortex 

2 Calculated at MCC, averaged over all vertices of both hemispheres 

3 Using FreeSurfer algorithm, modified only to use the cortical ribbon 

4 Paired T-test (two-tailed) using within-subject averages 
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Table 3: Results of filtering after tracking from the surface vertices versus tracking using a 

voxel-based method for the same initial number of streamlines. Seeding from the surface 

leads to more efficient subsequent filtering and a larger cortical coverage. 

4.2. Effects of scanner, acquisition, voxel size 

Fibre orientation distribution functions. While the shape and direction of 

the glyphs did not appear to differ significantly at the level of the corona 

radiata, it was noted that at the subcortical grey-white matter interface and 

further into the cortex the glyphs from the Connectom scanner were more 

consistently perpendicular to the cortical surface (particularly so with the 

SA data, see Figure 3). This was likely the result of higher angular and/or 

spatial resolution (Vos et al. (2016)). 

Streamline angle at cortex. The shape of the distribution appeared 

similar irrespective of the parameters, with least acute angles seen near the 

gyral crowns, a near-parallel course along the banks then a slight increase 

in angles again near the sulci. For all datasets, the crowns and the fundi saw 

a greater dispersion of angles compared to the banks. On the other hand, 

the three parameters affected the overall number of streamlines, with 

Connectom scanner, SA and a smaller voxel size all resulting in a larger 

proportion of streamlines terminating closer to the gyral crowns and 

increasing the average angle (Figure 4).  

 

Anatomical distribution of connections. Connectivity matrices confirmed 

that the increase in streamline counts associated with Connectom scanner, 

SA acquisition and a smaller voxel size resulted in an overall increase in 

streamlines. However, this increase was not homogenous with more 
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connections observed between gyral crowns and the gyral walls next to 

them (Figure 5). While the reason behind the preference for gyri in this case 

was not directly investigated, all datasets started with the same number of 

streamlines meaning that in this group, fewer streamlines were filtered out.  

 

Figure 3: Comparison of fODFs (lmax=8, scale=2) generated using Connectom (top row) 

and Prisma (bottom row), ”state-of-the-art” (left column) and ”standard” (right column) 

acquisitions for the same subject on a 1 mm3 isotropic voxel grid, affinely co-registered to 

the same T1-weighted volume. SI, superior-inferior. AP, anterior-posterior. RL, right-left. 
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Figure 4: Effect of scanner, acquisition, and voxel size on the angle between the terminating 

segment of a streamline and the overlying cortical mesh, depending on the former’s 

location along the gyral blade. Connectom scanner, ”state-of-the-art” sequence and smaller 

voxel size all seemed to increase the number of streamlines largely terminating between 

walls and crowns of the gyri. 

It is possible that due to a more diverse distribution of fODFs near the grey-

white interface (Figure 3), more streamlines reached the cortex and 

survived the filtering. Figure 3 also reveals a larger magnitude of the glyphs 

closer to gyral crowns relative to those in the corona radiata with SA 

sequences (top and left sides of each quadrant, respectively), further hinting 
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at why more streamlines were observed in this region. It is likely that with 

the Prisma scanner, ST acquisition and 2 mm3 voxels, fewer streamlines 

terminated in the gyral cortex leading to them being excluded at the GG 

filter stage. 

 

Tractogram comparison. There was a very clear difference in 

tractogram appearance depending on the choice of scanner, acquisition, and 

voxel size (Figure 6). Larger voxel size generally translated to a much 

poorer coverage, with long thin gyral blades and sulcal fundi particularly 

affected. Similarly, the ”standard” sequence appeared to cover long thin 

gyral blades considerably less. The choice of scanner appeared to have a 

more subtle but clearly observed influence, with Connectom tractograms 

appearing denser and covering subcortical white matter more uniformly. 

With variable extent, all datasets had gyri with few-to-none streamlines in 

the central part of the crown as streamlines tended to preferentially adhere 

to walls. 

