Abstract
According to analysis-by-synthesis theories of perception, the primary visual cortex (V1) reconstructs visual stimuli through top-down pathway, and higher-order cortex reconstructs V1 activity. Experiments also found that neural representations are generated in a top-down cascade during visual imagination. What code does V1 provide higher-order cortex to reconstruct or simulate to improve perception or imaginative creativity? What unsupervised learning principles shape V1 for reconstructing stimuli so that V1 activity eigenspectrum is power-law with close-to-1 exponent? Using computational models, we reveal that reconstructing the activities of V1 complex cells facilitate higher-order cortex to form representations smooth to shape morphing of stimuli, improving perception and creativity. Power-law eigenspectrum with close-to-1 exponent results from the constraints of sparseness and temporal slowness when V1 is reconstructing stimuli, at a sparseness strength that best whitens V1 code and makes the exponent most insensitive to slowness strength. Our results provide fresh insights into V1 computation.
Competing Interest Statement
The authors have declared no competing interest.