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Summary

Extracellular vesicles (EVs) may mediate intercellular communication through the transfer of
cargo molecules. Here, we report that cyclinD1 is sorted into EVs during neuronal differentiation
and that these EVs help to promote the neural induction of mouse embryonic stem cells.

Abstract

Extracellular vesicles (EVs) that are thought to mediate the transport of proteins and RNAs
involved in intercellular communication. Here, we show dynamic changes in the buoyant density
and abundance of extracellular vesicles that are secreted by PC12 cells stimulated with nerve
growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation and
mESCs differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote
neural induction of mouse embryonic stem cells (mESCs). Cyclin D1 enriched within the EVs
derived from differentiated neuronal cells contributes to this induction. EVs purified from cells
overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin
D1 from the EVs reduced the neural induction effect. Our results suggest that extracellular
vesicles regulate neural development through sorting of cyclin D1.

Introduction

Intercellular communication involves either direct contact between neighboring cells or indirect
interaction via secreted factors including extracellular vesicles (EVs) (Hessvik and Llorente,
2018). Cells release two subtypes of EVs according to their cellular membrane origin, plasma-
membrane-derived extracellular vesicles and endosome-derived exosomes (French et al., 2017).
Plasma membrane-budded vesicles range from 30 to 1,000 nm whereas exosomes range from 30–
150 nm in diameter. Intralumenal vesicles that accumulate within multivesicular bodies (MVBs)
are secreted as exosomal EVs to the extracellular environment upon fusion of MVBs with the
plasma membrane. EVs are enclosed by a lipid bilayer containing transmembrane proteins and
luminal cytosolic proteins and nucleic acids (Raposo and Stoorvogel, 2013). Much interest has
focused on the wide distribution of EVs in all biological fluids and their potential to trigger
intercellular exchange of effector molecules, which may allow secreting cells to modulate gene
expression in target cells and tissues (Mulcahy et al., 2014).

The lipid membrane of EVs ensures the stability of lumenal cargo as vesicles circulate in the
extracellular space, potentially over long distances. The small size of EVs helps overcome
various biological barriers, including the blood brain barrier (Van Niel et al., 2018). In the brain,
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EVs represent an ideal vehicle for intercellular transfer of information from neurons and glia to
both neighboring and distal cells (Budnik et al., 2016). Multiple cell types in the mature central
nervous system (CNS) release EVs, including neurons, astrocytes, and oligodendrocytes (Pascual
et al., 2020). Neuronally-secreted EVs could control synaptic plasticity, and enhance the removal
of degenerative neurites after internalization by microglial cells (Bahrini et al., 2015). EVs
secreted by astrocytes display neuroprotection activity that is critical for neuronal cell survival
(Verkhratsky et al., 2016). Oligodendrocytes secrete EVs that are endocytosed by neurons and
increase their viability (Krämer-Albers et al., 2007). In addition to studies on EVs in the mature
CNS, recent studies provide evidence that EVs from newly-differentiated neural cells promote
neurogenesis (Sharma et al., 2019) .

In neural development, cell fate determination is tightly controlled by stepwise commitment,
including neural induction and neurogenesis (Grow, 2018). Pluripotent stem cells convert into
neural ectoderm progenitors, after which neural precursors further differentiate into nerve cells of
defined function (Muñoz-Sanjuán and Brivanlou, 2002). Although EVs have been suggested to
facilitate the later neurogenesis events, little is known about the role of EVs during the early stage
of neural fate conversion. Furthermore, clear and direct evidence of such roles is lacking as the
studies thus far have relied on highly impure, crude preparations of sedimented particles (Sharma
et al., 2019).

Much of the literature on the proposed function of EVs has relied on differential sedimentation of
slowly-sedimenting or crudely precipitated particles obtained from culture medium or other fluids.
This method does not separate large shedding microvesicles from small exosomal like EVs, nor
does it remove protein aggregates or ribonucleoprotein particles (Konoshenko et al., 2018).
Further resolution can be achieved by a series of ultracentrifugation and density gradient
centrifugation steps that removes cells, cell debris, microvesicles, and protein aggregates
(Shurtleff et al., 2016, 2018; Temoche-Diaz et al., 2019).

To investigate the role of purified EVs during neural development, we used buoyant density
flotation to isolate EVs from the nerve growth factor (NGF)-induced PC12 cells and retinoic
acid (RA)-induced neuro 2A cells (N2A). We then examined the effect of purified vesicles on
mouse embryonic stem cells (mESCs) and found that the neuronal EVs accelerate aspects of
mESC neural induction. We further demonstrated that a cell cycle-related factor, cyclin D1, was
enriched within EVs derived from differentiated cells. Compared with the EVs from untreated
cells, those purified from cells overexpressing cyclin D1 enhanced neural lineage gene expression
in mESCs. Conversely, EVs from cyclin D1 knockout cells did not stimulate neural induction of
mESCs. The chaperone protein Hsc70 facilitated packaging of cyclin D1 into EVs. Our results
suggest that EVs contribute to neural fate determination through sorting of cyclin D1.

Results

Dynamic changes of extracellular vesicles secreted by neuronal differentiated PC12 cells

We compared EVs secreted from undifferentiated neuronal progenitor-like cells with those
secreted by differentiated neuronal cells. In an initial approach, we used PC12 cells, which
differentiate after treatment with NGF. After 9 d of NGF treatment, long neurite extensions
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consistent with a neuronal fate were observed (Fig. 1 A). Consistently, qPCR results showed that
the neuronal marker genes, Tuj1 and Tau, were up-regulated concomitant with neurite extension.
We tested two NGF concentrations and found that both elicited similar levels of expression of
neuronal marker genes (Fig. 1 B). As a result, the lower dosage of NGF, 50 ng/ml, was used in all
subsequent experiments.

Next, to investigate if the protein composition of EVs changes during PC12 cell neuronal
differentiation, we collected samples at different time points after adding NGF. Extracellular
vesicles were obtained from the culture medium by differential centrifugation to concentrate
small particles, followed by equilibrium sedimentation in an iodixanol linear density gradient.
Each fraction was collected from top to bottom for further analysis (Fig. 1 C). Flot2, a lipid
scaffolding protein, showed no dramatic change in the expression of EVs (in buoyant densities
density ranging from 1.06 to 1.23 g/ml) from cells treated with NGF for 0, 3, 6 and 9 d. Thus,
vesicles marked by this reporter protein appeared not to vary during the differentiation process
(Fig. 1, D and E). However, the EV marker CD9, a tetraspanin enriched in MVBs, showed an
obvious shift in the buoyant density peak in EVs from cells treated for 3 d. The prominent peaks
changed from fractions corresponding to densities of ~1.08 g/ml to ~1.13 g/ml at the onset of
differentiation. During the following 6 d, the CD9-containing EVs showed a broader density
distribution (Fig. 1, D and E). Consistently, heat shock chaperone Hsc70, which is also a well-
known EV marker, displayed a similar expression pattern during differentiation (Fig. 1, D and E).
Furthermore, the size of vesicles (in even-numbered fractions) analyzed with a NanoSight particle
tracking device showed no dramatic difference between the sub-fractions. In contrast, the protein
concentration appeared to increase gradually in fractions containing vesicles from low to high
buoyant density (Fig. S1, A and B). These results indicated the physical properties of CD9-
containing EVs changed over the course of differentiation.

EV production increased during neuronal differentiation

EVs secreted from NGF-induced PC12 cells were further characterized by an independent
isolation using differential centrifugation and sucrose gradient buoyant density flotation to obtain
membranes at the 20%/40% interface, with a density corresponding to ~1.12g/ml (Fig. 2 A).
Membranes were sedimented, washed and resuspended to assess vesicle morphology. Negative
stain electron microscope images displayed a characteristic cup-shaped, collapsed appearance in
all four groups of EVs preparations (Fig. 2 B).

EVs particle size and number were analyzed by NanoSight. The average vesicle diameter varied
slightly from 126 ±2 nm to 134±2 nm after neuronal differentiation (Fig. 2 C). Quantification
documented an increase in EV production in PC12 cells during neuronal differentiation. EVs
(~6×1010; N6-EVs) were collected from 420 ml medium of NGF-induced 6 d cells, whereas
~2×1010 EVs (PC12-EVs) were released into the same volume of medium from non-differentiated
PC12 cells (Fig. 2 C). After normalization to cell number, ~1450 N6-EVs were secreted per
differentiated PC12 cell, compared to ~500 per non-differentiated PC12 cell (Fig. 2 D).

To determine if higher vesicle production was a common feature of differentiated neuronal cells,
we employed another well-established neuronal differentiation system, the neuroblastoma
Neuro2A cell line (N2A). Retinoic acid (RA,10 µM) induced the differentiation of N2A ceclls as
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confirmed by cell morphology and expression of differentiation-specific marker, Neurogenin 2
(Ngn2) (Fig. S2, A and B). Consistent with the observation of EVs from differentiated PC12 cells,
after 6 d in RA-containing medium, ~7000 EVs (RA6-EV) were produced/cell, whereas ~500
EVs/cell (N2A-EV) were secreted from non-differentiated N2A cultures (Fig. 2 E).

In order to extend our observations to a more physiologic source of neuronal cells, EVs were
collected during mESC neural differentiation. Pluripotent stem cells (ES D0) were cultured in
suspension conditions for 8 days for conversion to embryonic bodies (EBs) which express neural
progenitor markers (ES D8). EBs were trypsinized in N2 medium for another 4 days during
which time they differentiated into Tuj1+ neurons (ES D12) (Fig. S2, C and D). During 12 days of
differentiation, ~400 EVs/cell (ES D12-EV) were released from neurons, whereas during 8 days
of EB formation, ~200 EVs (ES D8-EV) were produced from each neural progenitor cell. As a
control, we cultured mESCs in pluripotency maintaining medium (N2B27 +2i +Lif) for 2 days
and found ~80 EVs (ES D0-EV) were secreted/cell (Fig. 2 F).

