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Abstract 

Endophytic microorganisms play important physiological functions in plants and animals. In this 

paper, we developed a method to obtain endophytic microbiome information directly by 

analyzing transcriptome sequencing data files of plants and animals. Compared with the use of 

amplicon analysis or whole-genome sequencing of animal and plant tissues to analyze microbial 

composition information, this method can obtain endophytic microbiome information in addition 

to obtaining gene expression information of host plants and animals. 
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Introduction 

Microorganisms are almost ubiquitous, such as rivers, lakes, seas, soils, air, body surfaces, and 

insides of humans, animals, and plants. Many microorganisms, including bacteria, archaea, and 

fungi, can live in the tissues of plants. Endophytes are microorganisms that are present in various 

tissues of the host plant in a symbiotic or beneficial manner or without causing any detrimental 

effects (Ali, et al., 2021; Kaul, et al., 2016). A few endophytes can enhance the host plant 

tolerance to environmental abiotic stresses, such as thermotolerance (Marquez, et al., 2007; 

Shekhawat, et al., 2021), while others can promote plant growth through the production of 

phytohormones, solubilization of phosphorus and potassium, biological fixing of nitrogen, 

inhibition of ethylene biosynthesis (Fadiji, et al., 2021; Lata, et al., 2019). In addition, many 

endophytes can protect plants from microbial pathogens by the production of ammonia, 

hydrogen cyanide, and siderophores (Ali, et al., 2021; Carrion, et al., 2019; Lata, et al., 2019). 

Pathogenic fungi and symbiotic fungi can also penetrate plant cells for absorption or exchange of 

nutrients (Han, et al., 2019; Han, et al., 2020). 

Current endophytic microorganisms detection methods mainly including culture-dependent 

and culture-independent methods (Dissanayake, et al., 2018; Tian, et al., 2019). Several 

culture-independent methods, such as Real-time PCR, In situ hybridization FISH, microarray, 

metabarcoding approaches, whole plant genome DNA sequencing have been used (Aslam, et al., 

2017; Dissanayake, et al., 2018; Fadiji, et al., 2021; Fadiji, et al., 2021), and the mystery of a large 

number of plant endophytes was revealed (Aslam, et al., 2017; Matsumoto, et al., 2021; Trivedi, 

et al., 2020). The use of whole plant tissues for DNA extraction for amplifying 16S rDNA, fungal 

ITS area, or amplifying specific target genes and then sequencing with the second or 

third-generation sequencing technology is the often-used method. Another next-generation 

sequencing method is the direct sequencing of the whole genomic DNA from plant tissues and 

analysis using microbiome analysis software to generate endophytic microbiome information. 
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In this paper, a new method for mining endophytic microbiome information from plant 

transcriptome data was described. Briefly, after the removal of adaptor and low-quality bases, 

the clean data were mapped to the host plant genome or all cDNA files to generate unaligned 

files. The unaligned files were further analyzed by using a microbiome analysis pipeline to obtain 

plant endophytic microbiome information. 

 

Materials and Methods 

Endophytic microbiome mining method 

The Workflow diagram is shown in Figure 1. The animal or plant transcriptome raw data were 

assessed via fastqc, and then cleaned via trimmomatic with the default parameter. The clean data 

were mapped to the host genome by using hisat2 with the default parameter. Use its output 

unaligned sequence parameter "--un-conc" to obtain an unaligned data file, which contains not 

only a part of the host animal and plant sequences but also expressed microbial gene fragments. 

Use microbiome analysis piplines, such as Kraken2, bracken and Pavian (Breitwieser and Salzberg, 

2020; Lu, et al., 2017; Wood, et al., 2019), to analyze the unaligned data files to generate 

endophytic microbiome information.  

 

 

Figure 1 Workflow diagram 

 

Data sets 

We selected the RNA-seq data of two plants inoculated or infected by microorganisms. 

(1) Maize inoculated with arbuscular mycorrhiza (AM) fungus data sets 

In our previous study, the maize (Zea mays) roots inoculated with AM fungus Rhizophagus 

irregularis DAOM-197198 (previously known as Glomus intraradices) were compared with the 

control without fungal inoculation (Han, et al., 2019). The maize raw RNA-Seq data (Bioproject 

accession: PRJNA553580) were used in this study. The maize inbred line B73 genome was 

download from Ensembl Plants.  

(2) Common bean infected by Xanthomonas data sets 

In the study by Foucher et al. (2020), a common bean (Phaseolus vulgaris L.) susceptible 

genotype (JaloEEP558) was infected by Xanthomonas phaseoli pv. phaseoli strain CFBP6546R 48 h 

after inoculation (Foucher, et al., 2020). The raw RNA-Seq data of Common bean (SRA accession: 

SRP273448) were used. The Common bean genome was download from Ensembl Plants.  
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Results and discussion 

Generation the unaligned files from the host RNA-seq data 

Approximately 18-28% of maize RNA-seq data cannot be mapping to the maize genome 

(Table S1), while about 5-11% of common bean RNA-seq data cannot mapping to the common 

bean genome (Table S2). The unmapping rates from maize inoculated with AM fungus are higher 

than that of the control, similar results were also observed in the common bean RNA-seq data 

(Figure 2).  

 

    

Figure 2 The unmapping rate of RNA-Seq data to each host genome. 