The linear mixed model revealed that voxel size had by far the 

strongest impact on all outcomes, with smaller voxels resulting in larger 

area covered by seeds and streamlines alike, and with higher overall 

streamline numbers (Table 4). Larger voxel size caused streamlines to be a 

few mm longer on average. To assess whether these differences were linked 

to step size during tracking, a small number of datasets were re-processed 

with 2 mm3 voxels and half the step size. This, however, did not result in 

significant differences for any of the outcomes (data not shown). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


31 

 

Figure 5: Effect of scanner, acquisition, and voxel size on SAF connectivity between 

different positions along gyral blades. Cortical surface was divided into five zones with 

equal areas from sulcal fundi to gyral crowns. Connectivity matrices suggest that 

Connectom, ”state-of-the-art” sequence, small voxel size increased the overall number of 

connections but particularly so between gyral crowns and the surrounding areas. 

Scanner type only influenced the number of streamlines, mean streamlines 

per vertex and mean streamline length, and for these parameters its effect 

was noticeably smaller compared to that of acquisition or voxel size. 

Acquisition influenced all four outcomes. Paradoxically, the ST sequence 

seemingly increased, not decreased the surface area seeded (this was also  
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Figure 6: Appearances of SAF tractograms depending on the choice of scanner, acquisition, 

and voxel size. A region from the right frontal lobe is shown in coronal plane (inset in the 

right upper corner). Tractogram slices are 1 mm thick. The differences between the 

datasets in the distribution of streamlines in sulci (white arrow), gyri (red arrow) and, in 

particular, long thin gyri (yellow arrow) and the central part of the wider gyral crowns 

(green arrow) are obvious. 

observed visually particularly with the Prisma datasets). The cause for the 

latter requires further investigation, but the direction of this effect did not 

translate to other outcomes. 

 

Surface Area Seeded (%) Beta Lower 95% Upper 95% p-value 

Intercept 82.96 80.75 85.18 <0.001 

Scanner 0.02 -1.13 1.16 0.979 

Acquisition type 3.85 2.71 4.99 <0.001 

Voxel size -10.4 -11.55 -9.26 <0.001 

Surface area with SAF streamlines (%) 

  

Intercept 67.86 64.93 70.79 <0.001 

Scanner 0.16 -1.55 1.87 0.852 

Acquisition type -3.74 -5.45 -2.03 <0.001 

Voxel size -11.65 -13.36 -9.94 <0.001 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.05.07.443084doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443084
http://creativecommons.org/licenses/by/4.0/


33 

Streamlines/vertex (mean) 

    

Intercept 8.68 8.25 9.12 <0.001 

Scanner -0.77 -1.13 -0.40 <0.001 

Acquisition type -2.49 -2.86 -2.12 <0.001 

Voxel size -2.43 -2.80 -2.07 <0.001 

Number of SAF streamlines 

   

Intercept 1.11M 1.06M 1.17M <0.001 

Scanner -97K -145K -50K <0.001 

Acquisition type -321K -369K -274K <0.001 

Voxel size -312K -360K -265K <0.001 

Mean streamline length 

   

Intercept 16.89 16.59 17.22 <0.001 

Scanner 0.29 0.14 0.43 <0.001 

Acquisition type -1.09 -1.24 -0.95 <0.001 

Voxel size 3.31 3.16 3.46 <0.001 

 

Table 4: Effect of scanner, acquisition and voxel size on the final SAF tractogram estimated 

using linear mixed modelling. Connectom scanner, SA acquisition, 1 mm3 voxels were used 

as reference. 

4.3. Assessment of SAF tractograms 

Framework runtime was 4 hours on average with parallel processing 

(12 CPUs) enabled. Tractograms generated using the repeatability cohort 

appeared anatomically consistent and no manual pruning was required 

(Figure 7). On average, 20% of the original streamlines survived the 

filtering. 
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Figure 7: Final appearance of SAF tractogram following the filtering process. Left: SAF 

streamlines overlaid on the T1-weighted volume in dMRI space (coronal view, 1 mm thick 

slice). Right, first column: SAF bundles will often deviate from the orthogonal planes in 

their course. 5 mm thick slices are provided for a better appreciation of their extent. Right, 

second column: TDI maps of the same regions are provided. Regions on the left are 

represented in the right-hand columns under matching letters. 

