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Abstract 10 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accumulated ge-11 

nomic mutations at an approximately linear rate since it first infected human populations in late 12 

2019. Controversies remain regarding the identity, proportion, and effects of adaptive muta-13 

tions as SARS-CoV-2 evolves from a bat- to a human-adapted virus. The potential for vaccine-14 

escape mutations poses additional challenges in pandemic control. Despite being of great in-15 

terest to therapeutic and vaccine development, human-adaptive mutations in SARS-CoV-2 are 16 

masked by a genome-wide linkage disequilibrium under which neutral and even deleterious 17 

mutations can reach fixation by chance or through hitchhiking. Furthermore, genome-wide 18 

linkage equilibrium imposes clonal interference by which multiple adaptive mutations compete 19 

against one another. Informed by insights from microbial experimental evolution, we analyzed 20 

close to one million SARS-CoV-2 genomes sequenced during the first year of the COVID-19 21 

pandemic and identified putative human-adaptive mutations according to the rates of synony-22 

mous and missense mutations, temporal linkage, and mutation recurrence. Furthermore, we 23 

developed a forward-evolution simulator with the realistic SARS-CoV-2 genome structure and 24 

base substitution probabilities able to predict viral genome diversity under neutral, background 25 

selection, and adaptive evolutionary models. We conclude that adaptive mutations have 26 

emerged early, rapidly, and constantly to dominate SARS-CoV-2 populations despite clonal 27 

interference and purifying selection. Our analysis underscores a need for genomic surveillance 28 

of mutation trajectories at the local level for early detection of adaptive and immune-escape 29 

variants. Putative human-adaptive mutations are over-represented in viral proteins interfering 30 

host immunity and binding host-cell receptors and thus may serve as priority targets for de-31 

signing therapeutics and vaccines against human-adapted forms of SARS-CoV-2.     32 
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Introduction 33 

Evolution in action: a trail of one million viral genomes 34 

The 2002-2004 severe acute respiratory syndrome (SARS) coronavirus outbreaks had 35 

multiple origins (Chinese SARS Molecular Epidemiology Consortium 2004). In contrast, severe 36 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-37 

19 pandemic, showed nearly 100% sequence identity among the first outbreak strains from 38 

China, suggesting a single point of viral breach (Lu et al. 2020; Zhou et al. 2020). However, 39 

sequence diversity quickly accumulated as COVID-19 spread globally and remained uncon-40 

trolled a year later (Andersen et al. 2020; To et al. 2021). This high-stake case of evolution in 41 

action has brought unprecedented health, economic, and social devastation in modern times 42 

(Peeri et al. 2020; Kissler et al. 2020; To et al. 2021). Many of the evolutionary mechanisms 43 

driving SARS-CoV-2 genome diversification are unknown and urgently require elucidation. For 44 

example, to what extent has SARS-CoV-2 adapted to its new human hosts after one year of 45 

genome evolution (Phan 2020; Cagliani et al. 2020; Bai et al. 2020; Yang et al. 2020)? Moreo-46 

ver, how long can the global vaccine campaigns, most of which rely on vaccines formulated on 47 

basis of the bat-adapted viral genome, maintain effectiveness against the waves of new viral 48 

variants emerging worldwide (Koyama et al. 2020; Burton and Topol 2021)?  49 

The vast number of publicly available SARS-CoV-2 genomes – expected to surpass a 50 

million before June 1, 2021 – offers unique opportunities for understanding the evolutionary 51 

processes accompanying the rapid emergence of a new viral pathogen, while challenging the 52 

ability to translate evolutionary understandings into the control and prevention of current and 53 

future pandemics (de Wit et al. 2016; Hadfield et al. 2018; Cui et al. 2019; Benvenuto et al. 54 

2020; Andersen et al. 2020; Cagliani et al. 2020). Here we tested the hypothesis of rapid adap-55 

tation of SARS-CoV-2 genomes to human populations during the first year of the global 56 

COVID-19 pandemic. We focused on developing methods and computational tools for identify-57 

ing human-adaptive mutations in the genomes of zoonotic viral pathogens. Identifying human-58 

adaptive mutations is essential to uncovering the molecular mechanisms underlying the transi-59 

tion of SARS-CoV-2 from bat to human hosts, as well as the viral mechanisms of human path-60 

ogenesis and virulence (Cagliani et al. 2020). For disease treatment and prevention, human 61 

adaptive mutations are prime targets for the development of therapeutics against human-62 

adapted SARS-CoV-2 variants as well as the development of broadly effective escape-proof 63 

vaccines (Burton and Topol 2021; Cohen et al. 2021).  64 
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Challenges of identifying adaptive mutations in an asexual microbial population 65 

Despite the benefits of a small genome size (~30,000 base pairs) and an abundance of 66 

geographically and longitudinally marked genome samples, identifying signatures of natural 67 

selection in SARS-CoV-2 is hindered by the challenge of a compact, gene-rich genome with 68 

few non-coding sequences, as is typical for microorganisms (DeLong 2004; Rocha 2018). Se-69 

quence evolution at non-coding loci in eukaryotic species hews closely to the standard Neutral 70 

Theory of molecular evolution, thus providing a powerful control for testing the presence of 71 

natural selection in functional genomic regions (Garud et al. 2015; Koropoulis et al. 2020). For 72 

example, presence of balancing (i.e., diversifying) selection at the Adh locus in Drosophila was 73 

discovered by an excess of nucleotide polymorphisms in the coding region relative to the 5’-74 

flanking sequences (HKA test) (Hudson et al. 1987). The unexpected decrease in non-coding 75 

sequence diversity in genomic regions with low recombination rates has led to the discovery of 76 

pervasive purifying (i.e., negative) selection in Drosophila and humans (Hudson and Kaplan 77 

1995; Charlesworth 2013; Campos and Charlesworth 2019). Likewise, adaptive mutations 78 

cause selective sweeps and reduce genetic diversity at linked non-coding loci (Sabeti et al. 79 

2002; Garud et al. 2015). 80 

Genome-wide linkage disequilibrium (LD) imposes an additional, more severe constraint 81 

for detecting adaptive mutations during SARS-CoV-2 evolution in human populations. In bacte-82 

rial species, recombination is infrequent, yet it occurs at rates high enough to uncouple the 83 

evolution of loci under diversifying election (e.g., loci encoding surface antigens) from evolution 84 

of housekeeping loci under purifying selection (Milkman and Bridges 1990; Haven et al. 2011; 85 

Bobay et al. 2015). In sexual populations, proportions of adaptive amino-acid divergence could 86 

be estimated at a protein-coding locus by contrasting levels of synonymous and nonsynony-87 

mous substitution rates within and between species (MK test) (McDonald and Kreitman 1991; 88 

Charlesworth and Eyre-Walker 2006). However, the standard MK test severely underestimates 89 

adaptive divergence in asexual populations due to accumulation of slightly deleterious non-90 

synonymous mutations (Charlesworth and Eyre-Walker 2008; Messer and Petrov 2013). Fur-91 

thermore, both background selection and selective sweeps (“genetic draft”) reduce the effec-92 

tive population size and elevate the chance of random fixation of neutral and deleterious non-93 

synonymous mutations in an asexual population, thus biasing the estimation of adaptive muta-94 

tion rates (Gillespie 2000; Messer and Petrov 2013).   95 

Similarities between microbial experimental evolution and SARS-CoV-2 evolution 96 

Experimental evolution under controlled laboratory conditions using microorganisms 97 
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provides perhaps the most pertinent model for understanding SARS-CoV-2 evolution in hu-98 

mans (Lenski 2017; Good et al. 2017; Cvijović et al. 2018; Bergh et al. 2018). Although SARS-99 

CoV-2 is a non-free-living organism evolving under open and diverse environmental condi-100 

tions, SARS-CoV-2 populations share several key evolutionary characteristics with microbial 101 

populations in long term evolution experiments (LTEEs) (Lenski 2017; Cvijović et al. 2018). 102 

First, both evolving systems were seeded with a single genetically identical clone. Second, 103 

species in both systems were microorganisms containing a compact and gene-rich genome 104 

with few non-coding loci. Third, both systems had large populations in which natural selection 105 

was expected to prevail over genetic drift. For example, in a population with 𝑁𝑒 = 1000 individ-106 

uals, any mutation with a selection coefficient |𝑠| > 0.001  would cross the neutral barrier 107 

𝑁𝑒𝑠 = 1 and evolve deterministically towards fixation or extinction. Fourth, although capable of 108 

recombination, populations in both systems evolved clonally without detectable levels of genet-109 

ic exchange among coexisting individuals. Thus, both systems evolved under genome-wide LD 110 

and were expected to show strong clonal interference (Lang et al. 2013; Lenski 2017; Good et 111 

al. 2017). Fifth, populations in both evolving systems were tracked in great genetic detail 112 

through whole-genome sequencing of temporally sampled isolates with spatial replication. Re-113 

sembling the replicated populations in LTEEs, SARS-CoV-2 subpopulations in six continents 114 

