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Abstract

Collective migration occurs throughout the animal kingdom, and demands both the in-

terpretation of navigational cues and the perception of other individuals within the group.

Navigational cues orient individuals toward a destination, while it is hypothesised that

communication between individuals enhances navigation through a reduction in orientation

error. We develop a mathematical model of collective navigation that synthesises naviga-

tional cues and perception of other individuals. Crucially, this approach incorporates the

uncertainty inherent to cue interpretation and perception in the decision making process,

which can arise due to noisy environments. We demonstrate that collective navigation is

more efficient than individual navigation, provided a threshold number of other individu-

als are perceptible. This benefit is even more pronounced in low navigation information

environments. In navigation “blindspots”, where no information is available, navigation

is enhanced through a relay that connects individuals in information-poor regions to indi-

viduals in information-rich regions. As an expository case study, we apply our framework

to minke whale migration in the North East Atlantic Ocean, and quantify the decrease in

navigation ability due to anthropogenic noise pollution.
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Introduction

Many animals routinely migrate long distances; spectacular examples include the pole-to-pole

flights of Arctic terns and the transoceanic migrations of many whale species [1]. Topography,

the geomagnetic field, celestial information, and chemical signals can all serve to orient ani-

mals en-route [2, 3]. Navigational cues may be interpreted in combination, or an animal may

switch from a cue suitable for long-distance migration to a cue suitable for precise navigation

when close to the destination [4]. Frequently, migrations are conducted as a group and there

is significant interest in the extent to which the “wisdom of the crowd” improves navigation

performance. Improvement may arise from group heterogeneity, where knowledgeable individ-

uals take on a leadership role, but is also hypothesised to occur in a homogeneous population

through the “many wrongs” principal of navigation. Here, pooling of information across the

group reduces individual-level uncertainty via an averaging process [5, 6, 7, 8]. As an example,

homing pigeons display improved homing behaviour when travelling in a small flock, compared

to when flying solo [9].

Collective navigation demands communication with, or perception of, other group mem-

bers. These interactions in turn influence an individual’s behavioural response [10, 11]. The

complexity and range of interaction will vary significantly with the sophistication and form

of an animal’s sensory machinery, along with the environment through which the animals are

moving. For example, sound transmission through water permits whales to communicate with

each other through “whalesong” and other vocalisations, up to estimated distances of hundreds

of kilometres [12]. Even on land, calls have been suggested to travel several kilometres between

elephants [13]. As such, a superficially dispersed animal population may still be migrating as a

group through communication across long distances.

Navigation also requires a robust evaluation of orienteering cues; the quality of orienteer-

ing information is unlikely to be uniform across the travel route. As the distance between

the navigating individual and its target decreases, cues may become stronger, as for audible

information, or weaker, as for detecting geomagnetic field differences. Journeys may require

passage through blindspots, sizeable regions of space with diminished quality of navigational

information. Blindspots may form naturally, for example due to adverse weather conditions, or

through anthropological activity. Recently, significant attention has been devoted to the state of

the marine “soundscape” [14]. Human oceanic activity has substantially increased over the last

century, with extreme noise sources and raised ambient noise levels a result of shipping, offshore

construction projects, and naval operations [15, 16]. This anthropogenic noise pollution has had

a broad impact on the ocean-dwelling organisms that rely on auditory information [14]. For

example, various cetaceans adjust the volume and frequency of their calls to account for marine

noise [17, 18, 19], a behaviour known as the Lombard effect. However, this only provides partial

compensation and the adjusted calls may encode less information. It has been estimated that

species including minke whales (Balaenoptera acutorostrata) and humpback whales (Megaptera
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novaeangliae) could lose ∼80% of their communication distance in the presence of increased

human activity [17, 18].

Numerous mathematical models have been proposed to describe the movements of a popula-

tion in response to external navigation cues [20, 21, 22, 23]. Theoretical models of communication-

based collective navigation are often individual-based random walk models [24, 25], where the

behaviour of each individual is explicitly defined; though continuum models have also been

proposed [5]. A common strategy has been to abstract interactions between individuals into a

generic set of attraction, repulsion and alignment interactions [26, 7, 27, 28, 29, 30]. Interactions

occur up to a maximum interaction range, or a defined number of neighbours [8]. Codling et

al. employ this approach and demonstrate that group-based navigation is more efficient than

individual navigation [7], provided that the environment is not highly turbulent. However, a

standard assumption in previous models of collective navigation is that an individual perfectly

perceives the behaviour of other individuals within the population. While this may be reason-

able if the population is tightly clustered, it is less clear that this assumption holds for more

dispersed populations. For example, in the presence of marine noise, the quality of perceived in-

formation may decrease markedly with distance. Further, alignment interactions typically only

rely on the (circular) mean of all observed headings to determine an optimal heading. Such

an approach neglects all information regarding the variance in the observed headings. Con-

sider a set of observed headings that are tightly clustered around the resultant mean heading

compared to a set of observed headings, with the same resultant mean, but that are widely

spread across all possible headings. It is plausible that the individual in the latter case would

have less confidence in the resultant mean heading, compared to the first case. However, this

reflection of decision making under uncertainty is typically not present in mathematical models.

