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Abstract 13 

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, 14 
laborious, and expensive. However, with the plummeting costs of next-generation sequencing 15 
and the addition of genomic selection to the plant breeder's toolbox, we now can more efficiently 16 

tap the genetic diversity within large germplasm collections. In this study, we applied and 17 
evaluated genomic selection's potential to a set of 482 pea accessions – genotyped with 30,600 18 
single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related 19 
components – for enhancing selection of accessions from the USDA Pea Germplasm Collection. 20 
Genomic prediction models and several factors affecting predictive ability were evaluated in a 21 

series of cross-validation schemes across complex traits. Different genomic prediction models 22 

gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model 23 

working best across all traits. Increasing the training population size improved the predictive 24 
ability of most traits, including seed yield. Predictive abilities increased and reached a plateau 25 

with increasing number of markers presumably due to extensive linkage disequilibrium in the 26 
pea genome. Accounting for population structure effects did not significantly boost predictive 27 
ability, but we observed a slight improvement in seed yield. By applying the best genomic 28 

prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but 29 
nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). 30 

The distribution of GEBV suggested that none of the nonphenotyped accessions were expected 31 
to perform outside the range of the phenotyped accessions. Desirable breeding values with higher 32 
reliability can be used to identify and screen favorable germplasm accessions. Expanding the 33 

training set and incorporating additional orthogonal information (e.g., transcriptomics, 34 
proteomics, metabolomics, physiological traits, etc.) into the genomic prediction framework 35 

could enhance prediction accuracy.  36 
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Introduction 42 

Pea (Pisum sativum L.) is a vitally important pulse crop that provides protein (15.8-32.1%), 43 

vitamins, minerals, and fibers. Pea consumption has cardiovascular benefits as it is rich in 44 
potassium, folate, and digestible fibers, which promote gut health and prevent certain cancers 45 
(Mudryj et al., 2014; Tayeh et al., 2015). Considering the health benefits of pea, the US 46 
Department of Agriculture recommends regular pulses consumption, including peas, to promote 47 
human health and wellbeing (http://www.choosemyplate.gov/). In 2019, more than 446,000 48 

hectares of edible dry pea were planted with production totaling 1,013,600 tonnes in the USA, 49 
making it the fourth-largest legume crop (http://www.fao.org) (USDA, 2020). Growing peas also 50 
help maintain soil health and productivity by fixing atmospheric nitrogen (Burstin et al., 2015). 51 
Recently, the pea protein has emerged as a frontrunner and showed the most promise in the 52 
growing alternative protein market. The Beyond Meat burger is a perfect example of a pea 53 

protein product gaining traction in the growing market. About 20-gram protein (17.5%) in each 54 
burger comes from pea (https://www.nasdaq.com/articles/heres-why-nows-thetime-to-buy-55 

beyond-meat-stock-2019-12-05). Another product made from pea, Ripptein, is a non-dairy milk 56 
product of pea protein that is gaining tremendous interest as an alternative dairy product 57 

(https://www.ripplefoods.com/ripptein/). Additionally, peas are gaining attention in the pet food 58 
market as it is grain-free and an excellent source of essential amino acids required by cats and 59 

dogs (PetfoodIndustry.com) (Facciolongo et al., 2014). As the demand for pea increases, 60 
particularly in the growing alternative protein market, genetic diversity expansion is needed to 61 
hasten the current rate of genetic gain in pea (Vandemark et al., 2014).  62 

Germplasm collections serve as an essential source of variation for germplasm enhancement that 63 

can sustain long-term genetic gain in breeding programs. The USDA Pisum collection, held at 64 
the Western Regional Plant Introduction Station at Washington State University, is a good 65 

starting point to investigate functional genetic variation useful for applied breeding efforts. To 66 
date, this collection consists of 6,192 accessions plus a Pea Genetic Stocks collection of 712 67 

accessions. From this collection, the USDA core collection comprised of 504 accessions was 68 
assembled to represent ~18% of all USDA pea accessions at the time of construction (Simon and 69 

Hannan 1995; Coyne et al., 2005). Subsequently, single-seed descent derived homozygous 70 
accessions were developed from a subset of the core to form the 'Pea Single Plant'-derived (PSP) 71 

collection. The PSP is used to facilitate the collection's genetic analysis (Cheng et al., 2015). The 72 
USDA Pea Single Plant Plus Collection (PSPPC) was assembled and included the PSP and 73 
Chinese accessions and field, snap and snow peas from US public pea-breeding programs 74 
(Holdsworth et al., 2017).  75 

