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Abstract

Background: De novo assemblies are critical for capturing the genetic composition of complex samples.
Synthetic Long Read sequencing techniques such as 10x Genomics’ Linked-Reads, UST’s TELL-Seq, Loop
Genomics’ LoopSeq, and BGI’s Long Fragment Read combines 3′ barcoding with standard short-read
sequencing to expand the range of linkage resolution from hundreds to tens of thousands of base-pairs. The
application of SLR sequencing to genome assembly has demonstrated that barcoding-based technologies
balance the tradeoffs between long-range linkage, per-base coverage, and costs. However, multiple long
fragments may be associated with the same 3′ nucleotide-based unique molecular identifier (UMI). The lack of
a 1:1 correspondence between a long fragment and a UMI, in conjunction with low sequencing depth,
confounds the assignment of linkage between short-reads.

Results: We introduce Ariadne, a novel SLR deconvolution algorithm based on assembly graphs, that can be
used to extract single-species read-sets from a large SLR dataset. Ariadne deconvolution of SLR clouds
increases the proportion of read clouds containing only reads from a single fragment by up to 37.5-fold. Using
these enhanced read clouds in de novo assembly significantly improves assembly contiguity and the size of the
largest aligned blocks in comparison to the non-deconvolved read clouds.

Conclusions: Integrating Ariadne into the post-processing pipeline for SLR technologies increases the quality
of de novo assembly for complex populations, such as microbiomes.
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1 Background
Next generation sequencing technologies underpin the
large-scale genetic analyses of complex genomic mix-
tures. However, reconstruction of multiple genomes or
identification of structural variations is more compu-
tationally demanding than assembling a single haploid
genome.

Though standard Illumina short-read sequencing is
the most popular platform for genome-wide char-
acterizations due to its sequencing depth to cost
ratio, the length of Illumina short-reads limits the
linkage information that can be extracted from se-
quencing libraries. To address this, researchers are in-
creasingly using nucleotide barcode-based, chromatin
conformation-based, or long-read sequencing technolo-
gies to approximate single-cell resolution from com-
plex mixtures of microorganisms. Long-read sequenc-
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ing technologies, such the range of options from Oxford
Nanopore Technologies, are capable of resolving a lim-
ited number of high-quality circularized draft genomes
from metagenomic sequencing data [1]. However, high-
quality assemblies of long reads are reliant on large
amounts of input DNA to adequately cover all of the
species of the sample, which may not be available de-
pending on its size and alpha diversity [2]. When se-
quencing depth is low, the assembly graph contains
many ambiguous junctions comprised of sequence ma-
terial from multiple genetically similar species and/or
strains [1].

1.1 Overview of Synthetic Long Read (SLR) Technology
Alternative approaches that rely on short-read se-
quencing while still generating long-range linkage in-
formation include Hi-C and synthetic long-read (SLR)
technologies [3]. While similar ambiguous junctions are
inherent in short-read assemblies due to limitations in
sequencing insert size, de novo assemblies generated
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by short-read and synthetic long read (SLR) are in-
herently larger and more comprehensive representa-
tions of the sample composition due to the relative
volume of genomic coverage. Since SLR library prepa-
rations require less input material than long reads, it
is much more suitable for extracting sequencing infor-
mation from low-volume samples [1, 4, 5, 6].

SLR technologies, starting with Illumina TruSeq
Synthetic Long reads, [7], associate short reads origi-
nating from the same extracted genomic fragment with
some type of nucleotide-based unique molecular iden-
tifier (UMI). UMIs are colloquially referred to as ’bar-
codes’ in the context of SLR sequencing. Briefly, input
(meta)genomic DNA is sheared into long fragments
of 5-100 kbp. After shearing, a UMI (usually 16 - 20
base-pairs long) is ligated to short-reads from the frag-
ments such that short-reads from the same fragment
share the same UMI. Linked-read UMIs are unrelated
to the 5’ UMI used for sample multiplexing. We refer
to the set of reads that share a UMI as a read cloud. Fi-
nally, the short-reads are sequenced using standard se-
quencing technologies (e.g. Illumina HiSeq). SLRs offer
additional long-range information over standard short-
reads. Reads with matching UMIs are more likely to
have emerged from the same long fragment of DNA
than two randomly sampled reads, which extends the
relative positional information encoded in the read’s
short 50 - 250 bp sequence past the standard limita-
tions of a short-read insert, which are typically sev-
eral hundreds of base-pairs. There is a slight coverage
tradeoff due to the size of the UMIs and associated li-
brary preparation costs relative to standard short-read
sequencing.

SLR techniques are differentiated by the biochemical
mechanism that associates UMIs with genomic frag-
ments or short reads. 10x linked-read sequencing uses
oil-based droplets to encapsulate a few genomic frag-
ments and a UMI, which are subsequently splintered
into short reads which are amplified with the UMI [8].
While 10x Genomics’ linked reads has been discontin-
ued after nearly half a decade of widespread usage,
a variety of other UMI-based SLR methods such as
TELL-Seq, LoopSeq, and BGI’s Long Fragment Reads
(stLFR) have been commercialized recently with the
promise of (near-)single-molecule resolution along with
simplified library preparation procedures and compat-
ibility with standard Illumina sequencing machines.
TELL-Seq uses proprietary TELL beads, which both
capture genomic fragments and use transposon-based
reactions to insert the UMI sequence throughout the
fragment [9]. TELL fragments are approximately 20 -
40 kbp long [9], similar to the (on average) 10 kbp frag-
ments generated by 10x [10]. LoopSeq similarly uses an
intramolecular enzyme-based distribution method, but

does not use beads to partition genomic fragments at
all [11]. One major advantage of both TELL-Seq and
LoopSeq over 10x and BGI’s Long Fragment Reads is
their single-tube reaction chemistry, and compatibil-
ity with standard Illumina sequencing machines. 10x
library preparation depends on costly instruments for
droplet management [8], and BGI’s Long Fragment
Reads are incompatible with Illumina sequencing. For
detailed explanations of each method’s capabilities and
library preparation procedures, we direct the reader
to [8, 9, 11, 12]. In this study, we also provide a first
head-to-head comparison of multiple SLR technologies
to profile their strengths and weaknesses on metage-
nomics datasets of similar complexity.

The central drawback of SLR technologies is that the
UMI-based linkage information must be efficiently in-
terpreted from the sequencing data to simulate long
read resolution and increase the average contiguity
(i.e.: NA50) of de novo assembly. The need for novel
algorithms to leverage this information has been par-
tially met by the proliferation of SLR-based assem-
blers, such as Athena, Supernova, and cloudSPAdes
[13, 14, 15]. However, additional novel algorithmic ef-
forts are needed to achieve the desired contiguity and
reduce the number of observed assembly errors [15].
Many taxonomic lineages identified in large-scale stud-
ies are not represented in reference sequence databases,
and are not associated with isolated cultures [16].
Metagenomic analyses that rely on existing reference
genomes, such as read-based taxonomic classification,
will inherently bias the genomic reconstruction of a
mixed population, generally towards the most com-
mon and already well-characterized species within the
sample [17].