For the most part, SAF appeared to course in a bundled fashion and there 

appeared to be numerous mixing of bundles as highlighted by direction-

encoded colourmaps (Figure 7A and B, first column). Mean streamline 

length was 19.11±0.16 mm after trimming the intracortical portions. The 

average FA per streamline was 0.31±0.01. Tractograms covered 

87.27±1.78% of WSM vertices with 6.94±1.10 streamlines per vertex. Mean 

streamline length and mean FA per vertex were similar to overall mean 

length and FA, respectively. The range of values on the surface in a single 

subject can be seen in Appendix G. Coverage of both gyral and sulcal 

surfaces appeared satisfactory (Figure 7, second column, also Appendix F). 
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The overall proportion of streamlines terminating in gyri was 59.21±1.30%, 

supporting the presence of gyral bias. 

Compared to the Connectom/SA/1 mm3 voxel dataset from the previous 

experiments, the streamlines appeared to form less acute angles to the 

surface and there was more ”mixing” of directions. The distribution of 

angles when plotted against position along the gyral blades appeared 

consistent except for less acute angles seen near the sulcal regions, and 

higher mean angle (Appendix F). This cohort had similar surface area 

seeded but had a larger area covered by streamlines post filtering. Having a 

comparable mean streamline length together with a lower number of 

streamlines per vertex and the overall number of streamlines of the same 

order, the tractograms in the repeatability cohort appeared more evenly 

distributed over the surface. 

Apart from streamline length, all metric means exhibited high 

reproducibility (CVW 0.51-3.56%), low between-subject variation (CVB 

0.809.37%), and moderate-to-high reliability (ICC 0.654-0.978). Streamline 

length had a very low standard deviation across the board resulting in 

similarly low CVW and CVB therefore producing a low ICC. 

4.4. Track density imaging maps 

Although TDI maps suggested an overall moderate-to-high reliability of 

the spatial distribution of streamlines (median ICC: 0.771), reproducibility 

was low (median CVW: 66.16%) suggesting a lot of variation within subjects 

(Figure 8). Median CVB was 274.76% (thresholded in the figure), attesting to 

a very high variation between subjects when comparing TDI maps. The 
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immediate subcortical areas showed the least consistency (30-50% CVW 

with 

 

Seeding and Filtering Descriptors Mean1
 SD1

 CVW(%) CVB(%) ICC 

Number of streamlines generated 4.5M 39.1K 1.11 5.50 0.877 

Total number of streamlines retained after filtering 0.9M 20.7K 3.56 9.37 0.654 

Filtered Tractogram Descriptors2 
     

Streamline length (mm) 19.11 0.14 0.99 0.80 0.000 

Mean streamline FA 0.31 0.00 1.28 5.55 0.845 

Surface Data Before Filtering3
 

     

Cortical coverage (%) 88.43 0.70 1.11 5.42 0.874 

Termination density (streamlines/vertex) 18.38 0.27 2.07 3.10 0.985 

Surface Data After Filtering4
 

     

Cortical coverage (%) 87.26 0.87 1.38 4.27 0.729 

Termination density (streamlines/vertex) 6.93 0.15 3.08 3.76 0.978 

Mean streamline length per vertex (mm) 17.05 0.25 1.91 6.20 0.749 

Mean streamline FA per vertex 0.28 0.01 2.44 9.03 0.796 

Prevalence of gyri in the covered surface (%) 59.21 1.30 0.51 2.84 0.904 

1 Averaged within subjects 

2 Averaged over all SAF streamlines of both hemispheres 

3 Calculated at MCC, averaged over all vertices of both hemispheres 

4 Calculated at WSM, averaged over all vertices of both hemispheres 

Table 5: Whole-brain metrics. Surface metrics were calculated before smoothing. Measures 

of consistency were calculated using mean values per session. SD, standard deviation. CVW, 

coefficient of variation within subjects. CVB, coefficient of variation between subjects. ICC, 

intraclass correlation coefficient. FA, fractional anisotropy. 

the outer voxels reaching 200-600%, and 300-400% CVB), possibly as a 

result of cortical folding differences (manifesting in registration 
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imperfections) coupled with partial volume effects or less reliable tracking 

on the grey-white 

interface. 