Genomic selection (GS) takes advantage of high-density genomic data that holds a promise to 76 
increase the rate of genetic gain (Meuwissen et al., 2001). As genotyping costs have significantly 77 

declined relative to current phenotyping costs, GS has become an attractive option as a selection 78 
decision tool to evaluate accessions in extensive germplasm collections. A genomic prediction 79 
approach could use only genomic data to predict each accession's breeding value in the collection 80 
(Meuwissen et al., 2001; Habier et al., 2007; VanRaden, 2008). The predicted values would 81 
significantly increase the value of accessions in germplasm collections by giving breeders a 82 

means to identify those favorable accessions meriting their attention from the thousand available 83 
accessions in germplasm collections (Longin et al., 2014; Crossa et al., 2016; Jarquin et al., 84 
2016). Several studies used the genomic prediction approach to harness diversity in germplasm 85 
collections, including lentil (Haile et al., 2020), soybean (Jarquin et al., 2016), wheat (Crossa et 86 
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al., 2016), rice (Spindel et al., 2015), sorghum (Yu et al., 2016), maize (Gorjanc et al., 2016), and 87 
potato (Bethke et al., 2019). A pea genomic selection study for drought-prone Italian 88 

environment revealed increased selection accuracy of pea lines (Annicchiarico et al., 2019; 89 
Annicchiarico et al., 2020). To the best of our knowledge, no such studies have been performed 90 
using the USDA Pea Germplasm Collection, but a relevant study has been conducted using a 91 
diverse pea germplasm set comprised of more than 370 accessions genotyped with a limited 92 
number of markers (Burstin et al., 2015; Tayeh et al., 2015).  93 

To date, methods to sample and utilize an extensive genetic resource like germplasm collections 94 
remain a challenge. In this study, a genomic prediction approach targeting complex traits, 95 
including seed yield and phenology, was evaluated to exploit diversity contained in the USDA 96 
Pea Germplasm Collection. No research has been conducted before on genomic prediction for 97 

the genetic exploration of the USDA Pea Germplasm Collection. Different cross-validation 98 

schemes were used to answer essential questions surrounding the efficient implementation of 99 

genomic prediction and selection, including determining best prediction models, optimum 100 
population size and number of markers, and impact of accounting population structure into 101 
genomic prediction framework. We then examined the distribution of all nonphenotyped 102 
accessions using SNP information in the collection by applying genomic prediction models and 103 

estimated reliability criteria of genomic estimated breeding values for the assessed traits. 104 

Material and Methods 105 

Plant materials 106 

A total of 482 USDA germplasm accession were used in this study, including the Pea Single 107 
Plant Plus Collection (Pea PSP) comprised of 292 pea germplasm accessions (Cheng et al., 108 

2015). The USDA Pea Core Collection contains accessions from different parts of the world and 109 

represents the entire collection's morphological, geographic, and taxonomic diversity. These 110 

accessions were initially acquired from 64 different countries and are conserved at the Western 111 
Regional Plant Introduction Station, USDA, Agricultural Research Service (ARS), Pullman, WA 112 

(Cheng et al., 2015).  113 

DNA extraction, sequencing, SNP calling 114 

Green leaves were collected from seedlings of each accession grown in the greenhouse with the 115 

DNeasy 96 Plant Kit (Qiagen, Valencia, CA, USA). Genomic libraries for the Single Plant Plus 116 

Collection were prepped at the University of Minnesota Genomics Center (UMGC) using 117 

genotyping-by-sequencing (GBS). Four hundred eighty-two (482) dual-indexed GBS libraries 118 

were created using restriction enzyme ApeKI (Elshire et al., 2011). A NovaSeq S1 1 x 100 119 

Illumina Sequencing System (Illumina Inc., San Diego, CA, USA) was then used to sequence the 120 

GBS libraries. Preprocessing was performed by the UMGC that generated the GBS sequence 121 

reads. An initial quality check was performed using FastQC 122 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  Sequencing adapter remnants were 123 

clipped from all raw reads. Reads with final length <50 bases were discarded. The high-quality 124 

reads were aligned to the reference genome of Pisum sativum (Pulse Crop Database 125 

https://www.pulsedb.org/, Kreplak et al., 2019) using the Burrow Wheelers Alignment tool 126 

(Version .7.17) (Li and Durbin, 2009) with default alignment parameters, and the alignment data 127 

was processed with SAMtools (version 1.10) (Li et al., 2009). Sequence variants, including 128 
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single and multiple nucleotide polymorphisms (SNPs and MNPs, respectively), were identified 129 

using FreeBayes (Version 1.3.2) (Garrison and Marth, 2012). The combined read depth of 10 130 

was used across samples for identifying an alternative allele as a variant, with the minimum base 131 

quality filters of 20. The putative SNPs from freeBayes were filtered across the entire population 132 

to maintain the SNPs for biallelic with minor allele frequency (MAF) < 5%. The putative SNP 133 

discovery resulted in biallelic sites of 380,527 SNP markers. The QUAL estimate was used for 134 

estimating the Phred-scaled probability. Sites with a QUAL value less than 20 and more than 135 

80% missing values were removed from the marker matrix. The rest of the markers were further 136 

filtered out so that heterozygosity was less than 20%. The filters were applied using VCFtools 137 

(version 0.1.16) (Danecek et al., 2011) and in-house Perl scripts. The SNP data were uploaded in 138 

a public repository and is available at this link: https://www.ncbi.nlm.nih.gov/sra/PRJNA730349 139 

(Submission ID: SUB9608236). Missing data were imputed using a k-nearest neighbor genotype 140 

imputation method (Money et al., 2015) implemented in TASSEL (Bradbury et al., 2007). SNP 141 

data were converted to a numeric format where 1 denotes homozygous for a major allele, -1 142 

denotes homozygous for an alternate allele, and 0 refers to heterozygous loci. Finally, 30,646 143 

clean, curated SNP markers were identified and used for downstream analyses.  144 