We examined the expression of multiple EV marker proteins in sucrose gradient-purified vesicles
released from 2×107 cells incubated in control and neuronal differentiation conditions. CD9,
Hsc70, and Flot2, which were detected in the whole EV density profiles shown in Fig.1, showed a
~3-fold increase in expression in the N6-EV compared with EVs from the untreated PC12 cells
(PC12-EV). CD63, a tetraspanin important for EV biogenesis and Alix and Tsg101, essential
components of the endosomal sorting complexes required for transport (ESCRT), were also up-
regulated ~3 fold in the N6-EV versus PC12-EV (Fig. 2, G and H). EV production increased
more dramatically in RA6-EV compared to undifferentiated N2A cells, with a ~14-fold increase
in the same marker proteins (Fig. 2, I and J). These results suggested a possible role for the EVs
produced during neuronal differentiation, at least as reflected in these cell lines.

Purified EVs are taken up by mESCs

Pluripotent mESCs may differentiate into various cell types, having the ability to commit to a
specific lineage in response to external stimulation (Yu and Thomson, 2008). We used mESCs as
recipient cells to evaluate the influence of buoyant density gradient-purified EVs. mESCs were
trypsinized to disperse single cells and cultured in serum-free N2B27 medium with EVs collected
from differentiating PC12 cells. EVs were fluorescently tagged with the lipophilic membrane dye,
PKH67 washed in PBS, and incubated for 24h with mESCs. Labeled EVs from day 6 or 9 of
NGF treatment appeared to be internalized in the recipient cells (Fig. 3, A and B).

We next tested if the uptake of a soluble, lumenal marker protein packaged into EVs could be
internalized into recipient cells. For this purpose, we used lentivirus transfection to establish a
GFP-overexpressing N2A cell line and then isolated EVs on a buoyant density gradient. The level
of the EV marker CD9 and coincident GFP were detected by immunoblot in a linear range
proportional to the number of EVs purified from RA-induced GFP-overexpressing N2A cells (Fig.
3 C). mESCs (2×105) were then incubated in 2 ml N2B27 medium for 24h with EVs purified
from control or GFP-expressing cells. mESCs were then harvested by centrifugation and washed
with PBS twice and the GFP signal was detected in the lysate of the receiving ES cells (Fig. 3 D).
In incubations of mESCs in a wide range of EV concentrations, GFP was detected associated with
cells at GFP-EVs levels of 2×109 or higher (Fig. 3 E). In a time course, we observed GFP-EVs
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uptake within 3 h and progressing with continued incubation (Fig. 3 F). We next compared the
uptake of free GFP (10 ng) to GFP-EVs (~8×109 EVs contain ~10 ng GFP) added in equivalent
amounts, as detected by quantitative immunoblot, to mESCs incubated in 2 ml N2B27 medium.
GFP-EVs was more rapidly and efficiently internalized (Fig. 3 G). These results indicate mESCs
internalize lumenal soluble as well as membrane constituents of EVs in a time and a dosage
dependent manner.

Buoyant density-purified EVs from differentiated neuronal cells promote mESC neural
induction

mESCs default to a neural progenitor fate in serum-free growth medium (Ying et al., 2003). To
explore the effects of differentiated neuronal EVs during this process, mESCs were treated with
purified EVs in serum-free medium for 6 d. The medium containing EVs was changed every day
with fresh EVs added each day. Cells were harvested for gene expression analysis by qPCR. We
found that the neural stem cell marker nestin, and a neuronal marker gene Six3, were up-regulated
2-fold in comparison to an EV-free control by EVs from NGF-induced but not by EVs from
uninduced PC12 cells (Fig. 4 A). EVs derived from PC12 cells that had been induced by NGF for
6 d (N6-EVs) caused the most robust upregulation of neural markers at mESC differentiation day
4 (Fig. 4, A and C). This time point was used in subsequent experiments. Neural marker
upregulation by N6-EVs was dose-dependent (Fig. 4 B). Furthermore, two other neural
progenitor genes, Pax6 and Sox1, and neuronal marker Tuj1, were all up-regulated by N6-EVs
(Fig. 4 C). Although NGF is known to stimulate neural gene expression in mESCs, we found that
addition of a neutralizing NGF antibody to an incubation of N6-EVs with mESCs did not affect
the level of expression of these neural markers suggesting that possible residual NGF in the EV
preparation did not account for this effect (Fig. 4C). The neutralizing activity of NGF antibody to
NGF was confirmed by cell morphology and marker gene expression analysis (Fig. S4, A and B).
Immunostaining confirmed the increase of expression of Nestin and Pax6 in neural progenitor
cells after treatment of mESCs with EVs from NGF-treated PC12 cells (Fig. 4, D and E). EVs
derived from 12 d differentiated neuronal ES cells (ES D12-EV) up-regulated neural markers at
mESC differentiation day 4, whereas EVs secreted from 8 d embryonic bodies (ES D8-EV), or
the EVs released from pluripotent mESC (ES D0-EV) (Fig. 4F), were much less active.

Similar results were obtained with EVs isolated from RA-induced N2A cells (Fig. S4, C and D).
Immunostaining showed an increase of Nestin and Pax6 expression in neural progenitor cells after
treatment with RA-induced EVs (Fig. S4, E and F). These results suggest that EVs from neuronal
cells promote a neural fate commitment of mESCs.

During the mESC serum-free neural differentiation process, we found that EVs from NGF-
induced PC12 cells appeared to increase the size and density of cell clusters (Fig. 4 G). Likewise,
an increase in mESC cell number from ~5.2×104/cm2 to ~7.5×104/cm2 was observed after 4 d of
treatment with EVs from NGF-induced PC12 cells (Fig. 4 H). This result was affirmed using a
BrdU cell proliferation assay (Fig. 4 I).
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Cyclin D1 is sorted into EVs

We considered the possibility that EVs from differentiated PC12 and N2A cells may transfer
proteins that could influence the fate and proliferation of stem cells. One candidate, cyclin D1, a
cell cycle regulator, was reported to promote a neural fate conversion in human embryonic stem
cells (Pauklin and Vallier, 2013; Pauklin et al., 2016). We examined the expression and sorting of
the three paralogs of cyclin D (D1, 2 and 3) in differentiated PC12 cells and EVs. Cyclins D1-D3
were gradually up-regulated from day 0 to day 9 during NGF treatment (Fig. 5 A). Only cyclins
D1and D2, but not D3, were detected in the EVs from differentiating cells (Fig. 5 B). Compared
with the moderate increase of cyclin D proteins detected in cell lysates, a greater enrichment of
cyclin D1, and to a lesser extent D2, in EVs was detected at day 6 (Fig. 5, B and C). Specific
cyclin D1 sorting was also enriched in EVs from RA- induced N2A cells, especially at day 6 (Fig.
S5 A). Compared with EVs from non-differentiated mESC and EVs from 8 d differentiated EBs,
significant cyclin D1 was enriched in EVs from 12 d differentiated neurons (Fig. 5 D). The cyclin
D-dependent kinase family member CDK4 was observed in EVs (Fig. 5 E and Fig. S5 A). Flot2,
which was used as a positive EV membrane protein control, was present in both EVs and cells,
whereas the cis-Golgi matrix protein, GM130, was only detected within the cells (Fig. 5 E).
Given that cyclin Ds drive the G1/S phase transition, we tested other cyclins which contribute to
cell-cycle progression at S phase and M phase and found that, cyclin B1, cyclin E1 and cyclin A2,
were expressed in cells but not in EVs (Fig. 5 E). Likewise, other cell-cycle related factors,
including pRB, p57, p27, p21 and pErk, were detected in cells but not in EVs (Fig. S5 B). These
results suggest that at least some factors specific to the G1/S phase transition were sorted into
EVs, notably cyclin D1.

We used a standard protease protection assay to probe the localization of cyclin D1 with respect
to the EV membrane. The EV marker proteins, Hsc70, Flot2, Tsg101 and Alix, were dramatically
sensitive to proteolytic degradation by 10 μg/ml proteinase K in the presence of Triton X-100, but
not in the absence of detergent (Fig. 5 F). We conclude that these proteins are enclosed within the
interior of the EV. Similarly, cyclin D1, cyclin D2 and CDK4, were all sensitive to proteinase K
but protected in the absence of Triton X-100 (Fig. 5F, Fig. S5 C). Tetraspanin membrane protein,
CD81, was proteolytic degradation by 5 μg/ml proteinase K (Fig. 5F). We then used an antibody
directed to membrane exposed epitopes of the tetraspanin membrane protein, CD9, to
immunoisolate intact vesicles and probe the coincident localization of cyclin D1 in EVs. An
immobilized form of CD9 antibody co-immunoprecipitated cyclin D1 along with EV markers
Hsc70, Tsg101, and Alix (Fig. 5 G). These results support the conclusion that cyclin D, especially
cyclin D1, is sorted into the luminal interior of EVs produced by differentiating PC12 and N2A
cells.