As such, it is unclear how uncertainty in communication or perception may affect the ability of

the population to undergo navigation.

We develop a random walk model of communication-based collective navigation that incor-

porates uncertainty in the process of acquiring external guidance information. The random

walk is biased according to a combination of observations of the heading of other individuals,

balanced against the navigation information inherent to an individual. We examine the nav-

igation performance of individuals governed by this model in a range of idealised information

fields that represent the natural variability of navigation information. We demonstrate that

communication results in a significant increase in navigation performance, provided that an

individual can observe sufficiently many other individuals to overcome the uncertainty in com-

munication. This increase in performance is most pronounced in the presence of information

blindspots. To illustrate the utility of the framework we consider a case study of minke whale

migration through the North East Atlantic Ocean, and examine how increased ambient noise

due to drilling and other anthropogenic sources may inhibit migration.
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Methods

Consider an individual labelled i located in a two-dimensional plane at position xi(t) and

navigating towards a target at xtarget. We model the individual’s movement path as a velocity

jump random walk [31], an alternation between fixed velocity runs and reorientations. The

duration of each run is sampled from an exponential distribution, parametrised by a turning

rate parameter µ. For simplicity we impose quasi-instantaneous reorientation events, a constant

turning rate and a fixed speed, s. An individual with a heading represented by angle θi, and

corresponding velocity vi, moves according to

dxi
dt

= vi.

Navigation is encoded through the selection of a new heading at reorientation. We assume that

this selection depends both on the inherent information available to an individual based on its

current location, and on the group information obtained through communication with (or the

perception of) other individuals (Figure 1). Model complexity is minimised by neglecting both

repulsion and attraction, and we note that their effects have been considered in previous models

[7]. We also assume that the post-reorientation heading is independent of the pre-reorientation

heading. New headings are sampled from a von Mises distribution [32],

vM(θ|κ, φ) =
1

2πI0(κ)
eκ cos(θ−φ),

where I0(κ) denotes the modified Bessel function of order zero. The von Mises distribution

is parametrised by a location parameter, φ, and a concentration parameter, κ. The location

parameter reflects the most likely heading and the concentration parameter reflects the certainty

of it being selected: κ = 0 generates a uniform distribution with all headings equally likely and

κ→∞ leads to a singular distribution in which heading φ is always selected.

Inherent information

Inherent information refers to the knowledge obtained when an individual samples a navigation

cue (or combination of cues) at its current position. The type of cue, an organism’s sensory

processes, and the environment could all impact on the strength of this information during

migration. We assume inherent information is incorporated according to the von Mises distri-

bution, where the concentration parameter κ is given by Ω(xi(t)). Therefore, Ω(xi(t)) defines

the strength of the inherent information field for an individual currently located at xi(t). We

assume that the location parameter is given by arg(xtarget − xi(t)); that is, the distribution

resulting from inherent information is centred around the direction of the target location. We

consider a range of inherent information fields, as presented in Figure 2, which are defined
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Figure 1: Schematic highlighting the differences between (a) individual navigation and
(b),(d),(e) collective navigation. For individual navigation, differences in navigation ability
arise purely due to differences in the local inherent information. For collective navigation, dif-
ferences in navigation ability may arise from (b) observing other individuals heading in similar
directions, (d) observing other individuals in higher information regions, or (e) observing more
individuals. We illustrate how this increase in navigation performance occurs by presenting the
von Mises distributions (magenta) inferred from sets of observed headings (blue) that (c) are
clustered to various degrees around a central heading or (f) include different numbers of ob-
servations. Distributions that are concentrated around the peak indicate increased navigation
performance, as an individual is more likely to move in the direction of the target.

High navigational

information

Low navigational

information

Target

location

Navigating

individual

Constant information Increasing information Decreasing information

Information void Random information

(b)

(e)

(c)(a)

(d)

Figure 2: Different types of inherent information fields. The information field can either (a)
be constant, (b) increase as an individual approaches the target location, (c) decrease as an
individual approaches the target location, (d) contain a region of negligible information or (e)
be randomly distributed.
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mathematically as

Ω(x) =



Ω0 (Constant information),

Ωmin + 0.5(Ωmax − Ωmin)
(

tanh(ω{|x− xtarget| − γ}) + 1
)

(Increasing information),

Ωmin + 0.5(Ωmax − Ωmin)
(

tanh(−ω{|x− xtarget| − γ}) + 1
)

(Decreasing information),

Ix/∈cΩ0 (Information void),

ξ ∼ Uniform(0, 2Ω0) (Random information),

where Ω0 is the background information value for the constant information field. For the

increasing and decreasing information fields, Ωmin and Ωmax are the minimum and maximum

information values, respectively; γ is the distance from the target of the midpoint information

value, and; ω is the information slope parameter. For the void information field, c is the set of

locations inside an information void, and; I is an indicator function, equal to one if an individual

is located outside of the information void, and zero otherwise.