1.2 Applications of SLR Sequencing in Metagenomics
SLR sequencing has been shown to resolve species
compositions of metagenomics samples in both 16S-
based and shotgun whole-genome-based analyses. Be-
cause of its low UMI multiplicity, LoopSeq was able
to identify multiple copies of the 16S rRNA gene as
belonging to a single strain [18, 19]. When paired with
additional sources of information, such as targeted am-
plification or longitudinal sequencing, SLRs are capa-
ble of resolving metagenomics to the strain level. In
conjunction with high-throughput qPCR, LoopSeq has
been used to associate antimicrobial resistance genes
with specific species in environmental samples [20].
The long-read-like linkage information encoded in read
clouds has been used to track single nucleotide variants
in the human gut microbiome longitudinally, demon-
strating that prioritizing depth of coverage over strict
read length can be an optimal analysis strategy es-
pecially when the number of strains/haplotypes is an
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unknown variable [10]. In another study, SLRs have
also been used to identify the presence of structural
variation on bacterial chromosomes [21].

1.3 Challenges Posed by SLR Sequencing
Despite the additional linkage information offered by
SLR sequencing, there are new computational chal-
lenges involved in applying barcoded reads to de novo
assembly. Because metagenomic samples are intrinsi-
cally multiplexed samples of multiple species, long-
range linkage information is confounded by the mul-
tiplicity of fragments assigned to 3′ UMIs. Existing
systems employ on the order of 106-7 3′ UMIs [22]. In
previous studies with the 10x Genomics system, it was
observed that there were 2–20 long fragments of DNA
per 3′ UMI [23]. The larger the barcoded read cloud,
the more likely that reads tended to originate from
multiple fragments. Our analyses suggest that at least
97% of read clouds are composed of ≥2 fragments,
with the exception of a LoopSeq dataset. In the ab-
sence of additional information about the sample, it is
difficult to distinguish the genomic origin of a random
assortment of reads with the same UMI. Furthermore,
each fragment of DNA is only fractionally covered by
reads (typically 10-20%). Because overall coverage is
reduced, SLRs provide long-range information at the
expense of short-range blocks of contiguous sequence.

1.4 The Barcode Deconvolution Problem
The barcode deconvolution problem, previously de-
scribed in [24, 23], is defined as the assignment of each
read with a given 3′ UMI to a subgroup such that
every read in the subgroup originates from the same
fragment or contiguous genomic segment. A solution
to the barcode deconvolution problem for a set of read
clouds would be a map from each read cloud to a func-
tion which solves the UMI deconvolution problem for
that read cloud. Reads with the same 3′ UMI that are
highly likely to have originated from the same metage-
nomic fragment are more likely to co-occur in one an-
other’s sequence space within the assembly graph than
reads from different fragments.

Though the multiplicity of genomic fragments to 3′

UMIs has been problematic since the inception of SLR
sequencing, the UMI deconvolution problem has only
been addressed recently by two computational tools:
EMA [24] and Minerva [23]. The EMA approach aug-
ments read alignment for barcoded reads based on
alignment to a reference sequence. In the process of
generating probabilistic alignments, reads from a sin-
gle read cloud are sub-grouped into sets of reads that
map close to each other. EMA is particularly appli-
cable for highly repetitive regions where a barcoded
read can align to multiple locations within the genome

[24]. However, the EMA approach relies on the user
to supply reference sequence(s) as a priori informa-
tion about the input sample. We also demonstrate that
EMA (as of the date of publication) is unable to recog-
nize > 99.9% of SLR UMIs, even with UMI whitelists
tailored for each dataset. Additionally, is an extension
of the EMA approach that makes a graph of UMIs us-
ing the degree of read connectivity between UMIs as
edges to deconvolve read clouds [25]. While the species
composition of popular sampling sites such as the hu-
man gut are well-characterized, such reference-based
methods are not designed for microbial samples from
under-studied environments such as urban landscapes
[26]. Minerva does not require a reference genome, us-
ing instead k -mer similarities between read clouds to
approximately solve the UMI deconvolution problem
for metagenomic samples [23]. However, Minerva is
memory-inefficient and requires extensive parameter
optimization to deconvolve all of the read clouds in a
dataset.

In this paper, we present Ariadne as an advanced ap-
proach to tackle UMI deconvolution. Instead of using
read alignments to reference sequences, which are un-
known for poorly characterized environmental micro-
bial samples [26], or relying on computationally expen-
sive string-based graphs, Ariadne leverages the linkage
information encoded in the full de Bruijn-based as-
sembly graph generated by a de novo assembly tool
such as cloudSPAdes [15] to generate up to 37.5-fold
more read clouds containing only reads from a sin-
gle fragment, improve the summed NA50 by up to
500 kbp, and maintain a proportional rate of mis-
assembly relative to de novo assembly without prior
UMI deconvolution. Searching through the pre-made
assembly graph for reads in the neighboring sequence
space makes the search for co-occurring reads com-
putationally tractable, generalizable, and scalable to
large datasets.

2 Results
2.1 Benchmarking Datasets
We used real data sets from four microbial mock com-
munities which we refer as MOCK5 10x, MOCK5
LoopSeq, MOCK20 10x, MOCK20 TellSeq through-
out this manuscript. See Table 1 for an overview of
the mock microbiome datasets and Table 2 for the rela-
tive species abundances. Two of the datasets, MOCK5
LoopSeq and MOCK20 TELL-Seq, are analysed for
the first time in this work. Note that while both com-
prised of 5 species, the MOCK5 10x and MOCK5
LoopSeq datasets share only one species—Escherichia
coli—and thus cannot be considered as a comparison
of 10x and LoopSeq technology. The original MOCK20
10x dataset is approximately 330 million reads, but
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for efficiency a random subset of 100 million reads was
used in the subsequent analyses. Similarly, the original
MOCK20 TELL-Seq dataset is approximately 210 mil-
lion reads large, but was also subsetted to 100 million
reads. Reference genome sequences can be downloaded
here.

2.2 Gold-Standard (‘Reference’) Cloud Deconvolution
The use of mock communities allowed us to infer the
genomic fragment of origin of the barcoded reads.
These gold-standard fragment assignments served as
a benchmark to compare read clouds and assemblies
with and without deconvolution. We mapped the reads
to the reference sequences of the species that were
known to form the mock communities using Bowtie2
[27] (version 2.3.4.1). Using the read mapping posi-
tions along the reference genome, we further subsetted
the reads into gold-standard read clouds such that the
left- and right-most starting positions of reads in the
same cloud were no further than 200 kbp apart, in case
multiple fragments from the same genome were present
in the same read cloud. We termed this method ’refer-
ence deconvolution’ as it represents the maximum like-
lihood inference of the genomic fragments that origi-
nated reads tagged with the same 3′ UMI.