Phenotyping 145 

Pea germplasm collections (Pea PSP) were planted following augmented design with standard 146 

checks ('Hampton,' 'Arargorn,' 'Columbian,' and ‘1022’) at the USDA Central Ferry Farm in 147 
2016, 2017, and 2018 (planting dates were March 14, March 28, and April 03, respectively).  148 
The central Ferry farm is located at Central Ferry, WA at 46°39’5.1’’N; 117°45’45.4” W, and 149 

elevation of 198 m. The Central Ferry farm has a Chard silt loam soil (coarse-loamy, mixed, 150 
superactive, mesic Calcic Haploxerolls) and was irrigated with subsurface drip irrigation at 10 151 

min d-1. All seeds were treated with fungicides; mefenoxam (13.3 mL a.i. 45 kg-1), fludioxonil 152 
(2.4 mL a.i. 45 kg -1), and thiabendazole (82.9 mL a.i.45 kg -1), insecticide; thiamethoxam (14.3 153 

mL a.i. 45 kg -1), and sodium molybdate (16 g 45 kg -1) prior to planting.  Thirty seeds were 154 
planted per plot; each plot was 152 cm long, having double rows with 30 cm center spacing. The 155 

dimensions of each plot were 152 cm x 60 cm. Standard fertilization and cultural practices were 156 
used.  157 

The following traits were recorded and are presented in this manuscript. Days to first flowering 158 
(DFF) are the number of days from planting to when 10% of the plot's plants start flowering. The 159 
number of seeds per pod (NoSeedsPod) is the number of seeds in each pod. Plant height (PH cm) 160 
is defined as when all plants in a plot obtained full maturity and were measured in centimeters 161 

from the collar region at soil level to the plants' top. Pods per plant (PodsPlant) is the number of 162 
recorded pods per plant. Days to maturity (DM) referred to physiological maturity when plots 163 

were hand-harvested, mechanically threshed, cleaned with a blower, and weighed. Plot weight 164 
(PlotWeight, gm) is the weight of each plot in grams after each harvest. Seed yield (kg ha-1) is 165 
the plot weight converted to seed yield in kg per hectare.  166 

Phenotypic data analysis  167 

A mixed linear model was used to extract best linear unbiased predictors (BLUPs) for all traits 168 
evaluated using the following model: 169 
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                                             (1) 170 

where  is the observed phenotype of ith genotypes and jth environment which is the number of 171 

years,  is the overall mean,  is the random genetic effect (i is number of genotypes),  is the 172 

random environments (j is number of years),  is the genotype by environment 173 

interaction, and  is the residual error. 174 

For the purpose of estimating heritability, we fit the same model above. The heritability in broad 175 
sense (H2) on an entry-mean basis for each assessed trait was calculated to evaluate the quality of 176 
trait measurements following the equation (Hallauer et al., 2010):  177 

                                                       (2) 178 

where  is the genetic variance,   is variance due to the genotype by year interaction,  is 179 

the error variance, j is number of years considered as environments, and r is the relative number 180 

of occurrences of each genotype in a trial (this is non-replicated trial so harmonic mean of the 181 
replicates were used as replicates). We also calculated heritability proposed by (Cullis et al., 182 
2006) implemented in Sommer package in R (Covarrubias-Pazaran, 2016).  183 

                                              (3) 184 

where PEV is the predicted error variance for the genotype, Vg refers to the genotypic variance, 185 

md is the mean values from the diagonal of the relationship matrix, which is an identity matrix. 186 

The R package, lme4 (Bates et al., 2015), was used to analyze the data. The trait values derived 187 

from the BLUPs were used to measure correlation with the ggcorrplot using ggplot2 package 188 
(Wickham 2016). All phenotypic and genomic prediction models were analyzed in the R 189 
environment (R Core Team, 2020). 190 

Genomic selection models  191 

The genomic selection models were fitted as follows: 192 

                                                                    (4) 193 

where y is a vector of the genotype BLUPs obtained from equation (1),  is the intercept of the 194 

model used for the study, Z is the SNP marker matrix, u is the vector of marker effects, and ɛ is a 195 
residual vector.  196 

Five genomic selection methods were used to predict genomic estimated breeding values in 197 

respective phenotypes of the assessed traits: ridge regression best linear unbiased prediction 198 
approach (RR-BLUP), partial least squares regression model (PLSR), random forest (RF), 199 
BayesCpi, and Reproducing Kernel Hilbert Space (RKHS).  200 

The RR-BLUP approach assumes all markers have an equal contribution to the genetic variance. 201 
One of the most widely used methods for predicting breeding values is RR-BLUP, comparable to 202 
the best linear unbiased predictor (BLUP) used to predict the worth of entries in the context of 203 
mixed models (Meuwissen et al., 2001). The RR-BLUP basic frame model is: 204 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.05.07.443173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.07.443173
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

                                                               (5) 205 

where u ~ N (0, I  ) is a vector of marker effects and Z is the genotype matrix e.g., {aa,Aa,AA} 206 