(Asia, Africa, Europe, North America, South America, and Oceania) allowed for detection of 115 

adaptive changes based on recurring genetic events. 116 

As expected given the strong similarities in key evolutionary characteristics, we found 117 

that SARS-CoV-2 populations during the COVID-19 showed similar adaptive dynamics as the 118 

E. coli populations in LTEE, including the early rise and rapid fixation of adaptive mutations, 119 

competing adaptive mutations, and recurrent genetic changes at key gene loci. Previous anal-120 

yses of genome evolution of SARS coronaviruses have relied mainly on phylogenetic ap-121 

proaches to identify adaptive genes, haplotypes, and lineages (Chinese SARS Molecular Epi-122 

demiology Consortium 2004; Phan 2020; Cagliani et al. 2020; Bai et al. 2020; Yang et al. 123 

2020). Crucially, without generating mutation spectra expected under neutral, background se-124 

lection, and adaptive evolution models, these studies have been unable to test competing evo-125 

lutionary models or to explore adaptive dynamics at the level of individual mutations. In LTEEs, 126 

the neutrally evolving populations were created by bottleneck events during serial transfer of 127 

cultures from one generation to another (Tenaillon et al. 2016). Here, we used in silico simula-128 

tion of SARS-CoV-2 genomes evolving under neutral and selective models for understanding 129 

and predicting SARS-CoV-2 evolution during the COVID-19 pandemic. 130 
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Material & Methods 131 

CoV genome simulator and the associated software system 132 

In silico simulations are a powerful approach to test evolutionary hypotheses by provid-133 

ing fully specified evolutionary processes and parameters as models of species evolution in 134 

nature (Yuan et al. 2012). However, software tools for simulating the evolution of the gene-rich, 135 

finite-size microbial genomes such as those of SARS-CoV-2 are lacking. Simulations based on 136 

coalescent (backward-evolution) are highly efficient but are more suitable for modeling the 137 

evolution of neutral loci and relatively simple forms of selective and demographic mechanisms 138 

(Hudson 2002; Liang et al. 2007; Kelleher et al. 2016). Software tools based on forward-139 

evolution simulations are less efficient but more flexible in modeling arbitrary selective and 140 

demographic forces (Carvajal-Rodríguez 2008; Hernandez 2008; Haller and Messer 2019). 141 

For simulating microbial genome evolution, two coalescent-based software tools implemented 142 

the realistic form of homologous recombination in bacterial genomes, but were not designed to 143 

simulate protein-coding sequences or the strong purifying and positive selective forces com-144 

monly operating on the gene-rich microbial genomes (Didelot et al. 2009; Brown et al. 2016). 145 

Furthermore, to our knowledge all existing simulation software implements infinite-site models 146 

of nucleotide substitutions. Consequently, these software tools do not allow for estimation of 147 

the chances of recurrent mutations at the same sites, an aspect that cannot be ignored in a 148 

rapidly expanding viral population with a small genome, such as SARS-CoV-2 populations dur-149 

ing the COVID-19 pandemic.  150 

Previously, we used forward-simulation to validate the origin and maintenance of high 151 

sequence diversity at a major surface antigen locus in the Lyme disease bacterium (Borrelia 152 

burgdorferi) by negative frequency-dependent selection (Haven et al. 2011). Here we devel-153 

oped a CoV genome evolution simulator (CovSimulator) and used it to test whether patterns of 154 

CoV genome variability fit better with expectations from neutral (NEU), background-selection 155 

(BKG), adaptive (ADPT), or mixed (MIX) evolution models. The software system associated 156 

with the CovSimulator is diagramed in Supplemental Material Fig S1. 157 

Briefly, CovSimulator first read the annotated genome of a viral progenitor provided in 158 

GenBank format (e.g., Wuhan-Hu-1, GenBank accession NC_045512). It captured the reading 159 

frames of the 25 protein-coding loci (Table 1) in the SARS-CoV-2 genome such that coding (or 160 

non-coding) information associated with each base of the genome was stored. At a protein-161 

coding nucleotide site, the stored genomic information included the gene locus, codon, amino 162 

acid, and codon position. Simulation was initialized with a population of N identical ancestral 163 
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genomes, each of which was assigned the unit fitness value (see evolution parameters in Ta-164 

ble 2). During each of the total number of g generations, each individual encountered a Pois-165 

son-distributed number of point mutations with the mean genome mutation rate m. If a muta-166 

tion occurred, a uniformly distributed genome position was chosen and an alternative nucleo-167 

tide was selected as the substitute according to the base-substitution frequencies gathered 168 

from viral genomes (see section below). Similarly, homologous recombination during each 169 

generation occurred with a Poisson distributed mean rate of r per genome. If a recombination 170 

event occurred, two individuals from the population were randomly chosen and a uniformly dis-171 

tributed genome position was selected as the break point. Two new individual genomes were 172 

created by exchanging the sequences right and left of the break point. Fitness values of the 173 

new genomes were re-computed according to a new set of mutated sites. 174 

Crucially, we defined the fitness of a simulated viral genome as its adaptiveness to the 175 

human host relative to the ancestral viral genome. That is, the fitness of the ancestral viral ge-176 

nome to the human host was defined as one. A simulated viral population displaying an aver-177 

age fitness > 1 could thus be interpreted as being better adapted than the ancestral genome to 178 

the human host. A simulated viral population with an average fitness = 1 was considered 179 

equally fit as the ancestral viral genome to reproduce in the human host. Otherwise, a simulat-180 

ed viral population with an average fitness < 1 was considered less fit than the ancestral ge-181 

nome to use the human host. To implement this fitness scheme, we determined synonymous 182 

or missense mutations and computed the fitness value of a simulated genome according to 183 

comparison with the ancestral viral genome rather than its parental genome. This fitness defi-184 

nition is equivalent to measuring fitness gains in an LTEE study through competing the evolved 185 

strains with the original, pre-evolved strain (Lenski 2017). 186 

The fitness of an individual genome was the multiplicative product of its composite co-187 

dons. Thus, the fitness of the individual was set to zero if the mutation introduced a stop codon 188 

(nonsense) or changed a stop codon into a sense codon (reading-frame extension). Other-189 

wise, the mutation introduced an amino-acid change (missense mutation). In the neutral mod-190 

el, the fitness of an individual remained unchanged by missense mutations. In the background 191 

selection model, a missense mutation had a probability of u (e.g., u=0.8) of decreasing the fit-192 

ness of its carrier genome by a factor of, e.g., w=0.95. In the adaptive evolution model, in con-193 

trast, a missense mutation had a small probability of v (e.g., v=0.1) of increasing the fitness of 194 

its carrier genome by a factor of, e.g., w=1.05. The fitness of the individual was unchanged if 195 

the mutation occurred at a non-coding (intergenic or untranslated) site or introduced a synon-196 
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ymous amino acid. 197 

The probability of an individual to produce an offspring in the next generation was de-198 

termined by its fitness. Specifically, a threshold value between 0 and 1 was computed as an 199 

increasing function of the fitness of an individual 𝑐 = 1 − 𝑒−𝑤. A random number p between 0 200 

and 1 was chosen. If p < c, then the individual was able to contribute one offspring. Otherwise, 201 

the individual did not have a chance to reproduce. The parental population was repeatedly 202 

sampled with replacement for reproduction until the constant population size of N was 203 

reached. To validate the genome simulator, we compared the sample statistics with neutral 204 

expectations including the level of sequence polymorphism at mutation-drift balance (𝜃 =205 

2𝑁𝑒𝜇0), the rate of sequence divergence with respect to the ancestor (k=mt), and the length 206 

and shape of genome genealogies under neutral and selective evolution. 207 

Viral genome database and the associated software system 208 

Viral genomes and associated information on the geographic origins and collection 209 

dates were obtained from GISAID monthly according to submission dates (Shu and McCauley 210 

2017). SNVs and indels in each genome with respect to the reference genome (Wuhan-Hu-1, 211 

GenBank accession NC_045512) were identified by using the program DNADIST in the Nu-212 

cmer4 package (Marçais et al. 2018). To minimize sequencing errors, SNVs at genome ends 213 

where missing bases were common were excluded, as were any genomes with more than 214 

10% missing bases at SNV sites. Unique haplotypes were obtained with custom Perl scripts 215 

based on the BioPerl package (Stajich et al. 2002). Isolate information, variants, and haplo-216 

types were deposited into a custom relational database (“cov-db”) to facilitate downstream 217 

computational analysis. A custom Python script sampled viral genomes (e.g., n=100) by month 218 

and at three spatial scales (continent, country, and state). The script also filtered variants and 219 

output only the most frequently occurring (e.g., >0.5%) variants. A secondary Python script 220 

produced a variant call format (VCF) file based on the sampled isolates and high-frequency 221 

variants. Evolutionary statistics, including variant frequencies, linkage disequilibrium (r2), hap-222 

lotypes, and base substitution frequencies were generated with programs BCFTools and 223 