2.3 Ariadne Generates a Large Number of High-Quality
Enhanced Read Clouds

Ariadne generated enhanced read clouds, or subgroups
of original read clouds, that largely corresponded to
individual fragments of DNA. We measured the qual-
ity of each enhanced read cloud using two metrics:
Shannon entropy index H =

∑
pi log pi and purity

P = max(~p) where pi indicates the proportion of reads
in an (enhanced) read cloud that originates from the
same most prevalent 200 kbp region in a single refer-
ence sequence. Prior to these quality checks, we ex-
cluded reads from standard and enhanced read groups
of size 2 or smaller (i.e. consisting of a single read-pair
or smaller), which are trivially pure.

Without deconvolution, there is a large spread of P
at each read cloud size, and nearly 100% of the reads
are in mixed-origin read clouds, or clouds that are
comprised of reads that have likely originated from
different SLR fragments (Table 3). Larger clouds are
more likely to contain reads of multiple species ori-
gins and thus lower purity. The exception to this trend
is the MOCK5 LoopSeq dataset (Figure 1 top row).
Since the goal of linked reads is to approximate the
linkage range of long fragments, having mixed-origin
clouds as a result of fragment-to-UMI multiplicity con-
founds downstream applications such as taxonomic
classification. Ariadne deconvolution reduces the pro-
portion of multi-origin read clouds by at least 2-fold

in the MOCK5 LoopSeq dataset, up to 7.5-fold in the
MOCK20 10x dataset (Table 3 column 7). Since Ari-
adne deconvolution generally decreases this trend (ex-
cept in the case of LoopSeq), it is unlikely that our re-
sults have been inflated by a large number of small and
trivially pure clouds. Furthermore, reference-based de-
convolution generates a similar number of clouds of a
similar size to Ariadne, indicating that search-distance
based subgrouping models genomic fragment bound-
aries sufficiently.

Ariadne at least doubles the proportion of com-
pletely deconvolved read clouds, which represent the
entirety of the reads from a single inferred genomic
fragment, except in the case of the MOCK5 LoopSeq
dataset (Table 3 column 8). In comparison, under-
deconvolved clouds are clouds comprised of reads
that originate from multiple fragments, whereas over-
deconvolved clouds are comprised of single-origin reads
that are a subset of all of the reads from that frag-
ment. The proportion of single-origin read clouds, the
sum of complete and over-deconvolved read clouds, has
increased between 2- and 37.5-fold.

While the 10x and MOCK20 TELL-Seq size-to-
purity distributions are similar, the MOCK5 LoopSeq
distribution peaks at P = 0.96, which explains why
Ariadne deconvolution has minimal effect on read
cloud quality. For the rest of the datasets, with re-
spect to size, the relative purity of Ariadne-enhanced
read clouds is significantly larger than that of the orig-
inal read clouds (Figure 1 bottom row). The ideal
deconvolution based on reference-mapped positions is
shown in the Figure 1 middle row, where there are
extremely few clouds with P < 1. Even with decon-
volution, there are still large read clouds (≥ 100 bp)
in the deconvolved set, indicating that Ariadne is ca-
pable of maintaining the integrity of existing single-
origin read clouds through a limited search of the as-
sembly graph (Figure 1). Overall, applying Ariadne de-
convolution to SLR datasets generates enhanced read
clouds that closely resemble the size-to-purity distri-
bution of the reference deconvolution, thereby approx-
imating the ideal deconvolution without a priori infor-
mation about the microbial composition of the origi-
nating data.

We have additionally demonstrated the effect of in-
creased search distance on overall dataset quality met-
rics (Supp. Table 1). The number of read clouds and
the average entropy increase as the search distance in-
creases, with minimal increases in the read cloud pu-
rity along with the proportion of single-origin (com-
plete and over-deconvolved read clouds). Given with
the large increases in computational runtime, only re-
sults with the deconvolution search distance of 5 kbp
are included going forward in the main text. Simi-
lar results- smaller and on average fewer-origin read
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clouds- can be observed with the Shannon entropy
measure (Supp. Fig. 1).

2.4 Enhanced Read Clouds Improve Metagenomic
Assembly

Since Ariadne was able to deconvolve the original SLR
dataset into high-quality and non-trivial enhanced
read clouds, we applied Ariadne to the full 97M-
read MOCK5 10x dataset, the full 75M-read MOCK5
LoopSeq dataset, and 100M randomly sampled reads
from each of the MOCK20 10x and MOCK20 TELL-
Seq datasets to generate enhanced read clouds as in-
put to cloudSPAdes [15] in metagenomics mode. The
assembly quality of the resulting scaffolds with refer-
ence and Ariadne deconvolution was compared to that
without prior deconvolution. cloudSPAdes generates
de novo assemblies a wide variety of sequencing data
into contigs and scaffolds, and has been benchmarked
on the MOCK5 10x and MOCK20 10x datasets previ-
ously [15]. As such, we have used similar metaQUAST
metrics to evaluate and compare the quality of the as-
semblies [28].

The largest improvements are in the overall as-
sembly contiguity and the largest alignment, demon-
strating that enhanced read clouds with increased
fragment specificity generate higher-quality assemblies
(Figure 2). NA50 is another measure of assembly con-
tiguity, reporting the length of the aligned block such
that using longer or equal-length contigs produces
half of the bases of the assembly. De novo assem-
blies generated from reference- or Ariadne-deconvolved
read clouds are significantly more contiguous than
those generated from the original, non-deconvolved
read clouds (Figure 2). To calculate the overall perfor-
mance improvements when assembling each dataset,
the assembly statistic for each species was summed and
the relative difference between reference- or Ariadne-
enhanced scaffolds and no-deconvolution scaffolds cal-
culated. For NA50 and largest alignment, this means
the no-deconvolution summed NA50 were subtracted
from that of the reference- or Ariadne-enhanced scaf-
folds. For the rate of misassembled bases, the number
of misassembled bases was divided by the total assem-
bly length. Then, the reference- or Ariadne-enhanced
scaled misassembly rates were divided by that of the
no-deconvolution scaffolds.

While the differences between the deconvolution
methods and no deconvolution were minimal in the
MOCK5 10x dataset (Figure 2 first column), there
were significantly positive differences in NA50 and
largest alignment in all other datasets. While Ariadne
generally produces shorter NA50 and largest align-
ments than the ideal genomic deconvolution, Ariadne
assemblies significantly outperform no-deconvolution

assemblies in terms of contiguity statistics (Figure 2
top and middle). However, in the case of the two
MOCK5 datasets, the Ariadne assembly NA50 gains
were larger than the reference deconvolution assembly
gains, suggesting that the most ideal read cloud par-
tition does not always generate the most contiguous
assemblies (Figure 2 top first and second panels).