4.5. Surface-based analysis 

In order to minimise the registration-related distortions and issues with 

cortical folding differences, streamline data were projected on the surface in 

 

Figure 8: Repeatability of SAF using TDI map comparison in common space. All maps were 

superimposed on the average T1-weighted volume. Streamlines were truncated at the 

white matter surface before map generation. CVW and CVB were thresholded at 100%. ICC 

was thresholded at <0.5 and >0.75. CVW, coefficient of variation within subjects. CVB, 

coefficient of variation between subjects. ICC, intraclass correlation coefficient. 
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native space before applying surface registration (Figure 9, also Appendix 

H). Analysis of termination density demonstrated moderate reliability 

(median ICC: 0.780) and low reproducibility (median CVW: 27.13%) 

together with high between-subject variability (median CVB: 100.35%), 

although this compared favourably to the results seen with TDI analysis. 

Similar ICC coefficients and improved coefficients of variation were shown 

for mean length per vertex (median ICC: 0.666, median CVW: 12.51%, 

median CVB: 38.48%) and mean FA per vertex (median ICC: 0.685, median 

CVW: 8.02%, median 

 

Figure 9: Surface-based analysis demonstrated on the lateral cortex of the right 

hemisphere. NS, termination density (number of streamlines/vertex). LS, mean streamline 

length/vertex. FAS, mean streamline fractional anisotropy/vertex. CVW, coefficient of 
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variation within subjects. CVB, coefficient of variation between subjects. ICC, intraclass 

correlation coefficient. Values at each vertex were recorded in subject space, then 

transformed into average subject space before running analyses. CVW and CVB were 

thresholded at 100%. 

CVB: 22.31%). Fronto- and temporo-basal areas showed the least 

consistency, likely a result of susceptibility distortions arising from the EPI-

readout used for the dMRI and T1-dMRI misalignment in those regions. 

Gyral bias appeared to also contribute to regional differences in 

consistency, with sulcal areas exhibiting higher reproducibility and 

reliability (Table 6). 

Data on the surface1
 CVW: gyri (%) CVW: sulci (%) p2 

Termination count after filtering: 31.87±19.41 30.97±18.12 0.000 

Mean streamline length per vertex: 16.43±15.25 15.95±15.14 0.000 

Mean streamline FA per vertex: 11.56±13.14 11.19±13.02 0.000 

    

Data on the surface1
 CVB: gyri (%) CVB: sulci (%) p2 

Termination count after filtering: 106.92±42.87 106.32±44.21 0.000 

Mean streamline length per vertex: 47.4±32.99 46.47±34.21 0.000 

Mean streamline FA per vertex: 32.3±30.53 31.88±32.17 0.000 

    

Data on the surface1
 ICC: gyri ICC: sulci p2 

Termination count after filtering: 0.723±0.200 0.728±0.195 0.000 

Mean streamline length per vertex: 0.666±0.205 0.666±0.202 0.913 

Mean streamline FA per vertex: 0.641±0.209 0.646±0.205 0.000 

1 Definitions as in Table 5 

2 Two-sample T-test (two-tailed) 

Table 6: Reproducibility of surface-projected streamline data in relation to cortical 

morphology and the effects of the gyral bias. Data are presented as mean±SD across all 
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gyral or sulcal vertices. CVW, coefficient of variation within subjects. CVB, coefficient of 

variation between subjects. ICC, intraclass correlation coefficient. 

5. Discussion 

5.1. Novelty of the work 

The work presented herein has offers a focused approach to short 

association fibre analysis by marrying tractography with mesh 

representation of the cortex motivated by the close association of SAF with 

the latter. We further utilised higher angular and/or spatial resolution as 

well as high b-values to improve the fidelity of the final tractograms. We 

were specifically interested in studying the shorter pathways (consistent 

with the definition in Schüz and Braitenberg (2002) as these pathways are 

particularly sensitive to inter-individual cortical folding variations (Bajada 

et al. (2019)) and harder to study using the more established approaches 

(Román et al. (2017); Zhang et al. (2018); Guevara et al. (2017); Van Essen 

et al. (2014)). We believe that this study adds a number of useful 

contributions to the literature. 

First, the framework introduces simple yet strong anatomical 

constraints (three filters and a streamline length threshold) which operate 

in an unbiased fashion on a whole-brain level and require no assumptions 

regarding the shape or the distribution of these fibres on the cortical 

mantle. The resulting tractograms are consistent with the anatomical 

definition of Schüz and Braitenberg (2002) and require no manual pruning. 