Hsc70 facilitates cyclin D1 package into EVs

We used ascorbic acid peroxidase (APEX) proximity labeling to detect proteins in contact with
cyclin D1 during RA-induced differentiation of N2A cells (Hung et al., 2016). Cyclin D1-APEX
stably expressing N2A cells were obtained by lentivirus-mediated gene delivery. Biotin-phenol
(B) and H2O2 (H) were added to cells separately or in combination (B+H). Equal amounts of
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protein, as estimated by ponceau S staining of gels, were evaluated in samples from three
incubations (Fig. 6 A). Streptavidin-HRP was used to label biotinylated proteins which were
detected primarily in the sample incubated with biotin-phenol (B) and H2O2 (H) (Fig. 6 A). The
biotinylated proteins were precipitated with streptavidin beads and bound proteins then analyzed
by Mass Spectrometry (MS). We identified proteins that were enriched in the B+H group
compared to the B-group, with an increase in at least 280 unique proteins (Fig. 6 B,
supplementary file 1). Unique peptides (312) of the heat shock protein, Hsp90b1, were identified
in the B+H group with only 9 peptides in the B group. Other unique differences were seen among
several Hsps (Fig. 6 B). We thus chose Hsp90 and Hsc70 to examine direct interactions with
cyclin D1 and CDK4, the two proteins that we found to be selectively sorted into EVs during RA-
induced differentiation of N2A cells.

In immunoprecipitation experiments, we found that Hsc70-HA but not Hsp90-HA co-precipitated
cyclin D1-Flag and CDK4-Flag in N2A cells (Fig. 6 C). The converse experiment, with anti-Flag
antibody, was also performed in PC12 cells, where we found that cyclin D1-Flag co-precipitated
with Hsc70-HA (Fig. 6 D). Similarly, EVs (5×1010) from RA-induced N2A cells contained
cyclinD that co-immunoprecipitated with Hsc70 (Fig. 6 E).

We next tested the possibility that Hsc70 function may be important in the sorting of cyclin D1
into EVs. VER-155008 (VER) is a potent and selective inhibitor of Hsc70 ATPase activity that
has been used to assess Hsc70 function in cellular processes (Massey et al., 2010). We purified
EVs from 4 d differentiated N2A cells treated with or without 5 μM VER for another 2 d. EVs
isolated from treated or untreated cells displayed roughly equivalent levels of Alix and CD9,
indicating that VER treatment did not change the overall number of EVs being secreted,
consistent results were obtained by the particle tracking assay. In contrast, cyclin D1 levels in
EVs declined 2.2 fold during the period of treatment with VER (Fig. 6 F), suggesting a potential
role for Hsc70 in cyclin D1 packaging into EVs.

We then tested whether a non-functional form of Hcs70 would alter the loading of EVs with
cyclin D1. Site-directed mutation of Asn to Asp-10 (D10N) abolishes the ATPase activity of
Hsc70 (Huang et al., 1993). Correspondingly, the quantity of cyclin D1 in EVs was decreased in
cells transiently expressing the Hsc70 D10N mutant compared to WT Hsc70 (Fig. 6 G).

Finally, we examined whether EVs collected from differentiated N2A cells pretreated with or
without VER had different effects on gene expression in mESCs. EVs (2×109) were collected and
incubated with mESCs in serum-free medium for 4 d. The neural progenitor specific genes, Pax6
and Nestin, together with the neuronal marker, Six3, were upregulated by the EVs from control
cells but not EVs from VER-pretreated cells (Fig. 6 H). In addition, we used lentivirus-mediated
CRISPRi delivery to knock-down Hsc70 in N2A cells (Gilbert et al., 2014). A control of RA-EVs
collected from dCas9 cells, but not the EVs from Hsc70 sgRNA transfected cells, up-regulated
the expression of Pax6 and Nestin (Fig. 6 J). These results suggested that the heat shock protein
Hsc70 contributes to cyclin D1 sorting and may serve a direct or indirect a role in promoting the
function of EVs in the differentiation of mESCs.
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Cyclin D1 is required for the EV mediated neural induction of mESCs

To determine whether EV cyclin D1 was taken up by mESCs, cyclin D1-GFP EVs were
incubated with mESCs in N2B27 medium. After 24 h, green puncta were detected overlapping
the endogenous CD9-labeled mESC cytoplasm, but rarely in the nucleus (Fig. 7 A). After 4 d of
daily addition of cyclin D1-GFP EVs to mESC, about 30% of total cyclinD1 was detected by
immunoblot of cell lysates at the position of migration of the hybrid protein. The level of
endogenous cyclin D1 also increased during the 4 d incubation (Fig. 7 B). These results suggested
EV cyclin D1 was internalized by mESCs in serum-free conditions of growth.

Fluorescence localization of the internalized cyclin D1-GFP offered inadequate spatial resolution
to determine if the content of EVs was delivered to the cytoplasm of mESCs. As an alternative
approach, we examined the proteins in contact with internalized cyclin D1-APEX in comparison
to those found in isolated EVs. EVs were collected from cyclin D1-APEX expressing N2A cells
(Fig. 7 C). In an incubation with isolated EVs, the biotin-phenol- and H2O2-treated EVs revealed
multiple biotinylated proteins which were not detected in incubations containing biotin-phenol
without H2O2 (Fig. 7 D). Cyclin D1-APEX EVs were then incubated with mESCs for 2 d in
serum-free medium (Fig. 7 E). Subsequently, these cells were incubated with APEX reagents
which resulted in the appearance of biotinylated proteins in a range from ~25 KD to ~130 KD in
the B+H group (Fig. 7 F). Mass Spectrometry of mESC cell proteins from a streptavidin pull-
down identified 116 proteins enriched in the B+H treatment group, with only 3 proteins detected
in the biotin-phenol control group (Fig. 7 G). GO analysis indicated the specific enriched proteins
were most related to mRNA and ribonucleoprotein binding partners (Fig. 7 H).

In order to distinguish the possibility that the biotinylated proteins were from cyclin D1-APEX in
contact with mESC proteins as opposed to those in the EV donor vesicle, we analyzed two
candidates, the primarily nuclear-localized proteins Lin28 and nucleolin, found in the mass spec
analysis described above. Neither of these proteins was detected in the sample of isolated EVs
(Fig. 7 I). However, each was detected in biotinylated forms in the cells exposed for 2 d to cyclin
D1-APEX EVs (Fig. 7 I). These results indicated that the cyclin D1 content of EVs isolated from
RA-induced N2A cells is productively taken up and delivered to the cytoplasm or nucleoplasm of
mESCs.

Next, to examine the contribution of EV cyclin D1 to mESC neural commitment, we generated
cyclin D1-overexpressing N2A cells by use of a lentivirus vector. The empty vector without
cyclin D1 overexpression was used as a control. The overexpression led to 2.1-fold more of
cyclin D1 protein packaged into EVs (Fig. 7 J). We found that treatment of mESCs with high
cyclin D1 EVs increased the expression of neural marker genes Pax6 and Six3 (Fig. 7 K), as well
as of Pax6 expressed in neural progenitor cells (Fig. 7 L). To explore if EV cyclin D1 was
necessary to promote neural differentiation, we generated a cyclin D1 knock-out N2A cell line
using CRISPR/Cas9. The EVs purified from the knockout cells had similar levels of Tsg101 but
lacked cyclin D1 (Fig. 7 M). The whole protein profile did not show significant changes after
cyclin D1 knockout (Fig. S7 A). The expression of neural marker genes Pax6 and Six3 was
significantly lower in cells treated with cyclin D1-depleted EVs than with EVs from control RA-
treated N2A cells (Fig. 7 N). Pax6 positive cells were reduced in the cyclin D1 KO EVs treatment
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group than in the samples incubated with a control of EVs from RA-treated N2A cells (Fig. 7 P).
Taken together, these results indicated that EV cyclin D1 accelerated the induction of neural fate
in mouse embryonic stem cells.

Discussion

In this study, we report substantial changes in the abundance, physical and functional properties
and content of extracellular vesicles produced during neuronal differentiation of neural cell lines
PC12 and N2A. Cyclin D1 and CDK4 were selectively sorted into EVs during differentiation
mediated by NGF (for PC12 cells) and retinoic acid (for N2A cells). EVs from differentiating
cells fractionated by rate and buoyant density centrifugation promoted the expression of genes
characteristic of neural induction in mESCs. Cyclin D1 was of particular importance in
stimulating this differentiation and Hsc70, a constitutive component of EVs, played a role in the
EV capture of cyclin D1.

The secretion of extracelluar vesicles in neuronal cells

Previous studies have shown that extracellular vesicles are released at different stages of neural
cell development (Janas et al., 2016). Of particular importance are examples where cellular
communication mediated by EVs produced by neural stem cells has been suggested to mediate
cytokine signaling in target cells (Cossetti et al., 2014). Other studies have addressed the
regulation of EV production, for example in the controlled release of EVs by primary
undifferentiated cortical neurons (Fauré et al., 2006) and in a role for calcium influx in fully
differentiated cortical and hippocampal neurons where glutamatergic synaptic activity promoted
EV secretion (Lachenal et al., 2011). In more recent studies, the neuronal activity-dependent
secretion of Arc protein enclosed within extracellular particles has been proposed to promote the
intercellular transfer of RNA (Ashley et al., 2018; Pastuzyn et al., 2018). Little is known about
the changes in EV content and function as they relate to the differentiation of neuronal precursor
cells.

EVs derive from the cell surface by a process of membrane budding to produce particles that are
termed microvesicles. A distinct population of EVs, termed exosomes, arise by invagination of
membrane into endosomes where intralumenal vesicles accumulate in a structure called the
generate multivesicular body (MVBs). MVBs have two possible fates: fusion with the lysosome
which results in the degradation of the intralumenal vesicles or fusion with the cell surface
membrane which results in the secretion of the intralumenal vesicles. In previous work from our
lab, we showed that EVs can be broadly separated into two populations on an iodixinol density
gradient with microvesicles sedimenting to a lower and exosomal EVs to a higher buoyant
density (Temoche-Diaz et al., 2019).