In terms of misassembly rate, Ariadne assemblies
largely match no-deconvolution assemblies and signif-
icantly outperform reference deconvolution. With the
MOCK20 10x dataset, the third quartile of misassem-
bly rate by reference deconvolution is 8-fold larger than
that of no deconvolution, whereas Ariadne assemblies
contained up to 2-fold more at maximum (Figure 2
bottom third panel). Ariadne underperforms assembly
without deconvolution in terms of largest alignment
and misassembly rate in MOCK20 TELL-Seq (Fig-
ure 2 bottom last panel). However, both Ariadne- and
reference-enhanced assembly obtain NA50 for 4 species
that the no-deconvolution assembly failed to capture,
as well as some substantial differences between Ari-
adne and reference-based deconvolution with respect
to no deconvolution (Table 4). In other datasets, there
may be species that are more easily reconstructed with
read cloud deconvolution that cloudSPAdes would not
otherwise find long, contiguous reference subpaths for
through the assembly graph. Outlier values of NA50,
largest alignment, and misassembly rates were omitted
from Figure 2 for visual clarity were all from the refer-
ence deconvolution scaffolds and can be found in Supp.
Table 2. There were no major changes in the fraction
of reference bases that were reconstructed, the total
aligned length, the mean number of mismatches, and
the number of contigs.

2.5 Comparison of SLR Sequencing Technologies
While both comprised of 5 species, the only species
common to the MOCK5 10x and MOCK5 LoopSeq
datasets is Escherichia coli. As such, while they are
comparable in terms of input community complexity,
they cannot be treated as a comparison of SLR tech-
nologies with respect to de novo assembly. However,
the two MOCK20 datasets were generated from the
same 20-species mock community product from Zymo,
and as such, it is possible to compare assembly quality
metrics (Table 5).

The difference between the accurately recovered frac-
tion of each species’ genome is small (10x is on aver-
age 8% larger). There were some species (e.g. Bac-
teroides vulgatus, approx. abundance is 0.03%) that
both no-deconvolution and reference-deconvolved 10x
and TELL-Seq assemblies struggled to reconstruct
because of their low abundances. It is noteworthy
that the Ariadne-deconvolved 10x assembly managed
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to reconstruct a small contig from Schaalia odon-
tolytica, which both no-deconvolution and reference-
deconvolved assemblies completely missed. The differ-
ence between the total alignable lengths of the assem-
blies is larger (13.3%), with all 10x contig-to-reference
genome alignments roughly the same or significantly
longer than TELL-Seq alignments. At the species level,
however, there was some variability in terms of the
SLR technology that reconstructed the larger align-
ment. This variation was probably in part due to fluc-
tuations in coverage as well as downsampling the full
sequencing read dataset for efficient comparison. For
example, in the case of Bacillus cereus, the longest
alignable 10x contig was 166,772 bp and the longest
alignable TELL-Seq contig was 2,079,803 bp. How-
ever, the recovered genome fraction for both technolo-
gies was 97.03% and 98.92% respectively, indicating
that while the 10x assembly of B. cereus was more
fragmented, it was still by and large complete and
gaps were likely due to coverage variability. Similar
reversals can be found where the TELL-Seq assem-
blies of a species are more fragmented but similarly
complete. Nonetheless, the 10x assembly contains far
fewer contigs than the TELL-Seq assembly- 2,481 to
7,729- which is also reflected in its smaller number of
larger read clouds (Table 3).

As expected with larger assemblies, the 10x assembly
has significantly more misassemblies and misassembled
content than the TELL-Seq data, which is probably
due to the fact that more assembled bases are con-
tained in fewer contigs. The amount of unalignable se-
quence content was quite small in both, and comprised
< 0.2% of both assemblies.

2.6 Runtime and Performance
Ariadne consumes approximately as much memory as
the initial assembly graph generation process, with the
exceptions of the MOCK5 datasets (Supp. Table 3).
Any computing cluster with enough RAM to conduct
de novo assembly will have sufficient resources to also
run Ariadne. The primary technical cost of running
Ariadne is compute time. The search distance-based
deconvolution process scales with assembly graph con-
nectivity, which is a function of i) sequencing cov-
erage, ii) genomic fragment length, and iii) the ge-
netic content of the originating metagenome. When
the search distance is 5 kbp or less, Ariadne’s run-
time is similar to that of the entire de novo assembly
process for MOCK5 10x and MOCK20 10x datasets
(Supp. Table 3). At search distances larger than 5
kbp and for MOCK5 LoopSeq or MOCK20 TELL-
Seq datasets, Ariadne’s runtime becomes significantly
larger than the time needed to generate the assem-
bly graph, likely due to the increased number of nodes

considered per read cloud deconvolution (Supp. Table
3). For instance, when comparing MOCK20 10x and
MOCK20 TELL-Seq datasets, Ariadne deconvolution
with a search distance of 5 kbp takes nearly 5 times as
long to complete for MOCK20 TELL-Seq, despite the
number of reads being identical and de novo assembly
taking nearly the same amount of time.

2.7 EMA, Longranger and Lariat, and Minerva
EMA takes SLR UMIs into account to align linked
reads to a reference sequence(s) using a latent variable
model, thereby serving as an alternative to Bowtie2-
based read alignment to generate gold-standard read
cloud deconvolution. However, the first step of the
EMA pipeline (last downloaded: May 7, 2021), ema count,
which counts UMIs and partitions the original FastQ
file into a number of deconvolution bins, is unable to
recognize most to all of the UMIs, even when custom
whitelists with the exact list of UMIs in the dataset
are directly provided (Supp. Table 4). In one case,
ema count failed to detect any UMIs in the MOCK5
LoopSeq dataset altogether. In the best-case scenario
with the MOCK20 10x dataset, ema count recognized
199,488 barcoded reads. The core deconvolution mod-
ule in the pipeline, ema align, would have been able
to deconvolve at maximum 0.002% of a 94-million read
dataset (Supp. Table 4). To deconvolve reads that
are not recognized as barcoded, the EMA pipeline
uses the same procedure as our reference deconvolu-
tion pipeline, with bwa as the read aligner instead
of Bowtie2. Due to the paucity of aligned reads and
the subsequent lack of deconvolution, EMA-enhanced
read clouds were not featured in this analysis. For
ease of use, we decided to use our own reference-based
deconvolution pipeline, which automates all of the
read alignment, read-subgrouping, and FastQ gener-
ation steps with a single submission command. Simi-
lar UMI recognition issues were encountered with the
Longranger align pipeline and the Lariat aligner it
was based on. Similar to EMA, Lariat incorporates
UMI information to align linked reads to a reference
sequence(s). However, the available FastQ files for all
four of the datasets were not comprised of raw Illumina
BCL files or the raw output of longranger mkfastq.
As such, it was not possible to apply Longranger align
or Lariat to the four datasets. Minerva was similarly
unable to deconvolve a sufficient number of read clouds
(0.002% at best with the MOCK5 LoopSeq dataset),
and it too was not featured in this full analysis. How-
ever, both Ariadne and Minerva completed a deconvo-
lution test-run of 20-million reads from the MOCK5
10x dataset. In summary, while Minerva generated
nearly 100% single-species read clouds, it was only
able to deconvolve 4% of the reads in total (Supp.
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Figs. 2 and 3, Supp. Table 4). Performance-wise, the
Minerva runs were 4 times as long and consumed 3
times as much memory. The results are explained in
greater detail in the Supplementary Materials (pg. 6
and 7).