VCFTools (Danecek et al. 2011). We used Haploview (version 4.2) to calculate LD scores (D’ 224 

and r2) as well as their statistical significance between pairs of SNVs (Barrett 2009). The most 225 

parsimonious haplotype networks were estimated with the program TCS ver1.21 (Clement et 226 

al. 2000) and visualized with tcsBU (Múrias dos Santos et al. 2016). To visualize genome vari-227 

ants and haplotype networks, we developed a custom web interface (http://genometracker.org) 228 

using a similar software system supporting BorreliaBase, a comparative genomics browser of 229 
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Lyme disease pathogens (Di et al. 2014). The software system associated with the “cov-db” 230 

database is diagramed in Supplemental Material Fig S2. 231 

Evolution rates, linkage disequilibrium, and homoplasy 232 

We estimated the SARS-CoV-2 genome divergence rate from the ancestor by perform-233 

ing a linear regression of sequence differences to the reference genome (NC_045512) with 234 

respect to the genome collection dates. The expected variance of the evolutionary rate was 235 

estimated according to a Poisson model, which specified, at each time point of t days, an ex-236 

pected number of sequence differences in =μtL, where μ being the rate of base substitution 237 

per site per day obtained from the regression line and L being the length of the reference ge-238 

nome (NC_045512, L=29903). The variance of the Poisson expected difference was expected 239 

to be equal to the difference itself (2=). 240 

To compare cross-species rates of amino-acid substitutions at protein-coding loci, we 241 

downloaded the genomes of 24 viral isolates belonging to the family Coronaviridae. The viral 242 

isolates included coronaviruses closely related to SARS-CoV and SARS-CoV-2 and consisted 243 

of Wuhan-Hu-1, RaTG13, P1E, P5L, ZC45, ZXC21, SC2018, HuB2013, Shaanxi2011, HKU3-244 

1, Rm1, CoV273, GX2013, Rf4092, YN2013, GD01, SZ3, WIV16, SHC014, YN2018B, 245 

As6526, Rs4247, Rs672, and Yunnan2011. Homologous protein sequences were aligned and 246 

individual alignments were concatenated using the sequence utility bioaln from the BpWrapper 247 

software suite (Hernández et al. 2018). Per-site substitution rates, normalized to a mean rate 248 

of zero, were obtained with rate4site (Pupko et al. 2002).     249 

We used Haploview (version 4.2) to calculate linkage disequilibrium (LD) scores (D’ and 250 

r2) as well as their statistical significance (LOD, log odds) between pairs of SNVs (Barrett 251 

2009). We used the DNAPARS program of the PHYLIP (version 3.696) package to search for 252 

a maximum parsimony tree of unique haplotypes, obtaining the homoplasy index (HI) and the 253 

number of base substitutions at each SNV site (Felsenstein 1989). The HI is defined as 254 

𝐻𝐼 = 1 −
1

𝑛𝑢𝑚.𝑠𝑢𝑏.
 at each SNV site and is zero when the alleles are consistent with the tree 255 

(i.e., the number of substitution for a bi-allelic SNV is one).  256 

Analysis of synonymous and missense evolutionary rates 257 

Genome-wide numbers of synonymous (Ds) and nonsynonymous (Dn) nucleotide diver-258 

gence were obtained through comparison of the reference genome (Wuhan-Hu-1, GenBank 259 

accession NC_045512) to its closest known relative (RaTG13, GenBank accession 260 

MN996532) (Zhou et al. 2020) with the program DNADIST (Marçais et al. 2018). Genome-wide 261 
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synonymous (Ps) and nonsynonymous (Pn) nucleotide polymorphisms in viral populations were 262 

estimated with the use of viral samples. In computing the per site synonymous and nonsynon-263 

ymous substitution rates (ds=Ds/S, dn=Dn/N, ps=Ps/S, pn=Pn/N), the effective numbers of avail-264 

able synonymous (S) and nonsynonymous (N) sites at each gene locus must be estimated 265 

(Yang 2007). We estimated S and N empirically by using the CovSimulator, which accounts for 266 

both the genome base composition bias and the strong mutation biases (Supplemental Materi-267 

al Fig S3). Specifically, we ran CovSimulator with a high genome mutation rate m=10 and a 268 

population size p=200 for n=10 generations, generating an expected total number of 20,000 269 

mutation events or =0.67 mutations per genomic site, on average. Assuming a Poisson distri-270 

bution, the proportions of genomic sites encountering 0, 1, and >1 point mutations were ex-271 

pected to be 51.2%, 34.3%, and 14.5%, respectively. Thus, the probability of a site not being 272 

mutated was p=0.512. To ensure that all genomic sites were mutated at least once, we ran 273 

CovSimulator ten times such that the chance of a site not undergoing any mutation was small 274 

p = 0.51210 = 1.25e-3. The average numbers of synonymous and missense mutations from ten 275 

repeated runs, normalized to gene lengths, were used as estimates of S and N (Table 1; Sup-276 

plemental Material Tables S1 and S2). 277 

Analysis of mutation trajectories 278 

For a simulated population, we followed the trajectories of the most frequent (>0.5% 279 

among all samples) missense mutations by first calculating their frequencies in each genera-280 

tion. The trajectory of a mutation X was represented by an n-dimensional vector 𝑋T =281 

(𝑋𝑡0
, … . , 𝑋𝑡𝑛

), where each 𝑋𝑡𝑖
 was the frequency of X within in the population at time point 𝑡𝑖. 282 

Distance between two trajectories, 𝑋𝑇 and 𝑌𝑇, was defined as 𝐷𝑋,𝑌 = ∑ |𝑋𝑡𝑖
− 𝑌𝑡𝑖

|𝑛
𝑖=0 .  Trajectories 283 

of two or more mutations were merged into a “genotype” if the average distance between them 284 

was ≤ 0.05. A genotype (G1) was considered as derived from (i.e., nested within) a parental 285 

genotype (G2) if their Jaccard distance 𝐽1,2 =
|𝐺1 ⋃ 𝐺2|−|𝐺1 ⋂ 𝐺2|

|𝐺1 ⋃ 𝐺2|
 equaled the simplified Jaccard dis-286 

tance when G1 was nested within G2, 𝐽1,2 =
|𝐺2|−|𝐺1|

|𝐺2|
. In the latter case, the union of the two tra-287 

jectories |𝐺1 ⋃ 𝐺2| was the same as the trajectory of the parental genotype G2, whereas the in-288 

tersection of the two trajectories |𝐺1 ⋂ 𝐺2| was the same as the trajectory of the child genotype 289 

G1. The merging of mutations into genotypes and the nesting of genotypes were both carried 290 

out with the Python package muller (version 0.6.0, https://github.com/cdeitrick/Lolipop) with de-291 

fault settings. Muller diagrams were subsequently generated using the R package ggmuller. 292 

Fitness of a “genotype” was defined cumulatively (Desai and Fisher 2007). An adaptive muta-293 
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tion within a cluster increases its fitness by s>0 and a deleterious mutation decreases its fit-294 

ness by s<0.  If a parent cluster had fitness ns, and a child of that cluster had fitness ms, the 295 

fitness of the child was (n+m)s.  296 

For viral genome samples, Muller diagrams, which depict mutation frequencies within a 297 

single evolving population, are in general not applicable. Since viral genomes were sampled 298 

from multiple outbreak locations, it would be misleading to perform analysis including merging 299 

of mutations into genotypes and inference of parental and child genotypes. Thus, we used 300 

heatmaps as an alternative approach to follow the trajectories of high-frequency mutations in 301 

both simulated and viral populations. The R package pheatmap was used to generate 302 

heatmaps. As in the Muller diagrams, mutations in a heatmap were grouped into hierarchical 303 

clusters based on similarities in frequencies over time. Similarity between a pair of mutation 304 

trajectories i, and j was defined as d = 1 - cor(i,,j), where cor(i,,j) was the Pearson’s correlation 305 

coefficient. Unlike in the Muller diagrams, however, mutations with similar frequency trajecto-306 

ries were not merged into “genotypes”. Nor did the heatmap analysis estimate parent-307 

descendant relationships among mutation clusters.  308 

Data and software availability 309 

SARS-CoV-2 genome sequences and the associated viral isolate information are avail-310 

able from the GISAID EpiCoV™ database (Shu and McCauley 2017). Software tools associat-311 

ed with CovSimulator, the forward-evolution simulator, and cov-db, the custom database of 312 

SARS-CoV-2 genome variability, are available at the Github repository 313 

(https://github.com/weigangq/cov-db). Programmatic access to the cov-db database is availa-314 

ble upon request. Also available in the same Github repository are key datasets including mu-315 

tation trajectories from simulated evolution and VCF files of viral genomes sampled monthly. A 316 

web interface to the cov-db database is publicly available at http://cov.genometracker.org.  317 

Results and Discussion 318 

CovSimulator: a realistic SARS-CoV-2 genome evolution simulator 319 

The SARS-CoV-2 genome is biased in base composition (62.0% AT) and strongly bi-320 

ased in mutation frequency. Approximately ~70% of single-nucleotide mutations occurring dur-321 

ing the pandemic were C>T or G>T substitutions (Supplemental Material Fig S3). To realisti-322 

cally simulate SARS-CoV-2 genome evolution, we used the first known SARS-CoV-2 genome 323 