= {0, 1, 2} for biallelic single nucleotide polymorphisms (SNPs) that relates to phenotype y 207 
(Endelman, 2011). The RR-BLUP genomic prediction was implemented using the ‘RR-BLUP’ 208 
package (Endelman, 2011).  209 

Partial least square regression (PLSR) is a reduction dimension technique that aims to find 210 
independent latent components that maximize the covariance between the observed phenotypes 211 
and the markers (predictor variables) (Colombani et al., 2012). The number of components (also 212 
known as latent variables) should be less than the number of observations to avoid 213 
multicollinearity issues and commonly the number of components are chosen by cross 214 

validation. PLSR was executed using the ‘pls’ package (Mevik and Wehrens, 2007).  215 
 216 

Random forest is a machine learning model for genomic prediction that uses an average of 217 
multiple decision trees to determine the predicted values. This regression model was 218 
implemented using the ‘randomForest’ package (Breiman, 2001). The number of latent 219 
components for PLSR and decision trees for random forest was determined by a five-fold cross-220 

validation to have a minimum prediction error.  221 
 222 

BayesCpi was used to verify the influence of distinct genetic architectures of different traits on 223 

prediction accuracy. The BayesCpi assumes that each marker has a probability  of being 224 

included in the model, and this parameter is estimated at each Markov Chain Monte Carlo 225 
(MCMC) iteration. The vector of marker effects u is assumed to be a mixture of distributions 226 

having the probability π of being null effect and (1- π) of being a realization of a normal 227 

distribution, so that, .  The vector of residual effects was considered as 228 

. The marker and residual variances were assumed to follow a chi-square distribution 229 

and , respectively, with  degrees of freedom as prior and   230 

shape parameters assuming a heritability of 0.5 (Pérez and de los Campos 2014).  231 

The last model used was the Reproducing Kernel Hilbert Space (RKHS). The method is a 232 

regression where the estimated parameters are a linear function of the basis provided by the 233 
reproducing kernel (RK). RKHS considers both additive and non-additive genetic effects (de los 234 

Campos et al. 2013). In this work, the multi-kernel approach was used by averaging three kernels 235 

with distinct bandwidth values. In this implementation the averaged kernel,  was given by: 236 

 , where . Here r=3 and  are interpretable as variance 237 

parameters associated with each kernel. Therefore, for each rth kernel the proportion of sharing 238 

alleles between pairs of individuals (ii´) was given by , where hk is a 239 

bandwidth parameter associated with rth reproducing kernel and  is the genetic distance 240 

between individuals i and i´ computed as follows: , where j=1,…, p 241 

markers stated as above. The bandwidth parameter values for the three kernels were 242 
h=0.5{1/5,1,5, as suggested by Pérez and de los Campos 2014. Those values were chosen using 243 
the rule proposed by de los Campos et al. (2010). 244 
 245 
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Genomic selection methods RR-BLUP, PLSR, RF were carried out using ‘GSwGBS’ package 246 
(Gaynor, 2015) while the BayesianCpi and RKHS were executed with the BGLR package (de los 247 

Campos et al., 2010). We calculated each genomic selection model's predictive ability as the 248 
Pearson correlation between the estimated breeding values from model (1) (obtained using the 249 
full data set) and those of validation set predicted from the respective model. For that, we used a 250 
cross-validation scheme considering 80% of the observations, randomly selected, as training and 251 
the remaining 20% as validation set. The process was repeated 20 times for each model. From 252 

the predictive ability values, we estimated the confidence interval for this parameter using the 253 
bootstrap considering 10000 samples (James et al., 2013). 254 
 255 
Determining optimal training population size 256 

The influence of training population size on predictive ability was evaluated using a validation 257 

set comprising 50 randomly selected lines and training sets of variable sizes. The validation set 258 

was formed by randomly sampling 50 lines without replacement. The training population of size 259 
n was formed sequentially by adding 25 accessions from the remaining accessions such that its 260 
size ranged between 50 to 175. We subset the collection into subgroups of 50, 75, 100, 125, 150, 261 
and 175 individuals each. The RR-BLUP model was used to predict each trait. This procedure 262 
was repeated 20 times, and accuracies of each training population size were averaged across 20 263 
replicates. To predict a particular subpopulation with increasing population size, a similar 264 
procedure was followed to using variable training population size ranged from 50 to 175 with an 265 

increment of 25. 266 

Determining optimal marker density  267 

To evaluate the effects of GBS marker selection on predictive ability, we randomly sampled 268 
markers five times with the following subset: one thousand (1 K), five thousand (5 K), ten 269 

thousand (10 K), fifteen thousand (15 K), twenty thousand (20 K), twenty-five thousand (25 K), 270 

and thirty thousand (30 K). A random sampling of SNP was implemented to minimize or avoid 271 
any possible biases on sampling towards a particular distribution. Using the RR-BLUP model, a 272 
five-fold cross validation approach was used to obtain predictive ability in each marker subset. 273 

This procedure was repeated 20 times and predictive ability for each subset of SNP were 274 
averaged across 20 replicates.  275 