3 Discussion
There have been other recent developments in the SLR
space, intended to extract as much linkage information
from barcoded reads as possible in order to maximize
recovery of input genomic information. Instead of tack-
ling the UMI deconvolution problem, Guo et al. [29]
and Weng et al. [30] innovate downstream of the de
novo assembly problem. By using SLRs in combina-
tion with graph- or k -mer-based methods, SLRsuper-
scaffolder and IterCluster attempt to generate longer
and higher-quality assemblies. Either of these, paired
with the largely single-origin read clouds generated by
Ariadne, could potentially improve the NA50 and aver-
age alignment size generated by cloudSPAdes. Hybrid
sequencing and analysis strategies in the future may
still take advantage of the coverage and linkage depth
of SLR datsets, even when used in combination with
long reads [31, 32].

Ariadne deconvolution generates enhanced read
clouds that are up to 37.5-fold more likely to be single-
origin, which will improve downstream applications
that depend on approximating the long-range link-
age information from a single species, such as tax-
onomic classification. De novo assemblies of mock
metagenome communities are significantly more con-
tiguous with Ariadne-enhanced read clouds, without
the outsized increase in misassembly rate as observed
with the ideal deconvolution strategy. In terms of
the dataset-specific results, increasing the number of
species did not change the shape of the size-to-purity
distribution greatly, reflecting the inter-technology
similarities in UMI-to-fragment multiplicity. As such,
Ariadne is capable of improving assembly results and
read cloud composition across all of the SLR strate-
gies, and unlike EMA or the Longranger pipeline, eas-
ily facilitates re-analyses of existing SLR datasets for
higher-resolution de novo assembly and taxonomic
classification without pre-existing knowledge of the
originating species. As with all other assembly-based
algorithms, the degree of assembly contiguity will large
depend on i) the true sample composition, which de-
termines the intrinsic genetic heterogeneity to be re-
solved, and ii) the amount of raw sequencing data
generated, which is a function of DNA extraction ef-
ficiency (i.e.: genomic fragment size) and sequencing
coverage [33].

Though Ariadne relies on cloudSPAdes parameters
to generate the assembly graph (e.g., iterative k -mer

sizes), the program by itself only has two: search dis-
tance and size cutoff. The maximum search distance
determines the maximum path length of the Dijkstra
graphs surrounding the focal read. Since each read
is modelled as the center of a genomic fragment, the
search distance can be thought of as the width of the
fragment. As such, it should be set as the mean es-
timated fragment length, as determined using other
means such as a priori knowledge of shearing dura-
tion and intensity or mapping reads with the same
UMI to known reference genomes. While the estimated
mean length of a metagenomic fragment according to
[15] is approximately 40 kbp, the most balanced re-
sults were obtained with a significantly shorter search
distance. Of the distances tried in this analysis, to bal-
ance the highest-quality assembly results, single-origin
read clouds, and computational efficiency, we recom-
mend that the user set a search distance 5 kbp or
shorter to generate their own enhanced read clouds.
If the user has additional information that their SLR
data is comprised of larger read clouds that are nearly
single-origin, such as in the MOCK5 LoopSeq dataset,
then larger size cutoffs should be tried. Similarly, if the
goal is to generate as much alignable genetic material
as possible without as much concern for synteny or
the relative spacing of genes along the genome, then
larger search distances can be tried. Reference-based
deconvolution, which directly approximates genomic
fragments by mapping reads to the the known refer-
ence sequence composition of the sample, is better for
large contiguous aligned blocks. However, the high mis-
assembly rate is detrimental to the overall integrity
of the assembly and should be carefully applied even
in cases where the species composition of the sample
is known. For some SLR technologies, the average ge-
nomic fragment size must be estimated prior to library
preparation to ensure the correct balance of DNA and
reagent molarity [9, 8, 11]. This average fragment size
serves as a useful upper bound of an appropriate search
distance.

This study is the first to compare the performances
of multiple SLR technologies on well-characterized
mock microbiomes. While 10x and TELL-Seq assem-
blies on a 20-species community are comparable in
terms of the fraction of recovered species genomes,
the 10x assembly was consistently larger, more ac-
curate, and more contiguous than the TELL-Seq as-
sembly while only slightly more prone to misassembly.
LoopSeq is an interesting case where the overall frac-
tion of recovered species genomes was low but the over-
all read cloud purity was extremely high, leading to
smaller but extremely contiguous (i.e.: large alignable
contigs) assemblies. While 10x is a well-characterized
and thoroughly validated all-around choice, it may be
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advantageous to use LoopSeq on microbiomes com-
posed of a few bacteria with small genomes. As with
setting search distances, we advise researchers compar-
ing SLR methods to consider the known complexity of
their samples and to choose accordingly.

4 Conclusion
We have developed Ariadne, a novel SLR deconvo-
lution algorithm based on assembly graphs that ad-
dresses the UMI deconvolution problem, and enables
the complete usage of the linkage information in SLR
technology. Ariadne deconvolution has the largest im-
pact when the input microbial community is large and
complex, which is ideal for environmental microbial
samples with minimal prior characterization [26]. In
its current form, Ariadne is implemented as a module
of cloudSPAdes to directly ingest the generated assem-
bly graph and generate enhanced read clouds. Further
algorithmic improvements to maximize the correspon-
dence between 3′ UMIs and fragments may bring about
significant improvements in assembly quality, and in-
crease its scalability to other large-scale SLR problems,
such as haplotype phasing.

5 Methods
5.1 Algorithm Overview
We have developed Ariadne, an algorithm that approx-
imately solves the UMI deconvolution problem for SLR
sequencing datasets. Ariadne deconvolves read clouds
by positioning each read on a de Bruijn-based assem-
bly graph, and grouping reads within a read cloud that
are located on nearby edges of the assembly graph.
The grouped reads are termed enhanced read clouds.
Currently, Ariadne is implemented as a module of
cloudSPAdes version 3.12.0.

5.1.1 The Usage of UMI Information in De Novo
Assembly

The following is a summary of cloudSPAdes’ usage of
UMIs to identify contigs from assembly graphs. For a
more detailed description, see the Materials and Meth-
ods section of [15]. cloudSPAdes constructs and itera-
tively simplifies a de Bruijn assembly graph using se-
quencing reads and several sizes of k-mers (by default,
21, 33, and 55 bp). The goal is to recover genomic
cycles through the assembly graph that correspond
to whole chromosomes. Due to read error, incom-
plete sequencing coverage, limited sequencing depth,
and biological phenomena such as repetitive regions,
de novo assemblers employ a number of heuristics to
find the optimal unbranching paths through the graph
[13, 14, 15]. In the case of SLRs and cloudSPAdes,
UMIs provide one mechanism of identifying edges that
are likely part of the same genomic cycle [15]. If read

i carrying UMI b aligns to edge i, then edge i is
said to be associated with UMI b. The UMI similar-
ity between two edges is the proportion of associated
UMIs in common. By using UMI similarities to iden-
tify edges that likely originated from the same genomic
region, cloudSPAdes connects edges within the assem-
bly graph to approximate chromosomes.