(from the Chinese isolate Wuhan-Hu-1 collected in December 2019) (Zhou et al. 2020) as the 324 

progenitor and used empirically derived base substitution probabilities (Table 2). CovSimulator, 325 
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currently implemented with the standard Wright-Fisher model with constant population sizes 326 

and non-overlapping generations, was validated through comparing simulated outputs with an-327 

alytical expectations including the rates of sequence divergence (Fig 1C and 1D), levels of se-328 

quence polymorphism (Fig 2C), genealogies of genome samples at the end of simulations 329 

(Supplemental Material Fig S4A), and fitness values of simulated populations (Supplemental 330 

Material Fig S4B).  331 

We used the CovSimulator to derive theoretical expectations of synonymous and mis-332 

sense divergence, sequence diversity, and their ratios under neutral, background, adaptive, 333 

and mixed evolution models (Figs 1C, 1D, 2C, and 2D). These simulated outcomes provided 334 

baseline controls for estimating selective constraints (Figs 1B & 2B) as well as for understand-335 

ing evolutionary dynamics at the level of individual mutations (Fig 3). In addition, the CovSimu-336 

lator provided a simulation-based approach to estimate evolutionary parameters such as the 337 

effective numbers of synonymous and nonsynonymous sites at protein-coding loci (Table 1) 338 

and frequencies of recurrent mutations (see below). Such parameters are difficult to derive an-339 

alytically because it is necessary to take into account of biases in base composition as well as 340 

in mutation frequency. 341 

Future versions of the simulator will incorporate more realistic demographic features in-342 

cluding changing population sizes, population admixture, and additional selective mechanisms. 343 

In particular, simulating SARS-CoV-2 genome evolution under negative frequency-dependent 344 

selection is important to identify mutations contributing to immune escape including escape 345 

from vaccines, which are expected to have higher fitness values when they rare (Haven et al. 346 

2011; Papkou et al. 2019). Negative frequency-dependent mutations maintaining coexistence 347 

of multiple clonal lineages have been observed in microbial LTEEs (Maddamsetti et al. 2015; 348 

Good et al. 2017). In addition, the CovSimulator paves a way to estimate parameters of SARS-349 

CoV-2 evolution (e.g., population growth rates, selection coefficients, and migration rates) 350 

through approximate Bayesian computation (ABC) (Lintusaari et al. 2017). 351 

Accelerated missense divergence: rise of hyper-mutated variants 352 

On the basis of ~1.0 million SARS-CoV-2 genome sequences obtained from the GISAID 353 

database (Shu and McCauley 2017) up to March 31, 2021, we generated a custom database 354 

of high-quality 815,402 SARS-CoV-2 genomes. We identified 8065 SNVs, 173 deletions, and 355 

49 insertions, each of which was represented by 100 or more viral genomes. Genome se-356 

quences were consolidated into 350,094 haplotypes based on the SNVs and indels. We sam-357 

pled ~100 genomes monthly from each of the six continental populations and plotted the syn-358 
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onymous, missense, and total mutational differences with respect to the ancestral genome 359 

over collection dates (Fig 1A). The total rate of mutation accumulation (gray dots) was well 360 

characterized by a linear Poisson model with a highly significant slope and a Poisson-expected 361 

variance (Fig 1A). However, significant deviations from the Poisson model were observed in 362 

Asian, European, Oceanian, and South American viral populations since October 2020, asso-363 

ciated with the hyper-mutated viral variants discovered first in immuno-compromised patients 364 

with COVID-19 (Choi et al. 2020; Kemp et al. 2021).  365 

The Poisson model of linear mutation accumulations over time initially suggested a neu-366 

tral process of viral genome divergence. However, closer examination by measuring the syn-367 

onymous and missense mutation rates separately did not support the neutral divergence mod-368 

el. The ratio of missense to synonymous mutations was expected to be high (Dn/Ds~3.0) ac-369 

cording to the simulated neutral evolution (Fig 1C, 1st panel). In reality, the Dn/Ds ratios began 370 

at a low level (Dn/Ds~1.0) similar to that from the simulated background selection model (Fig 371 

1C, 1st panel), thus suggesting considerable selective constraints during the early months (be-372 

fore April 2020) of the pandemic. The Dn/Ds ratio increased across continental populations af-373 

terward and eventually showed a marked increase after October 2020 to the levels expected 374 

from the neutral and adaptive evolution models (Fig 1B). The accelerated missense diver-375 

gence, reflected in the steep rise of Dn/Ds ratios, was attributable to the emergence and spread 376 

of hyper-mutated viral lineages, which accumulated predominantly missense mutations with 377 

little synonymous divergence (Fig 1A). However, the acceleration of missense divergence oc-378 

curred in the North American population before the emergence of hyper-mutated viral lineages 379 

therein (Fig 1B, 4th panel).  380 

The hyper-mutated viral variants, which first emerged in immune-compromised patients 381 

with COVID-19 (Choi et al. 2020; Kemp et al. 2021), resembled the hyper-mutable microbial 382 

lineages with defective DNA repair systems that commonly emerged during LTEE studies 383 

(Lenski 2017). In LTEE populations, the “mutator” phenotype was maintained because the 384 

consistently higher benefits of new adaptive mutations out-weighing the cost of deleterious mu-385 

tations in a controlled environment (Lenski 2017). Similarly, in an immune-deficient host envi-386 

ronment, mutations that would have been deleterious in a normal host (e.g., those leading to 387 

hyper immunogenicity) may become neutral or beneficial to viral reproduction (Choi et al. 388 

2020; Kemp et al. 2021). Freed from host immune constraints, viral evolution essentially fol-389 

lows the adaptive or mixed evolution models in which adaptive lineages dominate the viral 390 

population (Fig 1C and 1D, 3rd panel). Nevertheless, all missense mutations observed in the 391 
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hyper-mutated viral genomes are unlikely to be adaptive because neutral or slightly deleterious 392 

mutations are driven to high frequencies through genetic hitchhiking in an asexual population 393 

(i.e., genetic draft) (Gillespie 2000; Kim and Stephan 2000; Lang et al. 2013).      394 

We note that, beyond adaptive mutations, the acceleration of missense divergence as 395 

measured by the Dn/Ds ratio could be caused by demographic forces. In the present study, we 396 

simulated viral evolution with a constant population size, although neutral and slightly deleteri-397 

ous missense mutations are expected to accumulate in the rapidly expanding viral populations 398 

(Messer and Petrov 2013). In addition, our analysis combined viral samples within a continent 399 

as representing a single population, whereas numerous local outbreaks and subsequent mi-400 

grations between subpopulations are expected to contribute to increased viral genome diversi-401 

ty including missense divergence (see next section). 402 

Expanding genome diversity: demographic and selective causes 403 

SARS-CoV-2 genomic diversity, measured by monthly average genome differences (π), 404 

increased in the six continents during the first year of the COVID-19 pandemic (Fig 2A). Ex-405 

panding genomic diversity is expected for a nascent viral population before it reaches muta-406 

tion-drift balance even if the population remains at a constant size (Fig 2C). Clearly, the global 407 

viral populations are far from reaching an equilibrium level of genomic diversity as the virus 408 

has spread within and across continents, mirroring the failures in local and global outbreak 409 

control. Furthermore, the increasing genomic diversity may be a reflection of increasing admix-410 

ture of viral subpopulations distributed across the continents. 411 

Beyond demographic forces, the relaxation of selective constraints and adaptive muta-412 

tions may also have contributed to the rising viral genomic diversity. Ratios of missense to 413 

synonymous polymorphisms (
n
/

s
) were generally higher in continental populations than ex-414 

pected under strong purifying selection (Fig 2B), suggesting the accumulation of neutral and 415 

slightly deleterious missense mutations in the expanding viral population. Adaptive hyper-416 

mutated lineages contributed to the increase in 
n
/

s
 ratios in later months in most continental 417 

populations and caused the elevated Dn/Ds ratios described in the previous section, An addi-418 

tional possible cause of rising viral genomic diversity is the presence of negative frequency-419 

dependent selection by which rare immune-escape variants gain a selectively advantage (Ha-420 

ven et al. 2011; Papkou et al. 2019). 421 

Asexuality, recurrent mutations, and recombination 422 

We estimated the genome-wide levels of LD on the basis of 93 most frequent missense 423 
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SNVs segregating in 8215 genomes sampled from six continents (Supplemental Material Ta-424 

ble S3). These mutations were present with a frequency of 20% or higher in at least one month 425 

in one continent. Complete LD (D’ close to 1) dominated the D’ values between pairs of SNVs 426 

and, furthermore, there was no evidence of LD decay over genomic distances between the 427 

SNVs (Supplemental Material Fig S5). LD decay over distance is expected if recombination 428 

among viral strains occurs with sufficient frequency. In microbial species, recombination occur-429 

ring at a rate comparable to the rate of point mutation is sufficient to cause LD decay over ge-430 

nomic distances (Fraser et al. 2007; Ansari and Didelot 2014). Thus we conclude that SARS-431 