The framework is modular and easily adaptable, enabling its use for 

studying SAF across a range of physiological and pathological conditions. It 

supports the use of a surface-based seeding approach as employed here but 
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will also filter tractograms that were obtained with other means if desired. 

Using a bespoke algorithm, termination points of each streamline on the 

cortical mesh are registered during filtering, allowing direct interfacing 

between any streamline- and surface-related metrics (without reliance on 

the voxel grid) for subsequent analyses. 

Second, we compare seeding strategies and the choice of scanner, 

acquisition, voxel size specifically in the context of SAF tractography. While 

the approach adopted here can be seen as resource-heavy, utilising ultra-

strong gradient strengths with high-angular resolution dMRI, upsampling of 

data and the use of relatively time-consuming filters, through a series of 

experiments we demonstrate how this combination translates to better-

distributed, more anatomically plausible tractograms compared to a 

”standard” set-up. 

Comparison between the Connectom/sa/1mm3 and the MICRA 

acquisitions further suggested that despite having a lower spatial 

resolution, the latter produced tractograms of a similar if not superior 

quality. This is likely the result of a much higher angular resolution and 

better tissue discrimination. Higher angular resolution (Vos et al. (2016)), 

upsampling (Dyrby et al. (2014)), and surface-based approaches (Cottaar et 

al. (2021); St-Onge et al. (2018)) have all previously been demonstrated to 

improve tractography. We argue that the sensitivity of tracking in the 

subcortical areas to partial volume effects, gyral bias and complex fibre 

configurations in our opinion makes these adjustments even more 

worthwhile for our application. Although the Prisma/st data produced less 

satisfactory results, it is possible that image quality transfer techniques will 

allow to make use of the framework with the more “clinical” acquisitions 
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enabling multicentre data collection in the future (Alexander et al. (2017); 

Tax et al. (2019)). 

Third, we present a thorough evaluation of the tractograms generated 

with this method using state-of-the-art repeatability data (Koller et al. 

(2020)). The description process is broadly divided into streamline-, voxel-, 

and surface-wise assessments, to our knowledge representing the most 

complete characterisation of whole-brain SAF tractograms to date. This 

includes measures of fractional anisotropy chosen as an exemplar scalar to 

showcase performance of the pipeline for microstructure analysis; in future 

studies, a more exhaustive profiling of SAF microstructure may be conducted. 

The use of volume- and surface-based approaches allows to examine the 

differences in SAF properties on a regional level. While we did not utilise 

semi-global streamline optimisation algorithms (Smith et al. (2015); Daducci 

et al. (2015)), this still forms a useful baseline and informs future work. 

Fourth, our approach to the representation of SAF metrics on the surface 

merits its own mention. Projection of streamline-related data on surface 

vertices is not new; however, usually (Padula et al. (2017); Bajada et al. 

(2019)) this has been achieved by searching for all streamlines within a 

(typically) large sphere around a WSM vertex which risks decreased 

specificity and leads to overlaps. In regions where non-continuous parts of 

the cortical mantle lie in close proximity with each other (such as the 

opposite banks of a narrow gyrus), erroneous inclusion of streamlines that 

terminate near remote vertices may occur. Alternatively, streamline density 

(Li et al. (2010); Nie et al. (2011)) and orientation termination (Chen et al. 

(2012)) around a surface vertex have been quantified as the 

number/orientation of streamlines penetrating the adjacent faces 
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normalised by the combined surface area of the faces. While representing a 

more robust way to record these data on the surface, the latter approach 

allows for overlapping between adjacent vertices and, more importantly, on 

its own does not account for the streamlines not reaching the cortical mesh 

resulting in strong gyral bias. On the other hand, our method represents an 

improvement through the following combination: (1) allowing some 

propagation of streamlines into the cortex during seeding (later truncated 

at the interface), aided by higher spatial resolution and dMRI data 

upsampling, ensures more intersections of streamlines with the surface 

occur; (2) limiting the inclusion sphere to the local cortical thickness during 

filtering increases specificity of streamline-surface mapping; (3) subsequent 

fine-scale searching for intersections at the grey-white interface results in 

unique allocation of vertices based on proximity such that each streamline 

end is only associated with one vertex. This combination may lead to 

rejection of streamlines approaching but not entering the cortex (Yeh et al. 