Due to fragment-to-UMI multiplicity, barcoded metage-
nomic read clouds are likely comprised of reads from a
few species. Since these reads are all carrying the same
UMI b, the long edges associated with UMI b may be
erroneously connected to form contigs with genomic
material from multiple species. Chimeric contigs are
hazardous for downstream analyses, since as the bin-
ning of contigs into metagenomic-assembled genomes
[6, 34].

5.1.2 The Assembly Graph Conception of a Fragment
Searching through the cloudSPAdes-generated assem-
bly graph for reads in the neighboring sequence space
is equivalent to approximating the sequence content of
a genomic fragment given the entirety of the sequence
content in the input read dataset. By necessity, reads
originating from the same fragment must i) have the
same 3′ UMI and ii) be no more further apart than the
total length of the fragment. The user can specify the
search distance according to a priori knowledge about
the median size of genomic fragments generated in the
first step of SLR sequencing.

This process is diagrammed in Figure 3. Reads can
be mapped to a de Bruijn graph. A read (Figure 3A
blue and red bars) is said to coincide with an edge of
the assembly graph (Figure 3B) if the read’s sequence
aligns to the edge’s sequence.The read can also be said
to coincide with the vertices bordering the edge it co-
incides with. For example, in Figure 3C, read i, which
consists of string ’TGACTGC’ coincides with an edge
i that also contains the string ’TGACTGC’.

5.1.3 The Dijkstra Graph Conception of a Fragment
The Dijkstra graphs (Figure 3D) comprising the
nearby assembly graph for each read represent the po-
tential sequence space that the read-originating frag-
ment occupies on that assembly graph. A Dijkstra
graph contains the shortest paths from source node to
all vertices in the given graph. The Dijkstra graphs for
a read are comprised of the vertices bordering assem-
bly graph edges that are reachable within the max-
imal search distance. The maximum search distance
is a user-provided parameter limiting the size of the
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Dijkstra graph, or the search space to be considered
in the assembly graph. The maximum search distance
reflects the user’s a priori knowledge of the size of a
fragment.

5.2 The Ariadne Algorithm
Ariadne requires a prior step to locate reads within the
(meta)genome of the sample. Where EMA requires an
alignment step using the bwa read mapper to generate
initial mappings for its barcoded reads [24, 35], Ari-
adne uses the raw assembly graph generated by any of
the SPAdes family of de novo assemblers to identify
the locations of reads relative to one another in the
sample’s sequence space. Though Ariadne is intended
to be a standalone tool, in the future, it will be possi-
ble to integrate Ariadne as an intermediary step in the
de novo assembly procedure to improve the assembly
graph in situ.

The assembly graph is first generated by applying
cloudSPAdes to the raw SLR metagenomics reads as
described in [36]. For a more detailed explanation of
the process of forming the assembly graph, we refer
the reader to [36, 37]. Subsequently, the Ariadne de-
convolution algorithm is applied to the raw reads, with
the cloudSPAdes-generated assembly graph supplying
potential long-range linkage connections derived from
the dataset.

5.2.1 Step 1: Extract the assembly graph from a
cloudSPAdes run.

A simple representation of an assembly graph is de-
picted in (Figure 3B). In the cloudSPAdes assembly
procedure, the assembly graph is obtained from the
raw assembly graph by condensing each non-branching
path into a single edge and closing gaps, removing
loops, bulges, and redundant contigs. In the process
of constructing the assembly graph, cloudSPAdes also
maps each read to the assembly graph, generating the
mapping path of a read, or the edges in the assem-
bly graph either partially or fully spanned by the read
(Figure 3C read i). The mapping path Pi, or finite
walk, of read i is comprised of the set of edges e from
graph G that read i covers (Equation 1).

Pi = {e1, e2, . . . , en} (1)

The mapping path can equivalently be described as
a vertex sequence Vi, which is composed of the set of
vertices that border each of the edges in Pi (Equation
2).

Vi = {v1, v2, . . . , vn+1 : φ(ei) = vi, vi+1} (2)

Importantly, the vertices and edges in the assembly
graph are unique numeric indices replacing their se-
quence content. Instead of having to compare the se-
quences comprising the assembly graph edges, reads
sharing edges can be identified by the indices in their
mapping paths. As such, for the purposes of UMI de-
convolution, reads do not need to be re-mapped along
the assembly graph. Instead, the index-based mapping
paths and vertex sequences of each read are used to lo-
cate the read. This represents a considerable speed-up
over the Minerva procedure, which relies on hashing
string-based sequence comparisons between reads and
read clouds. Steps 2 and 3 are trivially parallelized
such that the deconvolution procedure processes as
many read clouds as there are threads available.

5.2.2 Step 2: Generating connected read-sets for each
read i.

If the number of reads in the read cloud is greater than
the user-set size cutoff, the read cloud (i.e.: tagged with
the same 3′ UMI) is loaded into memory (Figure 3A).
For each read i, the following steps are conducted to
identify other reads with the same 3′ UMI that poten-
tially originated from the same fragment.
Step 2A: Generating forward and reverse Di-

jkstra graphs. In Figure 3, read i aligns to an edge in
the de Bruijn assembly graph. Assuming that read i is
oriented in the 5′→ 3′ direction, the 3’-terminal vertex
is the 3′-most sequence that read i is contiguous with.
By finding edges reachable within search distance d
of the 3’-terminal vertex, we will be able to all reads
with the same UMI that are likely to originate from
the same fragment. Reads that are oriented in the 3′

→ 5′ direction can be reverse-complemented to apply
this same procedure.

To facilitate this search, a forward Dijkstra graph
(Figure 3D) is constructed starting at read i’s 3’-
terminal vertex. The forward Dijkstra graph Df,i com-
prises the set of vertices vk, which are all vertices in the
assembly graph reachable within the maximum search
distance d the 3’-terminal vertex (Equation 3).

Df,i = {vk : min(distance(vj , vk)) ≤ d} (3)

The process of constructing the Dijkstra graph,
which represents the nearby sequence space of read
i, is as follows. The tentative distances to all down-
stream vertices in the assembly graph are set to the
maximum search distance d. From the 3’-terminal ver-
tex, the tentative distances to these vertices are calcu-
lated from lengths of the edges connecting the vertices.
This value is compared to the current distance value,
and the smaller of the two is assigned as the actual
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distance. The vertex with the smallest actual distance
from the current node is selected as the next node from
which to find minimal paths, and this process is re-
peated. This process concludes for any path from vj
when the smallest tentative distance to vertices vk is
the maximum search distance.