 

Endophytic microbiome information 

As an example, in addition to maize root transcriptome data, the transcriptome data also 

included fungi, bacteria, archaea, and viruses, and similar results were found in the common 

bean transcriptome data (Figure 3). Further analysis can be done to obtain the content 

relationships between various types of microorganisms (Figure 4). The microorganisms in the 

maize root inoculated with AM fungi were mostly fungi, whereas microorganisms in common 

beans were dominated by bacteria (Figure 4). 

In our previous study, the maize seedling was inoculated with R. irregularis DAOM-197198 to 

investigate the regulatory network responsive to AM fungi colonization in maize roots. The 

sankey diagram clearly shows that a large number of R. irregularis can be detected in the maize 

inoculated with AM fungus while the control was not detected (Figure 3). Similarly, X. phaseoli 

can be detected in the sample inoculated with X. phaseoli while the control was not detected 

(Figure 3). Species R. irregularis is the most significant biomarker in the maize roots inoculated 

with AM fungus R. irregularis (Figure 5), while Genus Xanthomonas is one of the most significant 

biomarkers in the common bean sample inoculated with X. phaseoli pv. phaseoli strain 

CFBP6546R (Figure 6). The evidence shows that the method of mining endophytic microbiome 

information from plant transcriptome data is reliable, and this method is also applicable to 

animal transcriptomes. 
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Figure 3 Species composition generated from unmapped files of the maize RNA-seq data and the 

common bean RNA-seq data, respectively. 

Note: 40-CK-1, one of the control samples of maize; 40-GI-1, one of the maize roots inoculated 

with R. irregularis DAOM-197198; H2O, one of the control samples of common bean; 

Xanthomonas, one of the common bean sample inoculated with X. phaseoli pv. phaseoli strain 

CFBP6546R 

 

 

Figure 4 Relative abundance of different microorganisms generated from the maize RNA-seq data 

and the common bean RNA-seq data, respectively. 

Note: Ck, the control sample of maize; AM fungus, the maize roots inoculated with R. irregularis 

DAOM-197198; H2O, the control sample of common bean; Xanthomonas, the common bean 

sample inoculated with X. phaseoli pv. phaseoli strain CFBP6546R 
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Figure 5 Taxons with significant difference between treatments in maize. 

Note: Ck, the control sample of maize; Treatment, the maize roots inoculated with R. irregularis 

DAOM-197198 

 

 
Figure 6 Taxons with significant difference between treatments in common bean. 

Note: H2O, the control sample of common bean; Xanthomonas, the common bean sample 

inoculated with X. phaseoli pv. phaseoli strain CFBP6546R 
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Conclusions 

We developed a method of mining endophytic microbiome information from plant or animal 

transcriptome data, which is reliable and useful in investigating microbiome information while 

investigating the gene expression information of the host plant or animal.  
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Table S1 The cleaning and mapping information of the maize RNA-seq data 

Treatment Sample id 
Input Read 

Pairs 

Both 

Surviving 

Pairs 

Aligned 

concordantly 

0 times 

Aligned 

concordantly 

exactly 1 

time 

Aligned 

concordantly >1 

times 

CK 40-CK-1 43293767 37896934 24.24% 68.02% 7.74% 

CK 40-CK-2 53402529 47289618 18.25% 74.14% 7.60% 

CK 40-CK-3 55730952 50485352 24.19% 68.27% 7.54% 

AM fungus 40-GI-1 51811515 45108797 28.26% 64.73% 7.00% 

AM fungus 40-GI-2 57804926 49615744 23.77% 69.48% 6.75% 

AM fungus 40-GI-3 53450977 46803974 23.27% 69.84% 6.89% 

Note: Ck, the control sample of maize; Treatment, the maize roots inoculated with R. irregularis 

DAOM-197198 

 

Table S2 The cleaning and mapping information of the common bean RNA-seq data 

Treatment Sample id 
Input 

Read Pairs 

Both 

Surviving 

reads 

Aligned 

concordantly 

0 times 

Aligned 

concordantly 

exactly 1 

time 

>Aligned 

concordantly >1 

times 

H2O SRR12318286 29080436 28032538 5.65% 90.78% 3.57% 

H2O SRR12318287 30814752 29503109 5.94% 90.53% 3.53% 

H2O SRR12318288 30404194 29090030 5.27% 90.76% 3.96% 

H2O SRR12318289 31867409 30251534 5.61% 90.47% 3.91% 

H2O SRR12318290 26394779 25461066 6.51% 90.68% 2.80% 

H2O SRR12318291 27198114 26091099 6.81% 90.39% 2.80% 

Xanthomonas SRR12318292 15056487 14362639 10.14% 86.96% 2.89% 

Xanthomonas SRR12318293 14962446 14202256 10.72% 86.45% 2.83% 

Xanthomonas SRR12318294 18387872 17490043 11.04% 85.69% 3.27% 

Xanthomonas SRR12318295 19056924 18003970 11.64% 85.17% 3.19% 

Xanthomonas SRR12318296 16698533 16043346 9.28% 86.48% 4.24% 

Xanthomonas SRR12318297 16563339 15850911 9.86% 85.96% 4.18% 

Note: H2O, the control sample of common bean; Xanthomonas, the common bean sample 

inoculated with X. phaseoli pv. phaseoli strain CFBP6546R 
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