(2019)); however, the proportion of such streamlines appeared negligible 

based on the distribution of rejected termination points (Appendix B) with 

an overall weak gyral bias (Table 5 and Table 6). Further, increased 

sensitivity could be achieved by expanding the WSM inwards during 

filtering using e.g. mean-curvature flow (St-Onge et al. (2018)), although 

this may lead to false positives in certain regions as, for example, the 

predominant orientation of axonal fibres around sulcal fundi is near-

tangential and thus the “passing” fibres may be erroneously included; hence 

this extra step was not pursued. Depending on the analyses of interest, 

subsequent smoothing on the surface may be applied as performed in this 

study. Further, projection of certain types of data (such as mean scalar 
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measures along a streamline, e.g. fractional anisotropy) may not be justified 

in the context of whole-brain or deep-bundle tractography where many 

streamlines run at a distance from the cortex and exhibit vastly varying 

trajectories; on the other hand, this “collapsing” of data seems natural with 

SAF due to their short length and course that is inevitably local to the vertex 

to which data are being projected. Comparison of data represented in this 

way is achieved through surface registration which can handle cortical 

folding differences better than volume registration (critical when dealing 

with the immediate subcortical structures) with all other steps performed 

in native dMRI space. Finally, surface-based analysis provides the option of 

using per-vertex or cluster-based statistical comparison methods, 

circumventing the use of cortical parcellation if desired and therefore 

avoiding the associated issues of lower sensitivity within and artificial 

boundaries between cortical regions. 

5.2. Consistency of SAF tractograms 

Our analysis is complemented by a detailed evaluation of whole-brain 

SAF for consistency, including evaluation of reproducibility, reliability and 

between-subject variability. This demonstrated varying results depending 

on the approach taken. High overall reproducibility and reliability of 

streamline counts in the initial (not SAF-specific) tractograms dropped 

slightly as a result of filtering while still remaining within a good range. 

Streamline count can be influenced by a multitude of factors arising from 

processing, reconstruction and algorithmic choices but also anatomical 

variability, most of which can play a role at both the initial tractogram 

generation and filtering. Hence, on its own this may not be a good indicator 
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of tractogram consistency. Instead, the number vertices with streamlines 

(cortical coverage) or number of streamlines per vertex (termination 

density) are possibly more insightful; in this work, reproducibility and 

reliability of both was high. On the other hand, mean streamline length 

demonstrated very low reliability. Here, the overall variance was so low 

that any within- and between-subject differences were likely at the noise 

level, suggesting that the whole-brain averaged length was not a useful 

measure for comparison. Indeed, examining streamline length at the vertex 

level yielded more informative results. As expected (Zhang et al. (2010)), 

track density imaging maps demonstrated large variability in the spatial 

distribution of SAF between individuals but also within individuals; in the 

attempt to minimise the role of registration imperfections and partial 

volume effects, alternative measures such as regional density and mean 

streamline length of SAF were compared by projecting them on the surface 

resulting in improved consistency. In addition to demonstrating the degree 

of consistency that could be expected for between-subject comparisons in 

studying physiological and pathological phenomena, the data offered here 

can be served as a baseline for future methodological developments. Our 

approach does not perform a dedicated removal of noisy (false positive) 

streamlines relying only on the anatomical constraints, and it is probable 

that a proportion of variability within and between subjects is explained by 

the occurrence of such streamlines owing to the fundamental limitations of 

a chosen tractography algorithm. Shape-based (Drakesmith et al. (2019); 

Parker et al. (2016)) exclusion of noisy streamlines could be undertaken in 

the future; however, the lack of detailed histological or tracer injection 

validation data for SAF on the whole-brain scale makes identification of 
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such streamlines difficult. Development of better scanning hardware and 

tractography/optimisation algorithms will facilitate greater fidelity of the 

tractograms. 

Consistency of whole-brain SAF representation with dMRI-based 

streamlines tractography approaches has previously been addressed. Zhang 

et al. (2010) used diffusion tensor imaging (DTI)-based deterministic 

tractography to create an atlas and a probabilistic spatial map of multiple 

white matter tracts, including all short association fibres connecting 24 

regions obtained from a superficial white matter parcellation. Having 

detected 29 connections present in all 20 individuals studied, they 

emphasised large spatial variability (demonstrated but not quantified) and 

the difficulty in manual region-of-interest segmentation of these tracts 

advocating for an automated approach. In another study (Zhang et al. 