Accounting for population structure into the genomic prediction framework  276 

We explored the confounding effect due to population structure on predictive ability. We 277 
investigated subpopulation structure on 482 accessions genotyped with 30,600 SNP markers 278 
using the ADMIXTURE clustering-based algorithm (Alexander et al., 2009). ADMIXTURE 279 

identifies K genetic clusters, where K is specified by the user, from the provided SNP data. For 280 

each individual, the ADMIXTURE method estimates the probability of membership to each 281 

cluster. An analysis was performed in multiple runs by inputting successive values of K from 2 282 
to 10. The optimal K value was determined using ADMIXTURE's cross-validation (CV) error 283 
values. Based on >60% ancestry, each accession was classified into seven subpopulations (K=7). 284 
Accessions within a subpopulation with membership coefficients of <60% were considered 285 
admixed. A total of 8 subpopulations were used in this study, including admixed as a separate 286 

subpopulation. Principal component (PC) analysis was also conducted to summarize the genetic 287 
structure and variation present in the collection.  288 
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To account for the effect of population structure, we included the top 10 PCs or, the Q-matrix 289 
from ADMIXTURE into the RR-BLUP model and performed five-fold cross-validation repeated 290 

20 times. Alternatively, we also used the subpopulation (SP) designation identified by 291 
ADMIXTURE as a factor in the RR-BLUP model. Albeit a smaller population size, we also 292 
performed a within-subpopulation prediction. As stated above, a subpopulation was defined 293 
based on >60% ancestry cut-off. Only three subpopulations with this cut-off were identified and 294 
used: SP5 (N=51), SP7 (N=58), and SP8 (N=41). A leave-one-SP-out was used to predict 295 

individuals within the subpopulation with the RR-BLUP model. We also used increasing 296 
population sizes to predict specific subpopulation (e.g. SP8) using RR-BLUP model.  297 
 298 
Estimating reliability criteria and predicting unknown phenotypes: 299 

Nonphenotyped entries were predicted based on the RR-BLUP model using SNP markers only. 300 

The reliability criteria for each of the nonphenotyped lines were then calculated using the 301 

formula (Hayes et al., 2009; Clark et al., 2012) as follows: 302 

                                          (6) 303 

where PEV is the predicted error variance, and  is the genetic variance.  304 

 305 

Results 306 

Phenotypic heritability and correlation 307 

Recorded DFF had a wide range of variability from 60 to 84 days with a mean of 71 days. The 308 
estimated heritability for DFF was 0.90 using equation (2) and 0.80 as per Cullis heritability 309 

using equation (3) (Table 1). For the number of seeds per pod, the mean was 5.7 with a 310 
heritability estimate of 0.84 (H2

Cullis=0.66). The heritability for plant height was 0.81 311 
(H2

Cullis=0.68), with an average height of 74 cm. Pods per plant had a heritability estimate of 0.50 312 

(H2
Cullis=0.27) with a mean of 18 pods per plant and ranged from 15 to 23 pods per plant. DM 313 

had a mean of 104 days with an estimated heritability of 0.51 (H2
Cullis=0.38). Seed yield per 314 

hectare ranged widely from 1734 to 4463 kg ha-1 with a mean yield of 2918 kg ha-1 and a 315 
heritability value of 0.67 (H2

Cullis=0.46). The number of pods per plant was highly and positively 316 
correlated with seed yield. Correlation estimation also suggested seed yield was positively 317 

correlated with plant height (PH), days to maturity (DM), days to first flowering (DFF) 318 
(Supplementary Figure S1).  319 
 320 
Predictive ability of different genomic selection models 321 

No single model consistently performed best across all traits that we evaluated (Table 2), 322 
however Bayesian model BayesCpi, Reproducing Kernel Hilbert Space (RKHS), and RR-BLUP, 323 
in general, tended to generate better results. Roughly the predictive abilities from different 324 
models were similar, although slight observed differences were likely due to variations on 325 
genetic architecture and the model’s assumptions underlying them. For DFF, the highest 326 

predictive ability was obtained from the RR-BLUP (0.60). RR-BLUP, Random Forest (RF), and 327 
RKHS models generated the highest predictive ability for pods per plant (0.28). The number of 328 
seeds per pod (NoSeedPod) was better predicted by RR-BLUP and Bayes Cpi (0.42). For plant 329 
height (PH) highest prediction accuracies were obtained from RF and BayesCpi (0.45). BaysCpi 330 
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also gave the highest prediction accuracies for DM (0.47). For seed yield, RKHS had slight 331 
advantages over other models (0.42). As mentioned above, some differences between the model's 332 

accuracy were only marginal and cannot be a criterion for choosing one model (Table 2). For 333 
example, among the tested models, the highest difference in predictive accuracy, considering 334 
NoSeedsPod, had a magnitude of 0.02, a marginal value. The lack of significant differences 335 
among genomic prediction methods can be interpreted as either a good approximation to the 336 
optimal model by all methods or there may be a need for further research (Yu et al., 2016). 337 

Unless indicated otherwise, the rest of our results focused on findings from the RR-BLUP 338 
method.  339 

Determining the optimal number of individuals 340 

Increasing the training population size led to a slight increase in the predictive ability overall for 341 
all traits. Across all traits except days to first flowering and plant height, predictive ability 342 

reached a maximum with the largest training population size of N=175 (Figure 1). A training 343 
population comprised of 50 individuals had the lowest predictive ability across all traits. For 344 
days to first flowering, and plant height predictive ability did steadily increase up at N= 150, and 345 

prediction ability reached the maximum for most traits at highest training population size with 346 
N=175. Regardless of population size, predictive ability was consistently higher for days to first 347 
flowering, whereas predictive ability was consistently lower for pods per plant (Figure 1). 348 