In neurons, multivesicular bodies (MVBs) are differentially distributed between divergent
neuronal compartments, including cell bodies and dendrites(Von Bartheld and Altick, 2011).
Here we used the NGF-induced PC12 cells, retinoic acid-induced N2A cells and embryonic
bodies derived from mESCs differentiated into Tuj1+ neurons as simple models that recapitulate
neurite extension in vitro (Greene and Tischler, 1976; Tremblay et al., 2010; Bibel et al., 2007).
Using a two-step fractionation procedure, we found dramatic increases in EV production and in
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the buoyant density profile of EVs produced during the differentiation of each cell type.
Consistently, our results showed the EV marker proteins CD9 and Hsc70 became more
heterogenous in terms of membrane buoyant density during differentiation in vitro (Fig. 1, D and
E). These changes make it difficult to classify the EVs as either microvesicles or exosomal EVs.
Whichever biogenesis path is used to produce the EVs from differentiating PC12 or N2A cells,
their content of selected soluble cell cycle regulatory proteins and change in functional
characteristics suggests an active role for cargo sorting in their production (Fig. 5 and 5S).

Sorting of cyclin D1/CDK4 into EVs

Neurons are believed to have lost their capacity to proliferate once they are terminally
differentiated (Frade and Ovejero-Benito, 2015; Ohnuma and Harris, 2003). Cyclin D is
synthesized at the beginning of G1, and it binds and activates CDK4/6 when the cell leaves the
quiescent state (van den Heuvel, 2005; Dehay and Kennedy, 2007). Here, we found cyclin D1
and CDK4 enriched in purified EVs from three different model sources of neuronal cells. In
contrast, the regulators of G2/M phase transition, cyclin A2 and cyclin E1, were detected in
differentiated cells but not in the EVs (Fig. 5 D). This sorting fidelity was reproduced during RA-
induced differentiation of the neuroblastoma cell line N2A (Fig. 5S, A and C). Of possible
relevance to our findings, many regulators of the G1/S transition are detected in the adult mouse
brain. These may be deployed for cell cycle re-entry under pathological conditions such as in
response to DNA damage and oxidative stress (Klein and Ackerman, 2003). Extracellular vesicle-
mediated secretion may be a protective response to reduce the possibility of abortive cell cycle re-
entry.

The cyclin D family may also play important roles in neural development (Lukaszewicza and
Anderson, 2011). In the mouse cortex and hippocampus, overexpression of cylin D1/CDK4
delays neurogenesis and promotes expansion of basal neural progenitors by shortening the G1
phase (Lange et al., 2009; Pilaz et al., 2009). This may relate to our observation of an increase in
the expression of cyclin D family members during NGF-induced differentiation (Fig. 5 A),
consistent with other reports. The secretion of EVs enriched in cyclin D1 and their uptake in stem
cells may reinforce this aspect of neuronal differentiation. Our findings on EV-mediated cyclin
D1 secretion and transfer in a neuronal lineage may extend to astrocytes and oligodendrocyte
lineages which have been shown previously to express cyclin D1 (Nobs et al., 2014; Ma et al.,
2015; Bosone et al., 2001). Of course, other pathways almost certainly play a role in the
differentiation of neural progenitor cells. Parthasarathy et al. (2014) demonstrated that Ntf3 acts
as a feedback signal between postmitotic neurons and progenitors in the developing mouse
neocortex. Our results suggest an additional role for intercellular communication through secreted
vesicles in neuronal differentiation and maturation during mouse neocortex development.

Neuronal EVs promote mESC neural induction

Pluripotent mESCs are guided to alternative specific fates in ectoderm, mesoderm and endoderm
tissues by extrinsic cues (Young, 2011). EVs may play a regulatory role in stem cell plasticity by
supporting cell self-renewal, differentiation, and proliferation (Watt and Huck, 2013). Although
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there are reports of these effects, little if any molecular mechanistic insight has developed and in
most cases the effects are observed with cells exposed to crude fractions of sedimentable particles,
not isolated membrane vesicles. Here we report that EVs are produced in greater abundance
during hormonal and chemically-induced neural differentiation of PC12 and N2A cells, and in the
differentiation of mouse EBs into neurons, and that these EVs are productively taken up by target
cells (Fig. 3 B to G). Buoyant density-purified EVs appear to accelerate aspects of early neural
fate conversion of mESCs (Fig. 4 A to E).

In mESCs, cyclin Ds are expressed at a low level which increases in cells transferred to a serum-
free medium (White and Dalton, 2005; Liu et al., 2019). In human ESCs, overexpression of
cyclin D induces neuroectoderm differentiation (Pauklin and Vallier, 2013). Here, we found that
EVs from neuronal differentiated, but not those secreted from undifferentiated cells, stimulated
the expression of genes characteristic of mESC neural induction (Fig. 4 C and Fig. S4 A).
Correspondingly, we found that cyclin D1 was selectively sorted into EVs secreted by
differentiating neuronal EVs but not in EVs from undifferentiated PC12, N2A cells and mESCs
either undifferentiated or in conversion to neural progenitor (ES-D8 EBs) (Fig. 5 B to D; Fig. S5
A). Furthermore, overexpression of EV-cyclin D1 increased the expression of neural markers in
mESCs (Fig. 7 J and K). Conversely, EVs from cells depleted of cyclin D1 showed a reduced
effect on mESCs (Fig. 7 L and M).

In order to begin to explore the means by which internalized EVs may influence neuronal gene
expression in recipient mESC cells, we applied a proximity labeling approach to detect possible
intracellular targets of exogenous cyclin D1. EVs were isolated from donor differentiating N2A
cells stably transfected with a cyclin D1-APEX gene fusion (Lobingier et al., 2017). Biotinylated
target proteins included two nuclear proteins, Lin28 and nucleolin, which may be involved in the
neural promoting effect of EV-cyclin D1. Lin28, for example, is a stem cell maintenance factor
(Shyh-Chang and Daley, 2013). EV-cyclin D1 may contribute to the regulation Lin28 and other
targets, driving mESC neural conversion.

Our results also raise the question of how proteins contained within EVs may become exposed to
the cytoplasm/nucleus of target cells. Although many diverse effects have been attributed to the
internalization of proteins and nucleic acids contained within EVs, the existence of a membrane
fusion process or membrane channels that would allow such a topological transfer of
macromolecules has not yet been demonstrated.

Figure Legend

Figure 1. Extracellular vesicles show different buoyant density distribution during PC12
neuronal differentiation

(A) The cellular morphology of PC12 cells cultured in growth medium or low serum medium
with NGF (50ng/ml) for 3, 6 and 9 days (d). Scale bars, 50 μm.

(B) Expression profiling of Tuj1 and Tau genes during neuronal differentiation of PC12 cells in
low serum medium without (Control) or with different doses of NGF (50ng/ml, 100ng/ml).
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Expression was normalized to Gapdh in this and all others by qPCR analysis. Data plotted were
from three independent experiments. The values represent the mean ± SD. (*p<0.05; **p<0.01)

(C) Schematic showing the fractionation of extracellular vesicles. Differential ultracentrifugation
was followed by buoyant density flotation in a linear iodixanol gradient.

(D) Immunoblot of EV markers of the iodixanol linear gradient fractions purified from untreated
PC12 cells or PC12 treated with NGF for 3, 6 and 9 d (N3, N6, N9). Pellet, 5% of 100,000g
vesicle pellet fraction was loaded in gel. Cell, whole cell lysate (10 μg) was loaded in gel. The
density of each fraction is indicated at the bottom.

(E) Relative expression of the CD9, Hsc70 and Flot2 from fraction 1 to fraction 24 that shown in
Fig.1D. Data plotted represent the mean value from three independent experiments.

Figure S1. Vesicle size and protein concentration quantification of different subpopulation
of the extracellular vesicles

(A) The size of extracellular vesicles at different fraction and differentiation days was mesured by
a NanoSight particle tracking device.

(B) The protein concentation of extracellular vesicles at different fraction and differentiation days
was measured using a microBCA kit.

Figure 2. EV production increased during neuronal differentiation

(A) Schematic of EV purification strategy.

(B) Representative electron micrographs of negatively-stained samples of purified EVs at 9300X
magnification. Purified EVs from untreated PC12 cells cultured for 3 days (PC12-EV) or PC12
cells treated with NGF for 3, 6 and 9 d (N3-EV, N6-EV, N9-EV). During PC12 differentiation,
EVs were collected from 3 d cultured cells and fresh medium together with NGF were replaced
every 3 d. Scale bar denotes 0.2 μm.

(C) Nanoparticle tracking analysis of the size and number distribution of purified EVs from 420
ml medium of untreated PC12 cells cultured for 3 days or PC12 cells treated with NGF for 3, 6
and 9 d.

(D) The number of EVs released per PC12 cell or PC12 cells treated with NGF for 3, 6 and 9 d.
EV number quantified by nanoparticle tracking analysis. Cell number quantified by a
hemocytometer. The values represent the mean ± SD, from three independent experiments.

(E) The number of EVs released per N2A cell cultured for 3 days or N2A cells treated with RA
for 3 and 6 d. During N2A differentiation, EVs were collected from 3 d cultured cells and fresh
medium together with RA were replaced every 3 d. The values represent the mean ± SD, from
three independent experiments.
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(F) The number of EVs released per ES cell or ES cell differentiated for 8 d and 12 d. During ES
differentiation, EVs were collected from 2 d cultured cells and fresh medium was replaced every
2 d. The values represent the mean ± SD, from two independent experiments.

(G) Immunoblots of CD9, Hsc70, Flot2, CD63, Alix and Tsg101 in EVs from same number of
cells. PC12 (2×107) cells or PC12 cells treated with NGF for 3, 6 and 9 d.