(2014)), shape-driven filtering and a further criterion of proximity to sulcal 

fundi were used to examine U-fibres across diffusion spectrum imaging 

(DSI), high angular resolution diffusion imaging (HARDI) and DTI data sets 

with deterministic streamlines tracking. Based on normalised streamline 

counts, the authors demonstrated an overall stronger short-range than 

middle-range connectivity with HARDI and DSI data and the reverse with 

DTI data, proposing the inability of the latter to detect crossing fibres and 

therefore more false negatives as the likely mechanism. Guevara et al. 

(2017) used DKT-based parcellation and shape- and distance-based 

clustering of larger streamlines (centroids 20-80 mm) in Talairach space to 

identify 100 distinct bundles (50 per hemisphere, 35 common to both) that 

were considered to have low-to-moderate variability (relative standard 

deviation (RSD) ≤ 0.9) in streamline counts and shape across two test and 
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one validation data sets. This method was further improved by using non-

linear registration and ability to detect within-region connections (Román 

et al. (2017)); clustering larger (centroids 35-85 mm) streamlines and using 

a bagging strategy, the authors successfully constructed an atlas of 93 SAF 

bundles (44 in left hemisphere, 49 in right, 33 common) with repeatability 

of individual bundles ranging between 8/10 and 10/10. 

Zhang et al. (2018) generated an atlas of white matter pathways based 

on 100 Human Connectome Project (HCP) subjects using two-tensor 

unscented Kalman filter for tracking and groupwise tractography 

registration followed by groupwise spectral clustering. Their approach did 

not require the use of a cortical parcellation. A total of 58 deep and 198 

short and medium range superficial clusters were identified, although no 

further detailed description of the latter was provided. The classification 

was subsequently applied to a number of additional data sets with variable 

acquisition methods, spanning different age ranges and including clinical 

cohorts. Depending on the data set examined, this approach identified 

92.28-99.96% of the “superficial” clusters on the subject level, with the 

average between-subject CV of 0.488-0.919 for streamline counts/cluster, 

and the average overlap between subject and atlas clusters of 0.747-0.783 

(as determined using intersected FreeSurfer regions). Subsequent work 

(Guevara et al. (2020)) compared the three atlases (Guevara et al. (2017); 

Román et al. (2017); Zhang et al. (2018)) in MNI space for bundle similarity 

by computing the maximum Euclidean distance between corresponding 

points for each streamline in a bundle to all the streamlines in another 

bundle. With cut-offs for distance and percentage of similar streamlines of 8 

mm and ≤ 80%, respectively, there was a good overlap between the 
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bundles, particularly in frontal and parietal areas, the atlas of Zhang et al. 

(2018) contained 96 bundles not present in the other two atlases. The same 

paper compared the impact of different tractography algorithms (DTI, 

generalized Q-sampling imaging or GQI and MRtrix iFOD2 using ACT+SIFT) 

on consistency of clustering, showing that the probabilistic tracking with 

MRtrix was able to reconstruct all bundles in 100% of cases with a greater 

spatial coverage but with a higher streamline count RSD compared to the 

other algorithms. As mentioned previously, these streamline clustering 

approaches appear to show a good performance when classifying the larger 

cortical connections but are not typically applied to the smaller ones. While 

not studying SAF on a whole-brain scale, the study by Movahedian Attar et 

al. (2020) is of special interest as similarly to our work it relied on the 

length definition of Schüz and Braitenberg (2002) and used dMRI data 

acquired using ultra-high gradient Connectom scanner (choosing higher 

spatial resolution over higher b-values). The study evaluated connectivity 

(using relative streamline counts) within the occipital cortex as defined by 

fMRI regions-of-interest and demonstrated a test-retest ICC of 0.73±0.33 

(0.88±0.70 for “retinotopic” and 0.69±0.35 for “non-retinotopic”, 

considered false positive by design, bundles) and an averaged CoV of 0.23 

(0.23±0.23 for “retinotopic” and 0.25±0.14 for “non-retinotopic” bundles). 