However, while predicting subpopulation 5 highest predictive ability was obtained for plant 349 
height (Supplementary Figure S3). 350 

Determining the optimal marker density 351 

The different marker subsets had insignificant differences on predictive ability for all the traits 352 

evaluated in this study. In general, however, predictive abilities were higher between 5K to 15K 353 

SNPs and reached a plateau with increasing number of SNP (Supplementary Figure S2). For 354 

seed yield, plant height, and days to maturity, highest predictive ability were 0.38, 0.39, and 0.42 355 
respectively. The highest predictive ability for DFF was 0.61 using a SNP subset of 15K.  356 

Accounting for population structure in the genomic prediction model 357 

Population structure explained some portion of the phenotypic variance, ranging from 9-19%, 358 

with the highest percentages observed for plant height (19%) and seed yield (17%). Using either 359 
ADMIXTURE or PCA to account for the effect due to population structure, we improved the 360 
predictive ability. We observed a 6% improvement for days to first flowering and 32% for seed 361 

yield compared over models that did not account for population structure.   362 

We also performed within-subpopulation predictions. Presented here are the predictive abilities 363 
for subpopulations 5, 7, and 8, as they had at least 40 entries. Subpopulation 8 had the highest 364 

predictive ability for days to first flowering (0.68), plant height (0.33), days to maturity (0.43), 365 
and seed yield (0.37). The highest predictive abilities for the number of seeds per pod (0.40) and 366 
pods per plant (0.12) were obtained from subpopulation 7 (Table 3). Notably, predictive ability 367 

was generally higher when all germplasm sets or subpopulations were included in the model 368 
compared to when predictions were made using a subset of germplasm.  369 

Predicting genotyped but nonphenotyped accessions 370 
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The genomic prediction model was then used to predict nonphenotyped entries based on their 371 
SNP information. Based on the distribution of GEBV, none of the predicted phenotypes for 372 

nonphenotyped accessions exceeded the top-performing observed phenotypes for seed yield 373 
(Figure 2). The mean seed yield of predicted entries was 2914 kg/ha, and the mean of observed 374 
genotypes 2918 kg/ha were non-significant. The mean of observed and predicted entries were 375 
non-significant for the other five traits (Supplementary Table 1). The GEBV for number of pods 376 
per plant, number of seeds per pod (Supplementary Figure S4 and S5), days to first flowering, 377 

and days to maturity all fall within the range of observed phenotypes (Similar Figures not 378 
added). 379 
 380 
Reliability estimation 381 

We obtained reliability criteria for all traits, including seed yield and phenology, for 244 382 

nonphenotyped accessions. The average reliability values ranged from 0.30 to 0.35, while the 383 

highest values for evaluated traits ranged from 0.75 to 0.78. The higher reliability values were 384 
distributed in the top, bottom, and intermediate predicted breeding values (Supplementary 385 
Table S2 to S7). For seed yield (kg ha-1), the highest reliability was obtained from the bottom 50  386 
(Figure 3). Higher reliability criteria are primarily distributed among the intermediate and top 387 
GEBV for days to first flowering. Predicted intermediate plant height showed the highest 388 
reliability, as presented in Figure 3.  389 

Discussion 390 

Widely utilized plant genetic resources collections, such as the USDA pea germplasm collection, 391 
hold immense potential as diverse genetic resources to help guard against genetic erosion and 392 

serve as unique sources of genetic diversity from which we could enhance genetic gain, boost 393 

crop production, and help reduce crop losses due to disease, pests, and abiotic stresses (Crossa et 394 
al., 2017; Holdsworth et al., 2017; Jarquin et al., 2016; Mascher et al., 2019). As the costs 395 
associated with genotyping on a broader and more accurate scale continue to decrease, 396 

opportunities increase to utilize these collections in plant breeding. Relying on phenotypic 397 
evaluation alone can be costly, rigorous, and time-intensive. However, by incorporating high-398 

density marker coverage and efficient computational algorithms, we can better realize the 399 
potential for utilizing these germplasm stocks by reducing the time and cost associated with their 400 

evaluation (Yu et al., 2016; H. Li et al., 2018; Yu et al., 2020). In this study, we evaluated the 401 
potential of genotyping-by-sequencing derived SNP for genomic prediction. We found that it 402 
holds promises for extracting useful diversity from germplasm collections for applied breeding 403 
efforts.  404 

In this study, predictive ability was generally similar among methods, and there was no single 405 

model that worked across traits, consistent with results obtained by other authors (Burstin et al., 406 

2015; Spindel et al., 2015; Yu et al., 2016; Azodi et al., 2019). For example, considering only the 407 
punctual estimates, RR-BLUP model was the best for DFF, however for PH, DM, and seed yield, 408 
the best models were BayesCpi and RF, BayesCpi and RKHS, respectively. In recent work, 409 
Azodi et al., (2019) compared 12 models (6 linear and 6 non-linear) considering 3 traits in 6 410 
different plant species, and they did not find any best algorithm for all traits across all species. 411 