(H) Quantitative analysis of the immunoblots in G. The values represent the mean ± SD, from
two independent experiments. The signal in PC12-EV group was set as 1.

(I) Immunoblots of CD9, Hsc70, Flot2, CD63, Alix and Tsg101 in EVs from same number of
cells. N2A (2×107) cells or N2A cells treated with RA for 3 and 6 d.

(J) Quantitative analysis of the immunoblots in I. The values represent the mean ± SD, from two
independent experiments. The signal in N2A-EV group was set as 1.

Figure S2. Neuronal differentiation of N2A cell and mESC

(A) The cellular morphology of N2A cells cultured in low serum medium with RA (10 uM) for 3
and 6 d. Scale bars, 50 μm.

(B) Immunoblots of Ngn2 and actin in N2A cells, N2A cells cultured in RA (10 uM) for 3 and 6
d.

(C) The cellular morphology of undifferentiated pluripotent embyonic stem cell (ES-D0),
embryonic body of ES differentiated 8 d in KSR medium (ES-D8), embryonic body trypsinized
in N2 medium for additional 4 d (ES-D12). Immunostaining of ES-D12 neuronal cells with Tuj1
(red, Alexa Fluor 568), DAPI (blue). Scale bars, 200 μm.

(D) The expression of pluripotent markers Oct4 and Nanog, neural progenitor markers Nestin and
Sox1, neuronal markers Tuj1 and Map2, was determined by RT-PCR. Samples were collected as
described in C.

Figure 3. Differentiated neuronal EVs taken up by mESCs

(A) Schematic of mESC treated by PKH6 dye-labeled EVs.

(B) Confocal images of differentiated mESCs incubated without EV (No-EV) or PKH6 dye-
labeled N6 or N9 EV. Nuclei were stained with DAPI. Scale bar denotes 10 μm.

(C) Immunoblot of GFP and CD9 in EVs (GFP-EV) purified from GFP-expressing cells. mESCs
(2×105) in 35mm dish were incubated in 2 ml of N2B27 medium for 24 h with EVs purified from
control or GFP expressing cells.

(D) Immunoblot of GFP from whole cell lysate of mESCs treated with PBS or GFP-EV for 24 h.

(E) Immunoblot of GFP from whole cell lysate of mESCs treated with indicated doses of GFP-
EV for 24 h.
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(F) Immunoblot of GFP from whole cell lysate of mESCs treated with indicated time of
incubation with GFP-EV.

(G) Immunoblot of GFP from whole cell lysate of mESCs treated with 10 ng GFP protein for
indicated time or treated with GFP-EV that contained 10 ng GFP for 24 h. The GFP protein
amount within the GFP-EV was detected by quantitative immunoblot.

Figure 4. Neuronal EVs promote neural induction and cell proliferation of mESCs

(A) Gene expression analysis of Nestin and Six3 in mESCs treated without (control) or with
indicated EVs. EV number was quantified by Nanosight 2000. Data plotted were from three
independent experiments. The values represent the mean ± SD. (*p<0.05)

(B) Gene expression analysis of Nestin and Six3 in mESCs treated for 4 d without (control) or
with different doses of N6-EV. The values represent the mean ± SD, from three independent
experiments. (*p<0.05; **p<0.01)

(C) Gene expression analysis of Sox1, Pax6, and Tuj1 in mESCs treated for 4 d with 2×109 of
PC12-EV or N6-EV or N6-EV together with NGF neutralizing antibody (500 ng/ml). The values
represent the mean ± SD, from three independent experiments. (*p<0.05; NS, non-significant
difference between the two groups, P > 0.05)

(D) Immunostaining of Nestin (green, Alexa Fluor 488) and Pax6 (red, Alexa Fluor 568) in
mESCs as described in B. Scale bar denotes 25 μm.

(E) Quantitative analysis of the percentage of cells containing indicated markers compared to
DAPI stained cells. The values represent the mean ± SD, from three independent experiments.
(*p<0.05)

(F) Gene expression analysis of Sox1, Pax6, and Nestin in mESCs treated for 4 d with 2×109 EVs
from undifferentiated pluripotent embryonic stem cell (ES-D0), embryonic body (EBs) of ES
differentiated 8 d in KSR medium (ES-D8), EBs trypsinized in N2 medium for an additional 4 d
(ES-D12). The values represent the mean ± SD, from two independent experiments. (*p<0.05;
NS, non-significant difference between the two groups, P > 0.05)

(G) The cellular morphology of mESCs treated with PC12-Exo, or different doses of N6-EV in
N2B27 medium for 4 d. Scale bars, 200 μm.

(H) Quantitative analysis of mES cell number treated with or without N6-EV. Data plotted were
from two independent experiments. The values represent the mean ± SD. (*p<0.05)

(I) Proliferation analysis of mESCs with BrdU staining after EV treatment. The values represent
the mean ± SD, from two independent experiments. (*p<0.05)
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Figure S4

(A) The cellular morphology of PC12 cells, PC12 cells treated with NGF (50 ng/ml) without or
with NGF neutralizing antibody (500 ng/ml) for 6 d. Scale bars, 50 μm.

(B) Gene expression analysis of Tuj1 and Tau in PC12 cells, PC12 cells treated with NGF (50
ng/ml) without or with NGF neutralizing antibody (500 ng/ml) for 6 d. The values represent the
mean ± SD, from two independent experiments. (*p<0.05; NS, non-significant difference
between the two groups, P > 0.05)

(C) Gene expression analysis of mESCs treated with EVs purified from N2A cells (N2A-EV) or
EVs purified from RA-treated 6 d of cells (RA-EV). The values represent the mean ± SD, from
two independent experiments. (*p<0.05; NS, non-significant difference between the two groups,
P > 0.05)

(D) Gene expression of Six3 and Pax6 in mESCs treated with different doses of RA-EV. The
values represent the mean ± SD, from three independent experiments. (*p<0.05; **p<0.01)

(E) Immunostaining of mESCs described in A. Cells were stained with Nestin (green, Alexa
Fluor 488) and Pax6 antibodies (red, Alexa Fluor 568). Scale bars, 25 μm.

(F) Quantitative analysis of the staining in C. The values represent the mean ± SD, from three
independent experiments. (*p<0.05)

Figure 5. Cyclin D1 enriched in EVs during neurogenesis

(A) Immunoblot analysis of cyclin D1, 2 and 3 in PC12 cells induced by NGF for different times.
D0, PC12 cells without NGF treatment. D1 to D9, PC12 cells incubate with NGF for 1 to 9 d.

(B) Immunoblot analysis of cyclin D1/2 in EVs purified from PC12 cells (D0), and EVs purified
from NGF-induced PC12 cells for 3, 6 and 9 d (D3, D6, D9).

(C) Quantitative immunoblot analysis of protein level described in B. The D0 signal was set as 1.
Flot2 signal was used as a internal control. The values represent the mean ± SD, from three
independent experiments. (*p<0.05; **p<0.01)

(D) Immunoblots of cyclin D1, Flot2 and Alix in EVs from undifferentiated ES cell (ES D0-EV),
or 8 d (ES D8-EV), 12 d (ES D12-EV) differentiated ES cell.

(E) Immunoblots of cyclins, CDKs, Flot2, GM130 and actin, in EVs and whole cell lysates of
PC12 cell or NGF-induced PC12 cells.

(F) Immunoblot analysis of cyclin D1/2 and multiple EV markers of the N6-EVs treated with
different concentrations of proteinase K (PK), with or without 1% Triton.

(G) Immunoblots for cycinD1, Alix, Hsc70, Tsg101 and CD9 after immunoprecipitation of
5×1010N6-EV with anti-CD9 antibody. IP denotes immunoprecipitates.
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Figure S5

(A) Immunoblots of cyclin D, CDK4, Hsc70, Tsg101 and actin of EVs from RA-induced N2A
cells for 2, 4, 6 and 8 d (D2, D4, D6, D8).

(B) Immunoblots of pRB, p57, p27, p21, pErk and actin in differentiated PC12 cells and EVs.

(C) Immunoblots of cyclin D1, CDK4, and multiple EV markers from the N6-EVs treated with
different concentrations of proteinase K (PK), with or without 1% Triton.

Figure 6. The chaperone protein Hsc70 facilities cyclin D1 package into EVs

(A) Characterization of APEX-mediated proximity biotinylation of cyclin D1 protein targets by
blotting with streptavidin. cyclin D1-APEX fusion gene was delivered into N2A cells by
lentivirus infection. Biotinylated protein was detected by blotting with streptavidin-horseradish
peroxidase (SA-HRP). Ponceau S staining (left panel) of the same membrane served as loading
control.

(B) Table showing Mass Spectrometry (MS) analysis of the unique peptides in biotin-phenol
together with H2O2 (B+H) or without H2O2 (B).

(C) Co-immunoprecipitation analysis of Hsc70 and Hsc90 with cyclin D1 and CDK4 in N2A
cells.

(D) Co-immunoprecipitation of cyclin D1 and Hsc70 in PC12 cells.

(E) Co-immunoprecipitation of cyclin D1 and Hsc70 in 5×1010RA-EVs.

(F) Immunoblots of cyclin D1, Alix and CD9 in EVs collected from the differentiated N2A cells
treated with VER-155008 (VER). N2A cells pretreated with RA-containing differentiation
medium for 4 d, after which cells were exposed to fresh differentiation medium with or without 5
μM VER for 2 more d. EVs collected from 6 d differentiation of N2A cells.

(G) Immunoblots of cyclin D1, Alix and CD9 in EVs collected from the differentiated N2A cells
transfected with wild type Hsc70 (WT) or D10N mutant Hsc70 (D10N) (>50% transfection
efficiency). Wild type Hsc70 or D10N mutant Hsc70 were transfected by Lipofectamine™ 2000 in
7 plates of 70% confluency N2A cells in DMEM medium for 10 h, followed by a change to fresh
differentiation medium for 3 d. EVs were collected from both cells.