Correspondingly, a reverse Dijkstra graph is con-
structed with the goal node set as read i’s 5’-terminal
vertex, the start-vertex of the edge that the start of the
read coincides with. For the reverse Dijkstra Dr,i, the
5’-terminal vertex is treated as the terminal node of
Dijkstra graph construction, and the set of distances
in Dr,i is comprised of the vertices vg such that the
minimal edge-length distance between the 5’-terminal
vertex and vg is less than the maximum search dis-
tance.
Step 2B: Identifying other reads potentially

originating from the same (meta)genomic frag-
ment. Due to long-range linkage, reads from the same
genomic fragment should occur in both the nearby
assembly graph and each others’ Dijkstra graphs. As
such, all other reads j in the same read cloud are com-
pared to read i and its forward and reverse Dijkstra
graphs. For every read j in the read cloud, if one of
the following conditions holds, the read j is added to
the connected read-set of read i. If any vertex in the
vertex sequence of j, Vj (or its reverse complement
sequence) is found in the forward or reverse Dijkstra
graphs (Figure 3D). This process is conducted via bi-
nary search of sorted vertex names in the forward and
reverse Dijkstra graphs, eliminating the need to test
for sequence string equivalency as in Minerva. Note
that edge lengths can range from hundreds to tens of
thousands of base-pairs in length. If read i aligned to
an edge that was 10 kbp long, many reads from the
same originating fragment may in fact align to the
same edge as read i. Ariadne thus deconvolves read
clouds by dynamically identifying the maximal sets of
connected reads within each cloud.

Else, if neither of the above is true, the read is likely
to have originated from a different fragment than read
i (Figure 3E) despite being tagged with the same 3′

UMI, and thus no connecting component is built.
The complexity of the overall read cloud deconvo-

lution, which consists of Dijkstra graph construction
and binary searches through the assembly graph, is

∑
i

O(EGi,d
log(VGi,d

)) (4)

where G is the Djikstra subgraph induced on the
overall assembly graph with read i as the focal read, d
as the maximum search distance, E is the number of

edges in the Djikstra subgraph G, and V is the number
of vertices in the Djikstra subgraph G.

The number of vertices searched for connectivity
(Step 2B) depends on technical properties intrinsic
to the dataset—such as the number of reads, the
read coverage, error rate, number of repeats in the
metagenome, and number of chromosomes—and the
user-set search distance parameter.

5.2.3 Step 3: Output maximal sets of connected
reads, or enhanced read clouds.

Each enhanced read cloud is the set of reads from the
same read cloud that are part of the same search-
distance-limited connected subgraph, as identified in
step 2B. These enhanced read clouds are output as so-
lutions to the UMI deconvolution problem (Figure 3F).
Each original read cloud is either subdivided into two
or more enhanced read clouds, or kept intact if all of
the reads were found within the search distance d of
each other. To avoid a preponderance of trivial-sized
enhanced read clouds, if there is an enhanced read
cloud generated that is composed solely of a pair of
reads, the two reads are instead added to the smallest
enhanced read cloud generated from the same original
cloud.

5.3 Selection of Search Distances
The maximum search distance was selected two quan-
tities: i) the expected size of the physical genomic frag-
ment that generates the sequencing reads and the ii)
the likelihood of observing reads some N base-pairs
(bp) away from a focal read, where N is an integer.
[15] had previously estimated several dataset param-
eters to accurately model metagenomic fragments as
paths through the assembly graph. To estimate the
average fragment length, a method termed single link-
age clustering was used to partition reads into clusters
corresponding to alignments of likely fragments to the
known reference genomes of the species comprising the
sample. For example, the expected fragment size of
the MOCK5 10x dataset was estimated to be 39,139
bp. For a complete analysis of the genomic fragment
length estimates, the number of genomic fragments per
3′ UMI, and overall coverage of MOCK5 10x, see the
Supplementary Materials of [15].

Setting a maximum search distance of d = 5 kbp
seemed to model linked-read genomic fragments with
an expected length of 40 kbp reasonably. To limit the
occurrence of under-deconvolution, the search distance
is set conservatively, as a fraction of the expected ge-
nomic fragment length. Each read i is used as a focal
read to search the assembly graph. If read j truly orig-
inated from the same genomic fragment of read i, it is
significantly more likely for read j to occur within d
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of read i than a full 40 kbp away. Several search dis-
tances smaller than the estimated fragment length—5,
10, 15, and 20 kbp—were tried for this study, and it
was found that search distance d = 5 kbp provided
the best balance of deconvolution accuracy, assembly
quality, and computational efficiency (Supp. Table 1).

5.4 Mathematical Justification of Fragment
Dissimilarity

We provide a short summary of the mathematical
model that justifies the modelling of fragments as
search-distance limited connected subgraphs within a
de Bruijn assembly graph. The details of the math-
ematical model for drawing fragments of DNA from
a SLR sequencing sample are fully described in [23],
the article describing Minerva, the previous iteration
of Ariadne. In brief, random fragments of genomic se-
quence on the scale of kilo-base-pairs from a large num-
ber of species with genomes that are many mega-base-
pairs in length are unlikely to be similar in terms of
sequence to overlap on the assembly graph, even with
k-mers as small as 22 bp. For metagenomic datasets, at
least 95% of read clouds consist of fragments that do
not overlap in this model. This is important because
it means that overlapping fragments, and thus spuri-
ous connections, are uncommon and will not hinder
deconvolution in most read clouds. The algorithm is
theoretically capable of uniquely deconvolving 95% of
read clouds by searching the assembly graph surround-
ing the read for connecting reads. The only drawback
of this model is that it does not account for the fact
that individual fragments may have similar sequences,
such as those resulting from repetitive regions or highly
conserved genes.
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Figure 1 The size-weighted purity of SLR read clouds increases after applying deconvolution methods. All graphs were generated
from 40,000 randomly sampled clouds from the dataset. Top row: No deconvolution. Middle row: Reference deconvolution based on
read alignment to species and then grouping reads in 200 kbp regions. Bottom row: Ariadne deconvolution with a search distance of
5 kbp and a minimum cloud size cutoff of 6.

Figure 2 Read cloud deconvolution improves metagenomic assembly compared to raw SLR data. We compared assemblies built
from raw linked reads (no deconvolution) to assemblies built from reads deconvolved using two methods: reference deconvolution,
which maps reads to reference genomes, and deconvolution using Ariadne. Top Row: The NA50 of assemblies for each species in
each sample between deconvolved reads and raw reads. Larger numbers indicate better performance. Middle Row: The largest
alignment of assemblies for each species in each sample between deconvolved reads and raw reads. Larger numbers indicate better
performance. Bottom row: The proportion of misassembled bases pmiss is the number of bases in misassembled contigs over the
total number of assembled bases.