Newer statistical methods are expected to boost prediction accuracy; however, the biological 412 
complexity and unique genetic architecture of traits can be regarded as the root cause for getting 413 

zero or slight improvement on prediction accuracy (Yu et al., 2020; Valluru et al., 2019). As data 414 
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collection accelerates in at different levels of biological organization (Kremling et al., 2019), 415 
genomic prediction models will expand and nonparametric models, including machine learning, 416 

may play an essential role for boosting prediction accuracy (Azodi et al., 2019; Yu et al., 2020). 417 
 418 
A related work in pea has been published but only based on a limited number of markers 419 
(Burstin et al., 2015). This work assessed genomic prediction models in a diverse collection of 420 
373 pea accessions with 331SNPs markers and found no single best model across traits, which is 421 

consistent with our findings. In this work, the authors reported that traits with higher heritability, 422 
such as thousand seed weight and flowering date, had higher prediction accuracy. We also 423 
verified DFF as having the highest heritability and predictive accuracies through all the models. 424 
Interestingly, yield components like the number of seeds per pod and pods per plant showed 425 
lower predictive accuracy, regardless of prediction models used. Consistent with our results, 426 

Burstin et al. (2015) also found yield components (seed number per plant) as having lower 427 

predictive accuracy and higher standard deviation for prediction. These traits are highly complex 428 
and largely influenced by the environment. 429 

The predictive ability increased for all traits except plant height when we increased the model's 430 
training population size, suggesting that adding more entries in the study can boost predictive 431 
ability. By accounting population structure into genomic prediction framework, we observed an 432 
improved prediction accuracy for some traits – seed yield and DFF – but not others. Although 433 
the population structure explained 9-19% of the phenotypic variance, we cannot fully and 434 

conclusively answer the effect of population structure in prediction accuracy due to smaller 435 
population size. In addition, accounting for the relatedness among individuals in the training and 436 

testing sets can potentially boost prediction accuracy (Lorenz and Smith, 2015; Rutkoshi et al., 437 
2015; Riedelsheimer et al., 2013); it was outside the scope of this research but deserves further 438 
study. Adding more environments (year-by-location combination) can also potentially improve 439 

prediction accuracy using genomic prediction frameworks that account for genotype-by-440 

environment interactions and/or phenotypic plasticity (Jarquin et al, 2014; Crossa et al., 2017; X. 441 
Li et al., 2018; Guo et al., 2020). In general, we observed that predictive ability slightly increased 442 
and plateaued after reaching certain subset of SNPs. Such a plateau on prediction ability maybe 443 

due to overfitting of models (Norman et al., 2018; Hickey et al., 2014), presumably due to 444 
extensive linkage disequilibrium in the pea genome (Kreplak et al., 2019). 445 

Previous studies have indicated the importance of considering reliability values when using 446 
predictive ability values to select genotypes (Yu et al., 2016). We found higher reliability 447 
estimates were spread across all GEBVs rather than clustering around higher or lower extreme of 448 

GEBVs. Those accessions with top predicted values and high-reliability estimates maybe 449 
selected as candidate parents for increasing seed yield and/or germplasm enhancement. 450 
However, for a trait such as days to flowering in pea, even low or intermediate predicted values 451 

maybe suitable candidates when paired with high-reliability values. We found the means of 452 
GEBV for nonphenotyped entries were non-significantly different with phenotyped accessions, 453 
and almost none of nonphenotyped accessions were expected to exceed seed yield of phenotyped 454 
accessions. Several accessions in the USDA pea germplasm collection can be readily 455 

incorporated into breeding programs for germplasm enhancement by incorporating above-456 
average accessions with high or moderately high-reliability values (Yu et al., 2020). 457 

 458 
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Conclusions and Research Directions 459 

The research findings demonstrated that the wealth of genetic diversity available in a germplasm 460 
collection could be assessed efficiently and quickly using genomic prediction to identify valuable 461 
germplasm accessions that can be used for applied breeding efforts. With the integration of more 462 
orthogonal information (e.g., expression, metabolomics, proteomics, etc.) into genomic 463 
prediction framework (Kremling et al., 2019; Valluru et al., 2019) coupled with the 464 

implementation of more complex genomic selection models like a multivariate genomic 465 
selection approach (Rutkoski et al., 2015), we can considerably enhance predictive ability. This 466 
research framework could greatly contribute to help discover and extract useful diversity 467 
targeting high-value quality traits such as protein and mineral concentrations from a large 468 
germplasm collection in the future.  469 
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Table 1. Heritability and summary statistics for seed yield and other agronomic traits 

Trait Mean Range SD CV(%) H2 H2
Cullis

 
 

DFF (days) 71 60-84 4.8 6.7 0.90 0.80 

NoSeedsPod (Nos.) 5.7 4.4-6.9 0.5 8.5 0.84 0.66 

PH (cm) 74 37.6-108.3 11.5 15.5 0.81 0.68 

PodsPlant (Nos.) 18 15-23 1.5 8.3 0.50 0.27 

DM (days) 104 99-112 2.4 2.3 0.51 0.38 

SeedYield (Kg ha-1) 2918 1734-4463 451 15.4 0.67 0.46 

DFF is days to first flowering; NoSeedsPod is the number of seeds per pod, PH is plant height, 699 