CoV-2 populations during the first year of pandemic were largely asexual with little evidence of 432 

recombination. The asexual population structure of SARS-CoV-2 populations mirrors the low 433 

recombination rates during previous SARS and Middle East respiratory syndrome (MERS) 434 

coronavirus outbreaks (Chinese SARS Molecular Epidemiology Consortium 2004; de Wit et al. 435 

2016).  436 

An analysis of SARS-CoV-2 genomes from early isolates suggested active recombina-437 

tion during human transmission based on a high level of homoplasy – independent mutations 438 

occurring at the same sites that cause inconsistencies with the viral phylogeny (Yi 2020). A 439 

prominent example of phylogenetically inconsistent mutation is the nonsynonymous SNV 440 

TTT[Phe]/TTG[Leu] at the genomic position 11083 of the Nsp6 locus (Yi 2020). By reconstruct-441 

ing genome phylogeny through haplotype networks, we observed a similarly high level of ho-442 

moplasy caused by either recombination or by mutations that have occurred independently in 443 

multiple evolutionary lineages (Supplemental Material Fig S6). Recurrent mutations and se-444 

quencing errors may have contributed to the observed homoplasy (Turakhia et al. 2020). Re-445 

curring mutations are inevitable in SARS-CoV-2 with its relatively small genome size. The 446 

chance of mutation recurrence increases as the pandemic spreads and persists. Indeed, we 447 

were able to estimate the rate of mutation recurrence with the use of CovSimulator. In a simu-448 

lated population evolving under neutral conditions, ~2.9% genomic sites (860 out of the total of 449 

29903 sites) experienced two or more mutations after 500 generations. This number was sig-450 

nificantly greater than expected from a random Poisson process (p=2.1e-270 by a 2 test of 451 

goodness of fit). For two mutations occurring at the same genomic site, strong mutation biases 452 

seen during SARS-CoV-2 genome evolution stipulate a high chance of parallel base substitu-453 

tions. For example, a mutation at a cytosine (C) site will almost certainly (with a ~95% chance) 454 

result in a thymine (T) (Table 2; Supplemental Material Fig S3). 455 

It should be cautioned that a clonal population structure in SARS-CoV-2 does not imply 456 
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an absence of or an inability of homologous recombination. In fact, coronaviruses are known 457 

for their high potential for homologous recombination in natural reservoirs as well as in the la-458 

boratory conditions (Masters 2006; Denison et al. 2011; Cui et al. 2019). SARS-CoV-2 ge-459 

nomes showed a mixed ancestry containing parts of the genome from coronaviruses associat-460 

ed with the pangolin (Manis javanica) and other parts from related viruses associated with the 461 

bat (Rhinolophus affinis) (Andersen et al. 2020; Lam et al. 2020). Consequently, the high clon-462 

ality of SARS-CoV-2 populations is likely to be due to the explosive population growth world-463 

wide (“epidemic structure”) rather than to an inability of recombination (Smith et al. 1993). By 464 

reducing clonal interference among competing adaptive mutations as well as by removing del-465 

eterious mutations without decreasing the frequencies of beneficial alleles, recombination is a 466 

powerful mechanism accelerating adaptation across species including microorganisms (Smith 467 

et al. 1993; Barton and Charlesworth 1998). As such, it is important to be vigilant about the ris-468 

ing chance of recombination among SARS-CoV-2 variants as the COVID-19 pandemic be-469 

comes entrenched. Previously, we have quantified recombination rates in natural populations 470 

of Lyme disease bacterium based on genome comparisons and computer simulations (Qiu et 471 

al. 2004; Haven et al. 2011). Similarly, CovSimulator can be used to detect the presence of re-472 

combination and to estimate recombination rates in SARS-CoV-2 populations through a com-473 

parison of homoplasy levels in populations simulated with and without recombination.  474 

Adaptation despite background selection: a model of SARS-CoV genome evolution 475 

The highly clonal population structure of SARS-CoV-2 and the microbial species in 476 

LTEE studies implies that genetic variations across the entire genome are highly linked. As 477 

such, various selective forces interfere with one another including, for example, purifying selec-478 

tion at housekeeping loci, diversifying selection at antigenic loci, and adaptive evolution at 479 

host-binding sites (Hill and Robertson 1966; Gillespie 2000; Lang et al. 2013; da Silva and 480 

Galbraith 2017; Lenski 2017; Campos and Charlesworth 2019). In addition, neutral or even 481 

deleterious mutations may “ride along” with a newly emerged adaptive mutation and to reach 482 

high frequency in an asexual population.  483 

On the basis of the conclusions on adaptive mutations contributing to genome variability 484 

and on the strong LD across the SARS-CoV-2 genome, we propose the mixed evolution as a 485 

model to understand the dynamics of SARS-CoV-2 genome evolution. In the mixed model 486 

(Figs 1C, 1D, 2C, and 2D), the majority of missense mutations were slightly deleterious (~80% 487 

probability with a multiplicative fitness cost of 0.95) and a small proportion of missense muta-488 

tions were slightly adaptive (~10% probability with a multiplicative fitness benefit of 1.05).  489 
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First, we traced the genealogy of the final 20 sampled genomes, which showed a substantially 490 

shortened coalescence time since the most recent common ancestor (Fig 3A). Next, we 491 

tracked the frequencies of the top most frequent (5%) missense mutations for 500 genera-492 

tions (Fig 3B). Adaptive mutations (11 of a total of 19 mutations) dominated the final popula-493 

tion. Nevertheless, not all fixed mutations were adaptive. Three neutral (#1, #2, and #4, in 494 

gray) and three deleterious missense (#2, #3, and #4 in blue) mutations became fixed through 495 

linkage with adaptive driver mutations, exemplifying genetic draft (Gillespie 2000). Conversely, 496 

not all adaptive mutations were destined to be fixed, indeed, one adaptive mutation (#5, in red) 497 

was lost because of competition with other adaptive mutations, exemplifying clonal interfer-498 

ence (Lang et al. 2013; Maddamsetti et al. 2015). Thirdly, we generated the Muller diagrams, 499 

which grouped mutations sharing similar frequency trajectories (i.e., temporal linkage) into a 500 

single “genotype” (Fig 3C). The diagrams highlighted regular selective sweeps driven by adap-501 

tive mutations. Critically, it is clear from the Muller diagrams that within each “genotype” (e.g., 502 

G1, G2, G3, G8, and G9), at least one genetic change was the driver adaptive mutation. To 503 

facilitate comparison of evolutionary dynamics among evolutionary models, we provided the 504 

genome genealogies of the last-generation samples and the Muller diagrams of the topmost 505 

frequent missense mutations from all four models of simulated evolution as Supplemental Ma-506 

terial Fig S4.  507 

In summary, the mixed evolution model illustrates that, first, adaptive mutations and vi-508 

ral lineages quickly dominate the viral population despite that most of the missense mutations 509 

are deleterious. Second, neutral and deleterious mutations can become fixed through genetic 510 

hitchhiking with adaptive mutations. Third, adaptive mutations can be lost because of strong 511 

clonal interference. Fourth, recurring mutations become increasingly common because of a 512 

small viral genome, strong mutation biases, longer evolution time, and prolonged maintenance 513 

of adaptive lineages in the viral population. Fifth, temporal linkage among missense mutations 514 

provides a way to identify adaptive driver mutations. These conclusions are anticipated by ob-515 

servations from microbial LTEE studies as well as by results of theoretical analysis, both of 516 

which showed dominance of adaptive mutations in asexually evolving populations despite 517 

presence of strong purifying selection (Kim and Stephan 2000; Desai and Fisher 2007; Lenski 518 

2017). We note that only one set of evolutionary parameters was used in the present simula-519 

tion of the mixed model, the outcome of which would vary quantitatively with selection parame-520 

ters including the proportions and strengths of deleterious and adaptive mutations. 521 
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Spatiotemporal characteristics of adaptive mutations  522 

The mixed model of SARS-CoV-2 genome evolution revealed a number of characteris-523 

tics of adaptive mutations that are informative for their identification. First, adaptive mutations 524 

were over-represented in high-frequency SNVs (Fig 3). In one population simulated with mixed 525 

model, 258 adaptive mutations (10.9% out of a total of 2376 missense mutations) were present 526 

in the combined sampled genomes. However, 14 (45%) of the adaptive mutations were among 527 

the 31 missense mutations that have reached a frequency of 0.5% or higher. Second, the pro-528 

portion of adaptive mutations among missense mutations increased over time (Fig 3). In the 529 

same simulated population, among the 20 genomes sampled from the last generation, the 530 

fixed missense mutations included 7 (70%) adaptive, 2 (20%) deleterious, and 1 (10%) neutral 531 

mutations. Third, in clusters of mutations that shared similar temporal trajectories, at least one 532 

of the consortium was the adaptive driver (e.g., G1, G2, G3, G8, and G9 in Fig 3). These char-533 

acteristics of adaptive mutations suggest ways to identify adaptive mutations driving SARS-534 

CoV-2 adaptation to humans through spatiotemporal tracking of mutation frequencies. 535 