The use of multimodal surface registration algorithms allowing integration 

of structural and functional units of the cortex (Robinson et al. (2014)) 

resulting in similar assessments on a whole-brain scale is a future interest 

to extend our work. 
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5.3. Limitations 

Some limitations of the proposed approach should be mentioned. First, 

the dMRI repeatability data used in this study had a voxel size of 2×2×2 

mm3. While previous work has suggested the ideal voxel size below 0.85 

mm (isotropic) to remain sensitive to the smaller component of SAF (Song 

et al. (2014); Movahedian Attar et al. (2020)), the voxel size used in our 

cohort is representative of what is commonly used in diffusion studies; 

further, our data were acquired with higher b-values and using high angular 

resolution, limiting partial volume effects, increasing sensitivity to the intra-

axonal component of the white matter thus allowing a better resolution of 

complex fibre orientations (Novikov et al. (2019); Vos et al. (2016); 

Jeurissen et al. (2014)) while maintaining a good signal-to-noise ratio due to 

the use of high gradient strength (Jones et al. (2018)). We also upsampled 

our data as it has been shown to improve the geometrical representation of 

white matter tracts 

(Dyrby et al. (2014); Shastin et al. (2019)). The second limitation is the 

sensitivity of the framework to registration quality between T1-weighted 

and dMRI data. Data sets containing distortions (such as susceptibility 

artifact) or unusual anatomy (e.g., tumours) are likely to have a mismatch 

between the surfaces reconstructed from T1-weighted images and the 

white matter signal on dMRI. As such, visual inspection is crucial on an 

individual basis although we did not encounter any issues with registration. 

dMRI-based surface extraction could offer an alternative solution (Liu et al. 

(2007); Li et al. (2010); Shastin et al. (2020)) if performed at sufficiently 

high resolution. Third, the current approach to surface seeding precludes 

the use of semiglobal streamline optimisation algorithms (Smith et al. 
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(2015); Daducci et al. (2015)) which require whole-brain tractograms. This 

limitation can be easily overcome by including the remaining grey matter 

structures (subcortical grey, cerebellar cortex, amygdalae, and hippocampi) 

into the array of seeding coordinates and applying the optimisation 

algorithms before subsequent filtering, preserving streamline weights 

throughout the process. Fourth, as mentioned previously, this paper used 

the length definition of SAF as under 40 mm minus the variable intracortical 

section (mean 19.11±0.14 mm). While application of our method without 

this additional criterion resulted in a similar (albeit denser) tractogram 

appearances and was dominated by short streamlines (mean ≈30 mm, data 

not shown, consistent with Padula et al. (2017)), it could be similarly used 

to study larger subcortical association fibres although extra filters such as 

passage in the vicinity of sulci (Zhang et al. (2014)) may be needed. Finally, 

the pipeline took about 4 hours to run using parallel CPUs. This 

computational cost may be less appropriate for long range white matter 

tractography, where exact interaction between streamlines and cortical 

structures may be less crucial. However, based on our experiments we 

judged that such approach was suitable for SAF tractography. Further 

developments to the framework could include GPU-based execution and the 

use geodesic distance rather than K-means for cortical coordinate 

clustering. 

 

6. Conclusions 

We consider our work to be a first-time application of a dedicated 

whole-brain, surface-based SAF tractography approach aimed at 

overcoming some of the limitations pertinent to the study of this white 
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matter population. Surface-based seeding employed here was demonstrated 

to result in a more uniform subcortical streamline distribution. Surface-

based filtering algorithms coupled with a streamline length criterion (≤30-

40 mm) were used to produce tractograms with a large cortical coverage 

and appeared to be well-distributed in the superficial regions of white 

matter. Higher gradient strengths and higher angular resolution were 

demonstrated to produce fODFs that better penetrated the grey-white 

interface and had greater magnitudes near the gyral crowns. Together with 

resampling of dMRI data, these factors have been associated with 

tractograms that had higher streamline counts, greater cortical coverage, a 

slightly improved mean angle between the cortex and the streamlines, but 

also relatively more streamlines connecting gyral crowns and the adjacent 

walls. We characterised SAF and assessed their consistency using a variety 

of complimentary approaches, presenting the framework as a vehicle for 

investigating SAF in health as well as in clinical cohorts and offering 

benchmark data for future methodological improvements. 
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