Figure 3 Graphical description of the Ariadne deconvolution process. (A) Reads with the same 3′ UMI are in a read cloud. Blue and
red reads originate from different fragments. The (B) de Bruijn assembly graph is generated by cloudSPAdes, and (C) a focal read is
mapped to one of its edges. From a read’s 3’-terminal vertex, (D) a Djikstra graph (indicated by a large black circle) is created from
all edges and vertices within the maximum search distance from the 3’-terminal vertex. These vertices and edges (within the black
circle) comprise read i’s search-distance-limited connected subgraph within the whole assembly graph. Reads aligning to edges in this
connected subgraph are added to read i’s connected set. (E) Reads originating from different fragments likely coincide with
non-included vertices. (F) Connected read-sets with at least one intersection (i.e.: one read in common) are output together as an
enhanced read cloud.
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Table 1 Overview of mock microbiome linked-read datasets. * indicates that MOCK20 10x and TELL-Seq generated from the same
mock microbiome community product

Dataset Num. Reads Num. Barcoded Reads Prop. Barcoded Reads

MOCK5 10x 97,491,080 91,101,472 0.93446

MOCK5 LoopSeq 75,107,814 75,107,814 1

MOCK20 10x* 100,000,000 94,151,528 0.94152

MOCK20 TELLSeq* 100,000,000 100,000,000 1

Table 2 Relative species abundance in each mock microbiome community as calculated by the tool CoverM [38]. Abundance based on
read coverage of reference genome sequence adjusted for genome size.

Dataset Species Relative Abundance

MOCK5 10x

Enterobacter cloacae 7.129894635
Pseudomonas fluorescens 11.63274034
Micrococcus luteus 16.54618068
Escherichia coli 22.04082093
Staphylococcus epidermidis 42.6503661

MOCK5 LoopSeq

Pseudomonas aeruginosa 2.2308808
Streptococcus mutans 5.312954304
Porphyromonas gingivalis 26.40226344
Escherichia coli 28.9818004
Rhodobacter sphaeroides 37.07210106

MOCK20 10x and TELLSeq

Schaalia odontolytica 0.005069583
Bifidobacterium adolescentis 0.005194844
Deinococcus radiodurans 0.014251377
Enterococcus faecalis 0.015894382
Bacteroides vulgatus 0.027645357
Cutibacterium acnes 0.184333912
Lactobacillus gasseri 0.189651678
Neisseria meningitidis 0.229268868
Helicobacter pylori 0.241180209
Acinetobacter baumannii 0.250956306
Bacillus cereus 1.214779563
Clostridium beijerinckii 1.220119982
Pseudomonas aeruginosa 1.366135524
Staphylococcus aureus 1.816064537
Streptococcus agalactiae 1.914207527
Rhodobacter sphaeroides 13.2715074
Escherichia coli 16.14207583
Staphylococcus epidermidis 19.55632719
Porphyromonas gingivalis 21.07923273
Streptococcus mutans 21.25610476
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Table 3 Read cloud summary statistics. For Ariadne deconvolution, we used a search distance of 5 kbp. The 3-5th columns contain the
average and standard deviations of read cloud statistics. Prop. Under, Comp., and Over refer to the proportion of total original or
deconvolved read clouds that were over- or under-deconvolved, or completely and exactly comprised of all of the reads from a single
inferred genomic fragment.

Dataset Deconv.
Method

Avg.
Purity

Avg.
Entropy

Avg. Size Num.
Clouds

Prop. Un-
der

Prop.
Comp.

Prop. Over

MOCK5 10x None 0.53±0.16 1.61±0.52 63.51
±51.64

1 425 430 0.98 0.02 0

MOCK5 10x Reference 0.99±0.05 0.03±0.14 18.47
±19.26

4 733 136 0.06 0.91 0.03

MOCK5 10x Ariadne 0.89±0.22 0.37±0.7 12.18
±15.26

4 753 473 0.25 0.04 0.71

MOCK5 LoopSeq None 0.93±0.11 0.31±0.31 269.18
±356.67

276 665 0.68 0.32 0

MOCK5 LoopSeq Reference 0.98±0.07 0.06±0.21 116.19
±252.59

637 012 0.14 0.82 0.04

MOCK5 LoopSeq Ariadne 0.88±0.21 0.4±0.7 101.44
±225.71

734 143 0.35 0.14 0.51

MOCK20 10x None 0.38±0.15 2.28±0.62 186.49
±129.32

503 205 0.97 0.03 0

MOCK20 10x Reference 0.99±0.06 0.05±0.18 29.31
±29.26

3 146 784 0.13 0.83 0.04

MOCK20 10x Ariadne 0.94±0.18 0.22±0.64 13.56
±22.69

6 920 196 0.13 0.05 0.83

MOCK20 TELL-Seq None 0.39±0.15 2.37±0.59 160.45
±110.51

623 026 0.98 0.02 0

MOCK20 TELL-Seq Reference 1±0.02 0±0.05 23.83
±27.65

4 067 621 0.01 0.99 0

MOCK20 TELL-Seq Ariadne 0.87±0.24 0.47±0.89 21.96
±30.74

4 074 321 0.25 0.04 0.71

Table 4 Both Ariadne and reference deconvolution increase the summed NA50 of de novo assembled metagenomes. The rightmost
column shows the difference between the summed NA50 of assemblies obtained from deconvolved reads and the summed NA50 of
non-deconvolved assembly. The asterisk (*) indicates species that had no associated NA50 in the non-deconvolved assembly.

Dataset Species Deconv. Method Difference in NA50 (bp)

MOCK5 10x Enterobacter cloacae* Ariadne 16 655

MOCK20 TELL-Seq Streptococcus agalactiae* Ariadne 464 957

MOCK20 TELL-Seq Staphylococcus epidermidis* Ariadne 489 177

MOCK20 TELL-Seq Streptococcus mutans* Ariadne 906 518

MOCK20 TELL-Seq Staphylococcus aureus* Ariadne 106 598

MOCK5 10x Enterobacter cloacae* Reference 13 628

MOCK20 10x Rhodobacter sphaeroides Reference -580 531

MOCK20 10x Staphylococcus epidermidis Reference 639 974

MOCK20 TELL-Seq Staphylococcus epidermidis* Reference 1 503 747

MOCK20 TELL-Seq Streptococcus agalactiae* Reference 2 047 925

MOCK20 TELL-Seq Streptococcus mutans* Reference 2 012 488

MOCK20 TELL-Seq Staphylococcus aureus* Reference 134 663

Table 5 Comparison of 10x vs. TELL-Seq de novo assembly statistics as calculated by MetaQUAST. MOCK20 datasets were made
using 10x and TELL-seq library preparation and sequencing protocols, reference-deconvolved, and de novo assembled using cloudSPAdes.

Summary statistic MOCK20 10x MOCK20 TELL-Seq

Genome fraction (%) 75.827 67.719

Total aligned length (bp) 52,363,841 45,407,218

Longest single-contig alignments (bp) 6,234,231 2,079,899

Num. contigs 2481 7729

Num. misassemblies 127 59

Total size of misassembled contigs (bp) 23,155,091 15,651,764

Proportion of assembled sequence in misassembled contigs 44.22% 34.47%

Num. unaligned contigs 1 45

Size of unaligned contigs (bp) 599 105,526
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