Guided by the above insights from the simulated evolution and LTEEs, we identified a 536 

genome-wide set of 101 missense mutations with a presence of 20% or higher frequency in at 537 

least one month within a continent (Supplemental Material Table S4). The high-frequency mu-538 

tations were most often found in genes encoding the spike (S, n=21, 20.8%), nucleocapsid (N, 539 

n=19, 18.8%), Nsp3 (n=13, 12.9%), and ORF8 (n=9, 8.9%) proteins. Similarly, we identified a 540 

set of 52 missense mutations on the spike protein with a presence of 5% or higher frequency 541 

in at least one month within a continent (Supplemental Material Table S5). Mutations on the 542 

spike protein are of particular interest because of its use as vaccinogen. Half (n=26) of these 543 

spike protein mutations were located within the N-terminus domain (NTD) and receptor-binding 544 

domain (RBD), suggesting an oversized role the NTD and RBD mutations play in driving 545 

SARS-CoV-2 adaptation to humans. Sequences in NTD and RBD evolve faster relative to the 546 

genome average during coronavirus divergence, further supporting the role of mutations within 547 

these domains in driving viral adaptation to humans (Luk et al. 2019; Phan 2020; Cagliani et al. 548 

2020) (Supplemental Material Fig S6). 549 

We subsequently clustered these high-frequency mutations on the basis of their tem-550 

poral trajectories within each continent. A heatmap of frequency trajectories of 52 missense 551 

mutations (with >5% frequency in at least one month) on the spike protein revealed clusters of 552 

mutations that were distributed either across the globe or more limitedly within continents (Fig 553 

4). The globally distributed mutations included the D614G substitution that arose during the 554 
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first month (January 2020) of the SARS-CoV-2 outbreaks in Asia and quickly reached global 555 

fixation. Clinical and experimental studies suggested enhanced human transmissibility but not 556 

increased disease severity associated with D614G viral variants (Korber et al. 2020; Volz et al. 557 

2021; Plante et al. 2021). It is possible that missense mutations strongly linked with the D614G 558 

mutation, including P323L in Nsp12 (RNA polymerase) and R203K and G204R in the N (nu-559 

cleocapsid) protein, may have also played a role in increased viral fitness in humans (Yang et 560 

al. 2020). 561 

A temporally linked group of six spike protein mutations – N501Y, P681H, T716I, 562 

D1118H, S982A, and A570D – associated with the hyper-mutated B.1.1.7 lineage (Fig 4) that 563 

emerged in September 2020 in England and quickly spread worldwide represent another set of 564 

mutations that have enhanced viral transmission in humans (Galloway 2021; Kemp et al. 565 

2021). These spike protein mutations pose the additional risk of viral escape from protective 566 

immunity elicited with vaccines designed on the basis of the bat-adapted progenitor genome 567 

(Wang et al. 2021; Collier et al. 2021). Other mutations have so far been confined within one or 568 

more continents and have not reached global presence. These spike protein mutations includ-569 

ed those associated with the B.1.351 lineage in Africa, the P.1 lineage in South America, the 570 

B.1.427/B.1.429 lineages in North America, and the B.1.617 lineage in Asia (Fig 4).  571 

The strong candidates of human-adaptive mutations shown in the above have risen rel-572 

atively early during the pandemic. The latest emergent human-adaptive mutations, however, 573 

would first reach high frequencies only in local outbreak populations. Thus, it is necessary to 574 

track allele frequencies at regional levels for early detection of human-adaptive mutations. As 575 

an example, we tracked the spatiotemporal frequencies of 56 spike missense mutations with 576 

≥5% allele frequencies in at least one month in the United States and and its five states includ-577 

ing Washington, California, New York, Texas and Michigan (Fig 5). Except for the globally 578 

fixed D614G mutations and mutations associated with the B.1.1.7, B.1.427 and B.1.429 line-579 

ages, mutations associated with the latest emergent viral lineages only reached the threshold 580 

5% level within the states and not at the national level. For example, the B.1.526 and B.1.243 581 

lineages emerged during December 2020 in New York and have not yet spread to the other 582 

four states. The B.1.2 lineage in Washington and the B.1.234 lineage in Michigan have thus far 583 

been observed only within the states.  584 

In summary, whereas missense mutations in the SARS-CoV-2 genome that have 585 

reached high frequency at local or global levels are not necessarily human-adaptive mutations 586 

because of the possibilities of genetic drift and hitchhiking, clusters of missense mutations that 587 
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display temporal linkage and have reached high frequencies are indicative of adaption to hu-588 

mans. Within each of the cluster of temporally linked high-frequency missense mutations, we 589 

expect at least one to be a human-adaptive driver mutation. As such, the high-frequency clus-590 

ters of missense mutations are top-priority candidates for clinical development of therapeutics 591 

and vaccines that target human-adapted viral variants. 592 

Concluding remarks 593 

In the present work, we used realistic simulations of genome evolution and insights from 594 

microbial long-term evolution experiments (LTEEs) (Tenaillon et al. 2016; Cvijović et al. 2018) 595 

to understand the evolutionary transition of the SARS-CoV-2 virus from a bat-adapted to a 596 

human-adapted pathogen. The two evolving systems share salient evolutionary characteristics 597 

including strong purifying selection associated with a compact genome and large population 598 

sizes, forced adaptation to a new environment, and an asexual population structure. Not sur-599 

prisingly, the variety of adaptive dynamics occurred in LTEEs were all discernable during 600 

SARS-CoV-2 evolution including the early rise and rapid fixation of adaptive mutations, clonal 601 

interference with competing adaptive mutations, fixation of neutral and deleterious mutations 602 

due to genetic hitchhiking. Specifically, both LTEEs and our analysis suggest that temporal 603 

linkage among mutations is a sensitive means for identifying emerging human-adaptive muta-604 

tions and vaccine-escape mutations, particularly when mutation frequencies are tracked at the 605 

local and regional levels.  606 

Epidemiological models based on human coronaviruses and influenza viruses predict 607 

the COVID-19 to be a recurrent seasonal disease in the next 2 ~ 5 years (Kissler et al. 2020; 608 

Cobey 2020). We expect to see continued expansion of viral genome diversity as the pandem-609 

ic persists, entailing increasing risks for viral adaptation to humans and viral escape from natu-610 

ral and vaccine-induced protective immunity. Prolonged pandemic incurs the additional risks of 611 

recurrent mutations and recombination among viral variants, which would accelerate viral ad-612 

aptation to humans. The software systems we developed facilitate real-time tracking of SARS-613 

CoV-2 outbreaks. The CovSimulator software system is capable of modeling the trajectories of 614 

SARS-CoV-2 genome evolution and could be further improved by including more realistic pa-615 

rameters such as population expansion, migration and admixture between subpopulations, and 616 

frequency-dependent fitness imitating vaccine-escape mutations. The second software system 617 

associated with the cov-db genome database is capable of rapid tracking of emergent adaptive 618 

mutations through temporal sampling of genomes in a continent, country, or region therein. 619 

Thirdly, the cov.genometracker.org website provides a public-friendly user interface to search, 620 
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browse, and visualize SARS-CoV-2 genome evolution and mutation trajectories (Supplemental 621 

Material Fig S7). Mutations appear in genes encoding proteins that down-regulate host im-622 

mune responses (e.g., ORF3a and ORF8) and bind host cells (e.g., Spike) are high priority 623 

targets for the development of therapeutics and vaccines against human-adapted SARS-CoV-624 

2 variants. 625 
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 885 

Tables and Figures 886 

Table 1. Protein-coding loci (n=25) included in simulated SARS-CoV-2 genome evolution 887 

Protein ID
 a

 Locus 

symbol 

Protein function
 b

 Location
 a

 Locus 

length 

Syn sites 

(S)
 c

 

Missense 

sites (N)
 c

 

YP_009725297.1 nsp1 Leader protein; inhibits host translation 266, 805 540 164.48 375.52 

YP_009725298.1 nsp2 Unknown 806, 2719 1914 583.94 1330.06 

YP_009725299.1 nsp3 Polyprotein processing 2720, 8554 5835 1738.36 4096.64 

YP_009725300.1 nsp4 Formation of double membrane vesicles as-

sociated with replication complexes 

8555, 10054 1500 449.50 1050.50 

YP_009725301.1 nsp5 3C-like proteinase; polyprotein processing 10055, 10972 918 278.19 639.81 

YP_009725302.1 nsp6 Formation of double membrane vesicles as-

sociated with replication complexes 

10973, 11842 870 253.34 616.66 

YP_009725303.1 nsp7 Accessory subunit of RNA-dependent RNA 

polymerase 

11843, 12091 249 75.97 173.03 

YP_009725304.1 nsp8 Accessory subunit of RNA-dependent RNA 

polymerase; primase 

12092, 12685 594 164.77 429.23 

YP_009725305.1 nsp9 RNA-binding protein 12686, 13024 339 105.61 233.39 

YP_009725306.1 nsp10 Co-factor of Nsp14 and Nsp16 for methyl-

transferase activity 

13025, 13441 417 123.76 293.24 

YP_009725307.1 nsp12 RNA-dependent RNA polymerase 13442, 13468; 