(H) The expression analysis of Pax6, Nestin and Six3 in differentiated mESCs treated with 2×109
EVs from RA-induced N2A cells with (VER-EV) or without VER (RA-EV). EVs were collected
as described in F. The values represent the mean ± SD, from three independent experiments.
(*p<0.05; NS, non-significant difference between the two groups, P > 0.05)

(I) Immunoblots of Hsc70 and actin in control or Hsc70 sgRNA transfected N2A cells. dCas9
was stably expressed in N2A cell by lentivirus (dCas9), Lentivirus was then used to introduce
Hsc70 sgRNA1/2 by transfection of dCas9 cells.
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(J) The expression analysis of Pax6 and Nestin in differentiated mESCs treated with 2×109EVs
from RA-induced N2A dCas9 cells or Hsc70 sgRNA transfection cells. The values represent the
mean ± SD, from three independent experiments. (*p<0.05; NS, non-significant difference
between the two groups, P > 0.05)

Figure 7. Cyclin D1 is important for EV-mediated neural induction of mESC

(A) Immunostaining of GFP (green, Alexa fluor 488) and CD9 (red, Alexa fluor 568) in
differentiated mESC cells without (control) or with cyclin D1-GFP EV treatment. Magnified
view is shown in panel 3. Nuclei were stained by DAPI. Scale bars, 5 μm.

(B) Immunoblots of cyclin D1, actin and GFP of differentiated mESC without or incubation for
4d with cyclin D1-GFP EVs. Quantification of fusion protein uptake was calculated as the ratio of
exogenous cyclinD-GFP to endogenous cyclin D1.

(C) Schematic of biotinylation labeling of cyclin D1-APEX EVs.

(D) Streptavidin-HRP blotting analysis of biotinylated proteins in cyclin D1-APEX expressing
EVs. EVs were treated by biotin-phenol together with H2O2 (B+H) or not (B). Biotinylated
protein was detected by blotting with streptavidin-horseradish peroxidase (SA-HRP). Ponceau S
staining (left of panel) of the same membrane serves as loading control.

(E) Schematic of mESC treated with cyclin D1-APEX EVs, and biotinylated proteins labeled in
differentiated mESCs.

(F) Streptavidin-HRP blotting of biotinylated proteins in mESCs treated with cyclin D1-APEX
EVs.

(G) Venn diagram of the MS results. MS sample was collected as described in method section.
Immunoprecipitation with streptavidin was used to enrich the biotinylated proteins. Diagram
generated by Venn diagram package in the R program for statistical computing.

(H) GO analysis of the MS results was shown in G. Go analysis generated by topGO package in
the R program for statistical computing.

(I) After the treatment as described in E, F. Immunoblots of Lin28 and nucleolin in differentiated
mESCs treated with cyclin D1-APEX EVs, and in Cyclin D1-APEX EVs.

(J) Cyclin D1 was increased in the EVs from N2A cells overexpressing cyclin D1 (OE). The
protein level of cyclin D1 was detected in control and OE samples. Actin was used as the internal
control of whole cell lysate, and Tsg101 was used as the loading control of EVs.

(K) Gene expression level of Pax6, Six3 andMap2 was determined in differentiated mESC
treated without EVs, with RA-EV or OE EVs. The values represent the mean ± SD, from three
independent experiments. (*p<0.05; **p<0.01)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.09.443321doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443321
http://creativecommons.org/licenses/by/4.0/


(L) Quantitative analysis of the percentage of cells containing Pax6 normalized to DAPI stain in
differentiated mESC treated without EVs, with RA-EV or OE EVs. The values represent the
mean ± SD, from two independent experiments. (*p<0.05)

(M) Cyclin D1 was absent from cyclin D1 knockout N2A cells and the EVs from cyclin D1
knockout (KO) N2A cells. The cyclin D1 protein was detected in control and KO samples.

(N) The expression of Pax6, Six3 andMap2 was analyzed in differentiated mESCs treated
without EVs, with RA-EV or cyclin D1 KO EVs. The values represent the mean ± SD from three
independent experiments. (*p<0.05; NS, non-significant difference between the two groups, P >
0.05)

(P) Quantitative analysis of the percentage of cells containing Pax6 normalized to DAPI stain in
differentiated mESCs treated without EVs, with RA-EV or cyclin D1 KO EVs. The values
represent the mean ± SD, from two independent experiments. (*p<0.05)

Figure S7

(A) Whole protein profile of RA-EVs and cyclin D1-KO EV was analyzed by MS. The proteome
(1339 proteins) overlapped extensively in these two preparations. The list of the EV proteins
shown in supplementary file 1.

Figure 8. Model

Neural development includes early-stage neural induction and late-stage neural genesis. During
neural genesis, PC12 cells or N2A cells (dark green) respond to NGF or RA to differentiate into
neuronal cells (bright green). The content of extracellular vesicles exhibits dynamic changes
corresponding to the fate conversion. Cyclin D1 (magenta dots inside the purple EVs) was
enriched in EVs from differentiating neuron. Additional cyclin D1 enriched in EVs from the
neuronal cells accelerates the commitment of mouse embryonic stem cells (light orange) to neural
progenitor cells (mNPC, light green). Exosomal communication between different development
stages may contribute to commitment and conversion of mESCs to the neural lineage.

Materials and Methods

Cell culture, differentiation, and treatment

Rat PC12 cells were maintained in DMEM medium supplemented with 10% horse serum (HS),
5% fetal bovine serum (FBS; GE Healthcare, Chicago, IL), and 0.1% (v/v) penicillin–
streptomycin solution. PC12 cells were seeded onto collagen-coated plastic dishes. Differentiated
PC12 cells were cultured at a density of 5.5-6.5× 104/cm2, in DMEM medium supplemented with
NGF (50ng/ml, Alomone Labs, Jerusalem, Israel), 1% FBS. Mouse N2A cells were cultured in
DMEM medium with 10% FBS and 0.1% (v/v) penicillin–streptomycin solution. Differentiated
N2A cells were cultured at a density of 4-5× 104/cm2, in DMEM medium with retinoic acid
(10uM, Sigma, R2625) and 1% FBS. For EV collection, cells were cultured in EV-depleted FBS
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(System Biosciences, Palo Alto, CA). Plates (14) of 150 mm dishes generated 420 ml of
conditioned medium which was harvested from PC12 or N2A cells for each experiment. For the
non-differentiated PC12 or N2A cells, medium was collected after 3 d of culture when cell
confluence reached around 70-80%. For the neuronal differentiation, medium was harvested and
replaced each 3 d.

Mouse ESCs (R1) were maintained on N2B27 medium plus 2i (3 μM CHIR99021 and 1 uM
PD0325901, Selleckchem, Houston, TX) and LIF (MilliporeSigma, Burlington, MA). Dishes
were pre-coated with 0.1% gelatin for 3 h. ESC serum-free monolayer neural progenitor
differentiation was performed in N2B27 medium after LIF and 2i withdraw, and ES cells were
cultured at a density of 4-5× 104/cm2. For ES cell neuronal differentiation, first, cells were
cultured in suspension in 5% Knockout™ Serum Replacement medium ( Thermo
Scientific, 10828010) for 8 d to form embryonic bodies (EBs) to achieve the neural progenitor
status. Then, trypsinized EBs were cultured in Poly-D-lysine (PDL) pre-coated dishes for another
4 days in N2 medium (Bibel et al., 2007; Zhu et al., 2014). During ES 12 d neuronal
differentation, the medium was changed each 2 d.

For PC12/N2A EV collection, the medium was harvested from 3 d cultured PC12 or N2A, and
medium from differentiated PC12 or N2A was collected each 3 d. For ES EV collection, the
medium was harvested at 2 d interval, including 2 d cultured pluripotent ESCs (ES D0-EV),
differentiated ESCs derived EBs cultured from 6 to 8 d (ES D8-EV), and EB trypsinized neurons
from 10 to 12 d (ES D12-EV).

For EV functional studies, purified EVs from non-differentiated PC12 or N2A cells and from
differentiated PC12 or N2A cells were added in ESCs in N2B27 medium for a monolayer neural
induction process. The medium together with purified EVs were changed every day. EVs were
used at 2~3× 109 particle/ml of N2B27 medium. Particle number was quantified by NanoSight
NS300. To measure the efficiency of interaction between EVs and recipient cells, the N2B27
monolayer but not the KSR EBs culture system was used for recipient mESC differentiation.

N2B27 medium (1L): 487 ml DMEM/F12, 487 ml Neurobasal, 10 ml B27(17504044) , 5 ml N2
(17502048), 10 ml L-Glutamine (200mM), 10ml non-essential amino acids (100×) (All from
Thermo Fisher Scientific), 1 ml 0.1Mβ-mercaptoethanol (Sigma, M3148).

KSR medium: G-MEM supplemented with 5% KSR, 2 mM glutamine, 1 mM pyruvate, 0.1 mM
nonessential amino acids, and 0.1 mM 2-mercaptoethanol (2-ME) (All from Thermo Fisher
Scientific).

N2 medium: DMEM/F12 supplemented with N2, 2 mM glutamine, 1 mM pyruvate, 0.1 mM
nonessential amino acids and 0.1 mM 2-ME.