PodsPlant is the number of pods per plant, DM is days to physiological maturity, SeedYield is 700 

seed yield per hectare, SD is the standard deviation, CV is coefficient of variance, H2 is 701 

heritability in the broad sense.  702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 
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Table 2. Predictive ability of genomic selection models for seed yield and agronomic traits from 712 

five genomic selection models 713 

Traits RR-BLUP PLSR RF BayesCpi RKHS 

DFF (days) 0.60 

(0.57-0.63) 

0.57  

(0.53-0.61) 

0.55 

(0.52-0.58) 

0.59  

(0.55-0.63) 

0.54 

(0.5-0.58) 

NoSeedsPod 0.42 

(0.37-0.48) 

0.41 

(0.36-0.46) 

0.40 

(0.35-0.45) 

0.42  

(0.38-0.46) 

0.40 

(0.34-0.48) 

PH (cm) 0.39 

(0.33-0.44) 

0.42 

(0.38-0.48) 

0.45 

(0.4-0.5) 

0.45  

(0.41-0.48) 

0.43 

(0.39-0.48) 

PodsPlant 0.28 

(0.22-0.33) 

0.25 

(0.2-0.31) 

0.28 

(0.22-0.34) 

0.23  

(0.17-0.29) 

0.28 

(0.23-0.34) 

DM (days) 0.42 

(0.36-0.47) 

0.44 

(0.39-0.5) 

0.41 

(0.35-0.46) 

0.47 

 (0.43-0.5) 

0.45 

(0.4-0.48) 

SeedYield (kg 

ha-1) 

0.38 

(0.34-0.42) 

0.31 

(0.27-0.36) 

0.39 

(0.35-0.44) 

0.35 

(0.31-0.39) 

0.42 

(0.37-0.48) 

DFF is days to first flowering, PH is Plant height in cm, DM is days to physiological maturity; 714 

within parentheses are ranges of predictive ability  715 

 

Table 3. Predictive ability within and across subpopulations using RR-BLUP and all markers 

Sub pops DFF NoSeedsPod PH PodsPlant DM SeedYield 

Sub pop 5 (51) 0.27 0.26 0.08 -0.01 0.02 0.18 

Sub pop 7 (58) 0.34 0.40 0.22 0.12 -0.01 0.01 

Sub pop 8 (41) 0.68 0.35 0.33 0.07 0.43 0.37 

SP- 0.50  0.45  0.47  0.25  0.51  0.34  

SP+ 0.53  0.35  0.42  0.25  0.48  0.45  

SP PC10 0.51  0.41  0.44 0.18  0.20  0.43  

Var exp (R2) 0.13 0.09 0.19 0.15 0.15 0.17 

DFF is days to first flowering, PH is plant height, DM is days to physiological maturity, SP- does 716 

not account for population structure, SP+, refers to the population structure addressed in the 717 

model, SP PC10 addresses population structure with 10 PC, Var exp (R2) refers the variance 718 

explained by population structure after fitting a regression model, within parenthesis represent 719 

the number of entries in each subpopulation. 720 

 721 
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722 
 Figure 1. Predictive ability with increasing training population size using RR-BLUP model, DFF 723 

is days to first flowering, DM, is days to physiological maturity, NoSeedsPod is number of seeds 724 

per pod, PH is plant height in cm, PodsPlant is pods per plant, SeedYield is seed yield in kg ha-1 725 

 726 

 727 

Figure 2. Distribution phenotyped and predicted non-phenotyped accessions of USDA pea 728 

germplasm collections for seed yield and plant height  729 
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 730 

 731 

  732 

Figure 3. Reliability criteria for nonphenotyped lines: the top 50 of the genomic estimated breeding 

values are blue, and bottom 50 are in red, intermediates are in green. A. reliability estimates for seed 

yield (Kg/ha), B. days to first flowering, C. plant height, D. seeds per plant 
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  733 

Supplementary Figure S1. Phenotypic correlation among seed yield and agronomic traits 734 

evaluated in this study, DFF is days to first flowering, PH is plant height in cm, SeedYield is 735 
seed yield in kg ha-1, DM is the days to physiological maturity 736 
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737 
  738 

Supplementary Figure S2. Predictive ability with increasing SNP markers RR-BLUP model, 739 
DFF is days to first flowering, DM, is days to physiological maturity, NoSeedsPod is number of 740 

seeds per pod, PH is plant height in cm, PodsPlant is pods per plant, SeedYield is seed yield in 741 
kg ha-1 742 

 743 

 744 

Supplementary Figure S3. Predictive ability of subpopulation 5 with increasing training 745 
population 746 
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 747 

Supplementary Figure S4. Distribution of phenotyped and predicted non-phenotyped accessions 748 

for seed yield and number of pods per plant in the USDA germplasm collections 749 

 750 

 751 

 752 

 753 

Supplementary Figure S5. Distribution of phenotyped and predicted non-phenotyped accessions 754 
for seed yield and number of seeds per pod in the USDA germplasm collections 755 
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