13468, 16236 

2796 843.60 1952.40 

YP_009725308.1 nsp13 Helicase 16237, 18039 1803 541.37 1261.63 

YP_009725309.1 nsp14 Proof-reading 3'-to-5' exonuclease 18040, 19620 1581 469.80 1111.20 

YP_009725310.1 nsp15 Endonuclease 19621, 20658 1038 319.98 718.02 

YP_009725311.1 nsp16 Ribose 2'-O-methyltransferase; RNA cap 

formation 

20659, 21552 894 268.86 625.14 

YP_009724390.1 S Surface glycoprotein; spike protein; binding 

of host cell receptor 

21563, 25384 3822 1150.89 2671.11 

 S1 S1 subunit containing the angiotensin- 21563, 23185 1623 482.32 1140.68 
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converting enzyme 2 (ACE2) receptor-

binding domain (RBD) (Wang et al. 2020; 

Huang et al. 2020) 

 S2 S2 subunit responsible for membrane fusion 23186, 25381 2296 667.38 1528.62 

YP_009724391.1 orf3a Ion channel promoting virus release (Lu et 

al. 2006; Siu et al. 2019) 

25393, 26220 828 252.54 575.46 

YP_009724392.1 E Envelope protein forming homopentameric 

cation channel 

26245, 26472 228 80.43 147.57 

YP_009724393.1 M Membrane glycoprotein 26523, 27191 669 202.40 466.60 

YP_009724394.1 orf6 Unknown 27202, 27387 186 53.74 132.26 

YP_009724395.1 orf7a Unknown 27394, 27759 366 115.71 250.29 

YP_009725318.1 orf7b Unknown 27756, 27887 132 46.24 85.76 

YP_009724396.1 orf8 Ion channel contributing to suppression of 

host immunity (Zinzula 2021) 

27894, 28259 366 121.59 244.41 

YP_009724397.2 N Nucleocapsid phosphoprotein; viral RNA 

genome protection and packaging 

28274, 29533 1260 396.51 863.49 

YP_009725255.1 orf10 Unknown; suspected membrane protein 

forming viroporin 

29558, 29674 117 32.88 84.12 

a 
Start and stop positions (stop codon included) based on the genome of the strain Wuhan-Hu-1 (GenBank Accession NC_045512) 888 

(Zhou et al. 2020). The nsp11 locus (39 bases; 13442-13480), which is small and enclosed within the nsp12 locus, was excluded. The 889 

4-base overlap between orf7a and orf7b was counted towards the former locus.  890 

b
 (To et al. 2021) 891 

c
 Effective numbers of synonymous (S) and nonsynonymous (N) substitution sites of a protein-coding locus, derived with the CovSim-892 

ulator (see Material and Methods) 893 

 894 

 895 
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Table 2. Evolutionary parameters and neutral expectations 896 

Symbol Description and Settings 

Ne Effective population size (Ne = 200); held constant 

g Total number of generations (g = 500)  

L Genome length (L = 29,903 bases, GenBank Accession NC_045512) 

, 0 Mutation rate per site; neutral mutation rate 

θ=2 Ne0 Expected level of neutral sequence diversity at mutation-drift balance 

TMRC Time to the most recent common ancestor; ~2Ne for a haplotype population 

π, πs, πn, Average pair-wise total, synonymous, nonsynonymous sequence differences 

m Mutation rate per genome (m = 0.1); Poisson distributed and uniform across the genome 

k=mt Expected sequence difference with respect to the ancestral sequence over generation time 

(t); Poisson distributed with variance equal to mean, or standard deviation 𝑠𝑑(𝑘) = √𝑚𝑡 

r Recombination rate per genome (r = 0 for clonal evolution without recombination); Pois-

son distributed with uniform breakpoint probabilities across the genome 

s Sample size per generation (s = 20, 10% of population size) 

w1, w2 Multiplicative fitness loss for a deleterious (w1 = 0.95) missense mutation or fitness gain 

for an adaptive (w2 = 1.05) missense mutation; relative t to the progenitor genome 

u, v Probabilities of a missense mutation being deleterious (u = 0.5) or adaptive (v = 0.05); 

relative to the progenitor genome 

Q 

Empirically derived base substitution probabilities: 𝑄 = (

0 0.1083 0.7000 0.1917
0.0475 0 0.0033 0.9492
0.2102 0.0931 0 0.6967
0.1025 0.795 0.1025 0

). 

Both rows (source bases) and columns (destination) are in the order of A, C, G, and T, 

probabilities for each source base (in a row) summing to 1. 

S Total number of synonymous sites in a protein-coding locus 

N Total number of nonsynonymous sites in a protein-coding locus 

ds, dn Levels of synonymous and nonsynonymous divergence between viral species: 𝑑𝑠 =
𝐷𝑠 𝑆⁄ ; 𝑑𝑛 = 𝐷𝑛 𝑁⁄ , where Ds and Dn are the numbers of synonymous and nonsynony-

mous base differences 

ps, pn Levels of synonymous and nonsynonymous polymorphism in a viral population: 𝑝𝑠 =
𝑃𝑠 𝑆⁄ ; 𝑝𝑛 = 𝑃𝑛 𝑁⁄ , where Ps and Pn are the numbers of synonymous and nonsynonymous 

polymorphic sites 
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 897 

 898 

Fig 1. Rates of synonymous and nonsynonymous divergence of SARS-CoV-2 genomes 899 

(A) In each panel, points represent differences with respect to the reference genome (y-axis) of 900 

viral genomes originating in a continent with collection dates (x-axis) ranging from Dec 2019 901 

through March 2021. A random sample of 100 genomes was chosen for each month, resulting 902 

in ~1400 genomes for each continent with evenly distributed monthly representations. Each 903 

genome was represented three times, including the number of synonymous mutations (cyan), 904 

the number of missense mutations (magenta), and the total number of genetic changes (in-905 

cluding indels; gray). A linear regression line (solid, with statistics shown within the 906 

“N_America” panel) was derived by using genomes from all continents. Dashed lines show two 907 

standard deviations above and below the regression line on the basis of the Poisson expected 908 

variance 𝜎2(𝑘) = 𝑘 . Hyper-mutated genomes (marked by the lineage designations) that 909 

emerged in late 2020 showed accelerated accumulation of missense (but not synonymous) 910 

mutations (Choi et al. 2020; Kemp et al. 2021). The orange lines indicate a cutoff value of 15 911 

missense mutations to determine outliers.  912 
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(B) Ratios of the numbers of missense (Dn) to synonymous (Ds) mutations relative to the refer-913 

ence genome (y-axis), a measure of selective constraint, were plotted against the viral sample 914 

collection dates (x-axis). Each point was the ratio of the average number of missense to syn-915 

onymous mutations within a moving window of 14 days. Horizontal dashed lines mark the rati-916 

os obtained from simulated evolution and percentages represent proportions of missense mu-917 

tations that were deleterious (blue), neutral (green) and adaptive (red) (see below). Dn/Ds rati-918 

os in all populations started at low levels, indicating strong purifying selection during the early 919 

months (before April 2020) of the pandemic. The Dn/Ds ratio increased greatly in later months 920 

of 2020 worldwide, suggesting rapid population expansion and the emergence of human-921 

adaptive viral variants.  922 

(C) Mutational divergence (y-axis) over the generation (x-axis) of genomes simulated with four 923 

evolution models. For each model, a sample of s=20 genomes was chosen for each genera-924 

tion, resulting in ~10,000 genomes for each model. Solid lines indicate the expected mutation 925 

rate in the neutral model. Dashed lines show two standard deviations above and below the ex-926 

pected total mutation rate on the basis of the Poisson expected variance 𝜎2(𝑘) = 𝑚𝑡. Genome 927 

evolution was simulated with a population size N=200, genome mutation rate m=0.1 and no 928 

recombination (r=0). In the neutral evolution model (“NEUT”), all missense mutations carried a 929 

fitness of 1. In the background selection model (“BKG”), a missense mutation had an 80% 930 

chance of incurring a fitness cost of 0.95 and was otherwise neutral. In the adaptive evolution 931 

model (“ADPT”), a missense mutation had a 10% chance of incurring a fitness benefit of 1.05 932 

and was otherwise neutral. In the mixed evolution model (“MIX”), a missense mutation had an 933 

80% chance of incurring a fitness cost of 0.95, a 10% chance of incurring a fit benefit of 1.05, 934 

and 10% chance of being neutral. As expected, the ratio of missense to synonymous muta-935 

tions (~1.0) in the BKG model was markedly lower than that in neutral evolution and was used 936 

as a control (blue dashed line in panel B) for measuring viral evolution during the pandemic. 937 

The ratios of missense to synonymous mutations from the neutral and mixed evolution models 938 

were much higher (~3.0) and were used as another set of controls (green and red dashed lines 939 

in panel B) to understand SARS-CoV genome evolution. 940 

(D) Simulated genomes colored by fitness values. In the neutral evolution model, the total mu-941 

tation rate and its variability accurately followed the expectations, thereby validating the 942 