Differential centrifugation and EV purification

For the two-step extracellular vesicular (EV) fractionation (differential velocity centrifugation
and linear iodixanol gradient flotation), 420 ml of conditioned medium was harvested from PC12
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cells. All subsequent manipulations were performed at 4˚C. Cells and large debris were removed
by centrifugation in a Sorvall R6+ centrifuge (Thermo Fisher Scientific) at 1000xg for 15 min
followed by 10,000xg for 15 min in 500 ml vessels using a fixed angle FIBERlite F14-6×500 y
rotor (Thermo Fisher Scientific). The supernatant was centrifuged at 100,000xg (28,000 RPM)
for 1.5 h in a SW-28 rotor (Beckman Coulter) with a sucrose cushion. The cushion consisted of 2
ml of 60% sucrose in buffer C (20mM Tris-HCL pH 7.4, 137mM NaCl). The supernatant was
removed carefully, without reaching the cushion, and new conditioned media was added carefully
on top without disturbing the cushion, centrifuged again at 100,000xg (28,000 RPM) for 1.5 h in
a SW-28 rotor. The interface between the cushion and the conditioned media was collected (~3
ml per tube). About 9 ml interface that came from 3×SW28 tubes (25×89 mm, Beckman Coulter)
was loaded in a SW41 tube (14×89 mm, Beckman Coulter) with 0.75ml of a 60% cushion on the
bottom, then centrifugated for 15 h in a SW-41 rotor at 160,000xg (36,000 RPM). The combined
interface from the first SW28 sucrose cushion should not exceed a sucrose concentration of 21%,
as measured by refractometry, for the second centrifugation in the SW41 to be successful. A clear
white band that corresponded to the EV fraction (~1ml in each SW41 tube) was collected after
centrifugation. For purification of EV sub-populations based on their distinct buoyant density, the
cushion-sedimented vesicles were collected and mixed with 60% sucrose until it was a 4ml
solution of 40% sucrose (in buffer C). The 4 ml solution was then loaded at the bottom of a SW
41 tube and equal amounts (1.5ml each) of solutions of 25%, 20%,15%,10% and 5% iodixanol
(Optiprep) (diluted in buffer C) were layered on top and centrifuged at 160,000xg (36,000RPM)
for 15 h. Fractions of 400 ul each from top to bottom were taken for evaluation. For immunoblot
analysis, the floated fraction samples were mixed with 2× SDS loading buffer (0.125 M Tris-HCl
(pH6.8), 4% SDS, 20% glycerol, 10%-mercaptoethanol, 0.2% bromophenol blue), heated at 95°C
for 10 min.

For EV purification without resolution of EV sub-populations, 420 ml of conditioned medium
was harvested from PC12 or N2A cells. Cells and large debris were removed by stepwise
centrifugation at 1000xg for 15 min, and then 10,000xg for 15 min at 4˚C. The supernatant was
centrifuged at ~100,000×g (28,000 RPM) for 1.5 h using two SW-28 rotors (Beckman Coulter).
The pellet was resuspended with 200 µl phosphate buffered saline (PBS), pH 7.4, and diluted up
to ~ 5ml of PBS and followed by centrifugation at ~150,000×g (38,500 RPM) in an SW-55 rotor
(Beckman Coulter). Washed pellet material was then resuspended in 100 µl PBS as in the first
centrifugation step and 900 ul of 60% sucrose (in buffer C) was added and mixed, then 2ml of
40% sucrose (in buffer C) and 1ml of 20% sucrose (in buffer C) were sequentially overlaid and
the SW55 tubes (13×51 mm, Beckman Coulter) were centrifuged at ~150,000×g (38,500 RPM)
for 16 h in an SW-55 rotor. The 20%/40% interface was harvested, washed once with PBS in an
SW-55 rotor. The sedimented EV fraction was resuspended in 100 µl PBS for further analysis.

Nanoparticle tracking analysis

Extracellular vesicle sizes and quantities were estimated using the NanoSight NS300 instrument
equipped with a 405-nm laser (Malvern Instruments, Malvern, United Kingdom), analyzed in the
scatter mode. Silica 100-nm microspheres (Polysciences, Warrington, PA) served as a control to
check instrument performance. Vesicles collected as described above were diluted 1000× with
filtered PBS (0.02 µm; Whatman). The samples were introduced into the chamber automatically,
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at a constant flow rate of 50 during 5 repeats of 60-s captures at camera level 13 in scatter mode
with Nanosight NTA 3.1 software (Malvern Instruments). The size was estimated at detection
threshold 5 using the Nanosight NTA 3.1 software, after which “experiment summary” and
“particle data” were exported. Particle numbers in each size category were calculated from the
particle data, in which “true” particles with track length >3 was pooled, binned, and counted with
Excel (Microsoft).

PKH67 labeling

EVs were labeled with fluorescent dye PKH-67 using the PKH-67 labeling kit (Sigma-Aldrich).
Briefly, 5×1010EVs were resuspended in 100 µl PBS and mixed with 100 µl of PHK67 dye
diluted in diluent C (4 µl of the PKH67 dye solution to 1 ml of Diluent C) for 2 min, followed by
continuous mixing for 30s by gentle pipetting. Excess dye was quenched by adding 100 µl 10%
BSA in PBS. This mixture was diluted with 4.5 ml of PBS and centrifuged at 150,000xg
(38,500RPM) for 1 h to sediment the PKH-67 labeled EVs. The EV pellet was further washed
twice with PBS by centrifugation at 150,000xg for 60 min to remove any free dye and the final
EV pellet was resuspended in 100 µl PBS and used for uptake studies.

Proteinase K protection assay

The EVs fractionated by differential centrifugation and sucrose flotation were aliquoted into 20 μl
of PBS or PBS containing indicated concentrations of proteinase K (proteinase K was dissolved
in TBS, pH7.4, 5mM CaCl2, 50% glycerol) on ice for 20 min, and then treatment with or without
1% Triton X-100 on ice for 10 min. The reactions were stopped by sequentially adding PMSF to
final concentration of 5 mM and aliquots were mixed with 2×SDS loading buffer followed by at
95°C for 10 min. Samples were processed for SDS-PAGE and evaluated by immunoblot.

Immunoblotting

Standard immunoblotting procedures were followed. In brief, samples were heated at 95°C for 10
min, resolved on 4–20% polyacrylamide gels (15-well, Invitrogen; 26-well, Bio-Rad
Laboratories), and transferred to PVDF (EMD Millipore). The PVDF membrane was incubated
with antibodies (primary for 4°C overnight and secondary for 1h at RT), and bound antibodies
were visualized by the enhanced chemiluminescence method (Thermo Fisher Scientific) on a
ChemiDoc Imaging System (Bio-Rad Laboratories) with ImageLab software v4.0 (Bio-Rad
Laboratories). The following antibodies were used: rabbit anti‐cyclin D1, anti‐cyclinA2, anti-
CDK4, anti-CD9, anti-Flotillin 2, anti‐p21, anti‐p27, anti‐p57, anti-nucleolin, anti-Neurogenin
2/Ngn2, anti-integrin (Abcam, Cambridge, U.K., ab134175, ab181591, ab199728, ab92726,
ab96507, ab109199, ab32034, ab75974, ab129200, ab109236, ab131055), rabbit anti‐CDK6
(GeneTex, Irvine, CA, GTX103992), rabbit anti‐cyclinB1, anti‐cyclinE1, anti‐phospho-Rb (Cell
Signaling Technology, Danvers, MA, 4138T, 20808S, 9307), rabbit anti‐GFP (Fisher Scientific,
Hampton, NH, NC9589665), rabbit anti‐Lin28 (Proteintech, Rosemont, IL, 11724-1-AP); mouse
anti‐actin (Abcam, ab8224), mouse anti‐cyclin D2, anti‐cyclin D3, anti-Alix, anti-CD81(Santa
Cruz Biotechnology, Dallas, TX, sc-376676, sc-6283, sc-53540, sc-166029), mouse anti-GM130
(BD Biosciences, San Jose, CA, 610823), mouse anti-Tsg101 (GeneTex, Irvine, CA，
GTX70255); rat anti-CD63( LSBIO, clone R5G2, LS-C179520), rat anti-Hsc70 (Abcam,
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ab19136), HRP-Conjugated Streptavidin (Thermo Fisher Scientific, N100). GFP protein
recombinant (ProSpec, PRO-687). NGF neutralizing antibody (R&D Systems, MAB256-100).

RNA preparation and qPCR analysis

Total RNA was extracted from cells using TRIzol reagent (Invitrogen, Carlsbad, CA). RNA
(2.5ug) was reverse transcribed by superScript™ III reverse transcriptase (ThermoFisher
Scientific, Waltham, MA) according to the manufacturer’s instructions. qPCR was performed
using TaqMan™ Universal PCR Master Mix, using an ABI-7900 real-time PCR system
(ThermoFisher Scientific, Waltham, MA). Primers for qPCR analysis are listed in supplementary
file 1.

Negative staining and visualization of EVs by electron microscopy

The EVs collected as described were resuspended in 1% glutaraldehyde, spread onto glow
discharged Formvar-coated copper mesh grids (Electron Microscopy Sciences, Hatfield, PA) and
stained with 2% uranyl acetate for 2 min. Excess staining solution was removed by blotting with
filter paper. Post drying, grids were imaged at 120 kV using a Tecnai 12 Transmission Electron
Microscope (FEI, Hillsboro, OR) housed in the Electron Microscopy Laboratory at UC Berkeley.

Immunofluorescence

Cells growing on Falcon® 4-well Culture Slide (Corning, Tewksbury, MA) were fixed in 4%
PFA for 30 min at RT, washed 5 times with PBS, and incubated with blocking buffer (PBS
containing 0.1% Triton X-100 and 0.5% BSA) at RT for 1 h. Cells were incubated with primary
antibody at 4°C overnight, washed 5 times with PBS and incubated with secondary antibody 1h at
RT. The following antibodies were used: mouse anti-nestin (Abcam, Cambridge, U.K., ab6142);
rabbit anti-Pax6 (Abcam, ab195045); rabbit monoclonal anti-CD9 (Abcam, Cambridge, U.K.,
ab92726) ; rabbit anti‐GFP (Fisher Scientific, Hampton, NH, NC9589665); Alexa Fluor 488
donkey anti-mouse immunoglobulin G (IgG) (Invitrogen, Carlsbad, CA; #A-11001); Alexa Fluor
568 goat anti-rabbit IgG (Invitrogen, #A-10042). Antibody incubations were followed by 5
washes with PBS. Coverslips were mounted in ProLong-Gold antifade mountant with DAPI
(Thermo Fisher Scientific) overnight, before imaging. Images were acquired using Zen 2010
software on an LSM 710 confocal microscope system (ZEISS, Oberkochen, Germany) and Plan-
Apochromat 100×, 1.4 NA objectives.

Coimmunoprecipitation assay

For EV CD9 immunoprecipitation, ~ 5×1010EVs collected from the two steps of purification
were diluted into 500 μl of PBS and 2 μg of rabbit monoclonal anti-CD9 (Abcam, Cambridge,
U.K., ab92726) or rabbit IgG (Fisher Scientific, Hampton, NH) was added and mixed by rotation
overnight at 4 ˚C. Magvigen protein-A/G conjugated magnetic beads (30 μl) (Nvigen, Sunnyvale,
CA) were then added to the EV/antibody mixture and mixed by rotation for 2 h at 4 ˚C. Beads
with bound EVs were washed three times in 1 ml PBS and protein was extracted using with
2×SDS loading buffer, the samples were heated at 95°C for 10 min and analyzed by SDS PAGE
and immunoblot. Immunoprecipitation of exosomal cyclin D1 was carried out as with the
immunoprecipitation of CD9, except that the purified EVs were diluted and washed in co-IP
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buffer, containing 50 mM Tris·HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40,
and 10% glycerol, 1 mM PMSF, 1 mM DTT, 1×proteinase inhibitors (Roche). Anti-cyclin D1
antibody (2 μg) (Abcam, Cambridge, U.K., ab134175) or rabbit IgG (Fisher Scientific, Hampton,
NH) was added.

For coimmunoprecipitation of proteins in a cell lysate, the suspended cells were lysed at 4 °C
with co-IP buffer. Lysates were incubated with required antibodies at 4 °C overnight and then,
with 30 μl Dynabeads Protein G Thermo Fischer) for another 2 h. The immunocomplexes were
centrifuged and washed three times with cold Co-IP buffer and one time with 50 mM Tris·HCl
(pH 7.4) in the absence of proteinase inhibitors. The proteins were released from beads by heating
to 95°C in SDS sample buffer, and the samples were analyzed by immunoblot. The following
antibodies are used for co-IP: anti-Flag (1:1,000; Sigma, St. Louis, MO), anti-HA (1:1,000; Cell
Signaling Technology, Danvers, MA).

BrdU assay

A BrdU cell proliferation assay was conducted according to the supplier’s instructions (Cell
signaling, Danvers, MA). Briefly, the purified EV fraction was added or not to mESC cultures at
the onset of the neural induction process, in N2B27 medium for 4 d. After 3d of mESC
differentiation, cells were incubated for a further 24h with BrdU. Cells were then fixed and
incubated with 1X detection antibody, washed three times with wash buffer and then incubated
with HRP-conjugated antibody 0.5 h at RT. Fixed and labeled cells were then incubated with the
TMB substrate and reactions terminated with the stop solution. Outcomes were recorded by
absorbance at 450 nm.

Plasmid Construction

The plasmids encoding CDK4-Flag, Hsc70-HA and Hsp90-HA were purchased from Sino
Biology Inc (Wayne, PA). The cyclin D1-Flag plasmid was generated by PCR insertion of
cyclinD1 into the p3XFLAG-CMV™-14 expression vector (Sigma). The XPack-GFP plasmid
was generated by inserting GFP from pEGFP-N1 (BD Biosciences Clontech) into the XPack
CMV-XP-MCS-EF1α-Puro Cloning Lentivector (System Biosciences, Palo Alto, CA). The cyclin
D1-APEX plasmids were constructed by combining the PCR fragment of cyclin D1 from the
cyclin D1-Flag plasmid and APEX from pcDNA3 APEX-nes (Addgene) into XPack CMV
constructs (System Biosciences). The cyclin D1-GFP plasmids were constructed by combining
the PCR fragment of cyclin D1 from the cyclin D1-Flag plasmid and GFP from pEGFP-N1 (BD
Biosciences Clontech) into XPack CMV constructs (System Biosciences). For cyclin D1
overexpression, the cyclin D1 was generated by PCR insertion into the XPack CMV constructs
(System Biosciences). Hsc70D10N was generated by PCR-based site-directed mutagenesis using
the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies). Cyclin D1 KO was
conducted by CRISPR/Cas9 genome editing (Xie et al., 2016). A pX330-based plasmid
expressing green fluorescent protein was used to clone the gRNAs targeting cyclin D1. Three
CRIPSR guide RNAs targeting the gene were selected using the CRISPR design tool gRNAs
targeting exon 1 were selected. Primers for gRNAs are listed in supplementary file 1.
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CRISPR interference

N2A cells expressing UCOE-EF1α-dCas9-BFP-KRAB were obtained by lentivirus transfection
(Gilbert et al., 2014). Cells were sorted for the BFP signal 3 d post-transduction, and selected
cells were expanded by growth for a few generations and then frozen and stored as parental cells
(referred to as dCas9). Sequences for gRNAs targeting the promoter of the genes of interest were
selected based on data by (Horlbeck et al., 2016). gRNAs were cloned in plasmid pU6-sgRNA
EF1Alpha-puro-T2A-BFP (Gilbert et al., 2014)( Addgene, #60955). The top two gRNAs from the
V.2 library (Horlbeck et al., 2016) were chosen to transduce the parental dCas9 cells. Post -
transduction cells were selected with 2 ug/ml puromycin for 3 d.

APEX reaction and biotinylated protein capture

APEX reaction in cells

CylinD1-APEX N2A cells were used to capture the proximity labeling reaction or collect purified
cylinD1-APEX EVs. For the APEX reaction in receipt mES cells, cylinD1-APEX EVs were
incubated with mESCs in N2B27 medium for 2 d at a concentration of ~5×109EVs/ml medium.
Ascorbic acid peroxidase (APEX) proximity labeling was conducted as described previously
(Hung et al., 2016). Biotin-phenol (500 μM) was pre-incubated with cells for 30 min at 37°C.
Immediately prior to use, 1 mM (0.003%) H2O2 (Thermo Fisher) was spiked into the medium for
the 1-min labeling reaction at room temperature. The reaction was then quenched immediately by
3 thorough washes with room temperature quencher solution, containing 10 mM sodium
ascorbate (Sigma-Aldrich), 5 mM Trolox (Sigma-Aldrich), and 10 mM sodium azide (Sigma-
Aldrich) in DPBS (Dulbecco's phosphate-buffered saline; Thermo Fisher). Cells were lysed in
RIPA (50 mM Tris, 150 mM NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, pH 7.4)
supplemented with 10 mM sodium ascorbate, 1 mM sodium azide, 1 mM Trolox, 1mM DTT, and
protease inhibitors (Roche). The whole-cell lysate was combined with loading buffer, heated at
95 °C for 10 min, then resolved by SDS-PAGE and biotinylated proteins were evaluated by
blotting with streptavidin-HRP (Thermo Fisher Scientific; #21130).

APEX reaction in EVs

Biotin-phenol (500 μM) was incubated with purified EVs for 30 min at 37°C in a total mixture
volume of <50 μl. The mixture was removed to an SW 41 ultracentrifuge tube and APEX
labeling was initiated by addition of 1 mM H2O2. After 1 min, 12 ml quencher solution was added
and EVs were sedimented and washed with the quencher solution twice by centrifugation at
110,000xg (31,500RPM) for 1 h. The pellet fraction was suspended in 40 μl PBS, mixed with
SDS-loading buffer in preparation for SDS PAGE and blotting

Preparation of APEX-labeled proteins for blotting or mass spectrometry

Samples in RIPA were briefly sonicated in a bath sonicator (Covaris, S220) then centrifuged at
10,000 x g for 10 min and the supernatant fraction (800 μl) was applied to 40 μl streptavidin-
agarose beads (Sigma) followed by rotation overnight at 4°C. Streptavidin-agarose beads were
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washed two times in RIPA lysis buffer, once with 1 M KCl, once with 0.1 M Na2CO3, once with
2 M urea in 10 mM Tris-HCl, pH 7.4. Biotinylated proteins were eluted from the beads by
heating the sample in 4× SDS-loading buffer supplemented with 2 mM biotin and 20 mM DTT
for 10 min at 95 °C. Streptavidin-HRP blotting or mass spectrometry was used to identify the
biotinylated proteins. For mass spectrometry, heated samples were electrophoresed in a 4–20%
acrylamide Tris-Glycine gradient gel (Life Technologies) for ~3 min. The proteins were stained
with coomassie and stained bands were excised from the gel with a fresh razor blade. Samples
were submitted to the Taplin Mass Spectrometry Facility at Harvard Medical School for in-gel
tryptic digestion of proteins followed by liquid chromatography and mass spectrometry analysis
according to their standards.

Statistical analysis

Statistical analysis was performed using Prism (GraphPad Software). Groups were compared
using Student’s t test. The values represent the mean ± SD, from two or three independent
experiments. (NS, non-significant difference between the two groups; *p<0.05; **p<0.01)
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