CovSimulator. In the background selection model, the overall mutation rate decreased and the 943 

population was increasingly dominated by low-fitness genomes, showing a gradual loss of fit-944 

ness in a clonal population known as Muller’s ratchet (Muller 1964). In the adaptive evolution 945 
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model, mutation accumulation was accelerated and the population was dominated by adaptive 946 

lineages except in the first 100 generations. In the mixed evolution model, adaptive lineages 947 

dominated the population despite the presence of strong purifying selection.  948 

  949 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.07.443114doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443114
http://creativecommons.org/licenses/by-nc/4.0/


 

5 

 950 

 951 

Fig 2. Synonymous and nonsynonymous polymorphisms of SARS-CoV-2 populations 952 

The average number of pairwise sequence differences (π) is a measure of viral genetic diversi-953 

ty, which reflects the viral effective population size and viral reproduction rate.  954 

(A) Each panel represents a continental population. Synonymous (πs), nonsynonymous (πn), 955 

and total pairwise sequence differences (y-axis) were calculated from monthly samples from 956 

December 2020 through March 2021 (x-axis). Sequence diversity increased in all populations. 957 

An initial increase in genetic diversity was expected for a nascent viral population before 958 

reaching mutation-drift balance. However, the acceleration of viral diversity in later months was 959 

unexpected and reflected the accumulation of neutral, deleterious, and adaptive genetic diver-960 

sity in rapidly expanding viral populations.  961 

(B) The ratio of nonsynonymous (πn) to synonymous (πs) diversity, similarly to Dn/Ds (Fig 1), is 962 

a measure of selective constraints. The πn/πs ratios were elevated and fluctuated substantially, 963 

in agreement with a lack of selective constraints in rapidly expanding viral populations.  964 

(C) The π values of simulated genomes under four evolution models. In the neutral evolution 965 
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model the total π value stabilized at the expected value of θ = 40, further validating the 966 

CovSimulator. The π values were relatively lower in the background and adaptive selection 967 

models, in agreement with smaller effective population sizes due to natural selection and 968 

shorter coalescent times (Supplemental Fig S4). Genome evolution was simulated with a 969 

population size N=200, genome mutation rate m=0.1 and without recombination (r=0). In the 970 

neutral evolution model (“NEUT”), all missense mutations carried a fitness of one. In the back-971 

ground selection model (“BKG”), a missense mutation had an 80% chance of carrying a fitness 972 

cost of 0.95. In the adaptive evolution model (“ADPT”), a missense mutation had a 10% 973 

chance of carrying a fitness benefit of 1.05.   974 

(D) The πn/πs ratios for the four evolution models, showing a low value for a population under 975 

purifying selection, a high value during neutral evolution, and intermediate values for a popula-976 

tion under adaptive evolution. These average ratios are shown in panel (B) as references for 977 

comparison with values based on viral samples. 978 

 979 

  980 
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 981 

Fig 3. Mixed evolution as a model of SARS-CoV-2 genome evolution 982 

Simulated evolution of a viral population subject to both purifying and adaptive selection (pa-983 

rameters defined in Fig 1) captured viral adaptation at the level of individual mutations.  984 

(A) Genealogy of the n=20 simulated genomes sampled from the last generation. The 16 mu-985 

tations were fixed in the final population and their times of first appearance in the population 986 

(tick marks on the root edge) corresponded to the timing of selective sweeps shown in the Mul-987 

ler diagram (panel C). The genealogy shows that the final viral population descended from the 988 

latest selective sweep, which occurred only ~50 generations ago.  989 

 (B) In the heatmap, rows show n=19 high frequency (5% in 10,000 genome samples) non-990 
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synonymous SNVs, labeled by the genome position and destination base, from the mixed evo-991 

lution model. Frequencies were represented by color intensity (middle panel). Unlike those of 992 

natural viral variants, the fitness values of simulated variants were precisely known (colored 993 

side bar). The variants were grouped according to the correlated evolutionary trajectories 994 

(dendrogram) such that mutations with similar trajectories (“genotypes”) – indicating temporal 995 

linkage – were adjacent. Adaptive mutations (red, numbered from #1 through #11) dominated 996 

the population. Adaptive mutations (#3 and #4) arose early. One adaptive mutation (#5) was 997 

lost, probably because of clonal interference but also possibly because of genetic drift. Among 998 

the four deleterious mutations, one (#1) was lost whereas the other three hitchhiked with linked 999 

adaptive mutations to fixation. Similarly, one neutral mutation (#3) was lost and three others 1000 

hitchhiked to fixation. Furthermore, the simulation suggests a high rate of multiple mutations 1001 

occurring at the same genomic site associated with adaptive mutations (#1, #10, and #11). 1002 

Three of the four multiple-hit mutations had T as the destination base, reflecting the strong mu-1003 

tation bias in which ~70% SNVs during viral evolution were due to C>T or G>T substitutions.  1004 

(C) Muller diagrams of mutation trajectories in the simulated population. In the top diagram, at 1005 

each vertical cross section, the heights of colored blocks represent the relative frequencies of 1006 

the “genotypes”. A genotype represented one or more mutations displaying a similar evolu-1007 

tionary trajectory reflecting temporal linkage. The Muller diagram reveals selective sweeps oc-1008 

curring regularly and strong competition among adaptive mutations. For example, during gen-1009 

erations 100 to 250, the top Muller plot shows competition between two genotypes (G8 and 1010 

G13), both of which carried a deleterious mutation. They had similar fitness values (bottom 1011 

Muller plot). At the ~250 generation, however, G13 was outcompeted by G8 and went extinct. 1012 

G8 itself subsequently gave rise to G2. Similarly, at the ~300th generation, two adaptive muta-1013 

tions (#5 in G6 and #6 in G10) began to compete against each other and coexisted until the 1014 

~450th generation when G6 was eventually displaced by G1 and G3, both descendants of G10. 1015 

The latter case represents a loss of an adaptive allele (#5) due to clonal interference. 1016 

 1017 
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Fig 4. Frequency trajectories of high-frequency missense SNVs in six continental SARS-CoV-2 populations 1019 

The heatmap depicts allele frequencies (colored cells, in percentage, scaled with 10-based logarithm) by month (columns) of 51 mis-1020 

sense mutations (rows) on the spike protein in viral populations from six continents (vertical blocks). Each mutation frequency was cal-1021 

culated on the basis of ~100 genomes randomly sampled from a month within a continent. Each mutation was present with a ≥5% allele 1022 

frequency in at least one monthly sample. Mutations were grouped according to similarities in frequency trajectories (rowside dendro-1023 

gram). The rowside table shows mutations associated with major viral lineages (Rambaut et al. 2020) (columns #1 through #12). Col-1024 

umn #13 of the rowside table shows the spike protein domains associated with the mutations, including the N-terminus domain (NTD), 1025 

receptor-binding domain (RBD), Furin cleavage site (FCS); and the C-terminus domain (CTD). The heatmap reveals the early rise and 1026 

rapid fixation of the D614G mutation across the globe (dark blue stripe in the middle). Also discernable is rapid global spread of six 1027 

spike protein mutations (N501Y, P681H, T716I, D1118H, S982A, and A570D) associated with the hyper-mutated B.1.1.7 lineage 1028 

(rowside column #1) after its first emergence during October 2020 in Europe (Choi et al. 2020). Other mutations were associated with 1029 

lineages that have so far shown limited geographic ranges, including the B.1.351 (originated in Africa, rowside column #2), P.1 (South 1030 

America, rowside column #3), B.1.427 and B.1.429 (North American, rowside columns #6 and #7), and B.1.617 (Asia, rowside column 1031 

#10) lineages. For early detection of human-adaptive mutations, it is necessary to track mutation frequencies at country and regional 1032 

levels before they become more widespread (Fig 5). 1033 
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Fig 5. Tracking emergent adaptive mutations at regional levels 1036 

The heatmap depicts monthly (columns) frequencies (colored cells) of 56 missense mutations (rows) on the spike protein that were 1037 

present with ≥5% allele frequencies in at least one monthly SARS-CoV-2 sample from the United States and its five states (vertical 1038 

blocks). As in the global heatmap (Fig 4), the D614G mutation reached fixation across the country since March 2020. The European 1039 

lineage B.1.1.7 (rowside column #1) first arrived the US in December 2020 and quickly spread to all five states. The B.1.427 and 1040 

B.1.429 lineages (rowside columns #2 and #3) were first identified in fall 2020 in California and have spread to the four other states by 1041 

the end of March 2021. Similarly, the B.1.1.222 (rowside column #7) lineage was first identified in summer in California and has since 1042 

spread to Washington, Texas, and Michigan. The B.1.526 and B.1.243 (rowside columns #4 and #5) lineages emerged during Decem-1043 

ber 2020 in New York and have not yet spread to the other four states. Similarly, two other lineages have thus far not yet spread out-1044 

side of the state of origination, including the B.1.2 lineage (rowside column #8) in Washington and the B.1.234 lineage (rowside col-1045 

umns #6) in Michigan. None of the latter four regional lineages has reached a ≥5% frequency at the national level (1st vertical block), 1046 

highlighting the importance of identifying human-adaptive mutations by tracking mutation frequencies at the level of local populations. 1047 
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