Group information

Under collective navigation, the individual’s inherent information can be enhanced by other

individuals attempting to travel toward the same target. This information transfer can occur

nonlocally through mechanisms that involve auditory, visual or other forms of communication.

Consider an individual that perceives n other individuals with velocities vj , j ∈ [1, n]. Each ob-

servation can be regarded as a sample from a von Mises distribution. This distribution will have

similar parameters to the von Mises distribution sampled by individual i, presuming the max-

imum communication distance is not large compared to the length over which the background

information changes. As such, we can construct the maximum likelihood estimates (MLEs) of

φ and κ for the von Mises distribution governing the heading of the observed individuals. Of

course, we are not suggesting that the individual is actually calculating the MLEs; rather, it

is a convenient way of converting observations into a measure of average behaviour and cer-

tainty regarding that average behaviour. The MLE for the location parameter φ̂ is simply the

argument of the sum of the observations [33]:

φ̂ = arg

(∑
j

vj

)
.

It is plausible that information regarding an observed individual’s heading becomes distorted

due to the distance the information travels before reaching the decision-making individual. This

can happen, as an example, due to ambient noise disturbing an auditory signal. To account

for this, a weighting kernel, K(r), can be used to describe the decay in signal as a function of

distance between individuals, and hence the MLE for the location parameter will be

φ̂ = arg

(∑
j

K
(
||xi(t)− xj(t)||

)
vj

)
.
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The MLE for the concentration parameter, κ̂, requires the following inverse problem to be

solved, either via an approximation or through numerical techniques [33],

1

n

∣∣∣∣∣∣∣∣∑
j

vj

∣∣∣∣∣∣∣∣ =
I1(κ̂)

I0(κ̂)
,

where Im(κ̂) denotes the modified Bessel function of order m. If all observations are in a similar

direction, then the MLE of the concentration parameter will be large, which implies that the

individual has a high level of confidence in the location parameter. We can similarly include

a weighting kernel to describe the decay in information, which results in the MLE for the

concentration parameter arising from

||
∑

jK(||xi(t)− xj(t)||)vj ||∑
jK(||xi(t)− xj(t)||)

=
I1(κ̂)

I0(κ̂)
.

Here we will restrict our choice of weighting kernel to the Heaviside function

K(r) = H(rmax − r).

This implies that an individual places equal weight on observations of all individuals within a

radius, rmax, but ignores all other individuals. We refer to this radius as the perceptual range,

the maximum distance over which a signal or cue can be perceived, for example mimicking the

maximum perception distance relevant to communication through auditory and visual signals.

Other natural choices for K(r) could include an exponential or power-law decay with distance,

see for example [34].

Combining inherent and group information

The question remains regarding how to combine observed headings acquired nonlocally from

the group with the inherent information available to an individual. Here we simply assume that

the individual weights the observed headings against its inherent information:

φ̂ = arg

(
(1− α)

[∑
jK(||xi(t)− xj(t)||)vj∑
jK(||xi(t)− xj(t)||)

]
+ αv̂i

)
, (1)

where α is the relative strength that an individual places on its inherent information with re-

spect to heading and v̂i is the heading sampled from the distribution corresponding to the

individual’s inherent information. If α = 0, the individual neglects inherent information and

follows the crowd. If α = 1, the individual relies solely on inherent information. If α = 1/2, the

individual places equal weight on inherent and group information. If α = 1/(n + 1) then the

individual places equal weight on each observed individual, including itself.

A similar weighting approach can be taken with the MLE estimate of the concentration
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parameter: ∣∣∣∣∣∣(1− β)
(∑

jK(||xi(t)− xj(t)||)vj
)

+ βv̂i

∣∣∣∣∣∣
(1− β)

∑
jK(||xi(t)− xj(t)||) + β

=
I1(κ̂)

I0(κ̂)
, (2)

where β is the relative strength that an individual places on its inherent information with respect

to concentration.

Concentration parameter estimation

As detailed in Equation (2), the MLE for the concentration parameter can be calculated from n

observations obtained from a von Mises distribution [32]. In [35] it is noted that this estimate is

biased for either small κ or n values, both of which are likely to occur in group navigation. The

authors proposed a correction which provides a less-biased mean, but exploring its distribution

(compared to the uncorrected estimate) reveals that the reduction in bias is partly achieved

through mapping the MLE of a large number of samples to zero (Supplementary Information,

Figure 1). While reducing the bias of the MLE for the concentration parameter is important,

this reduction therefore occurs at the expense of a severely distorted distribution.

We therefore propose an alternative approach, where we repeatedly generate samples for

fixed n and κ (i.e. a set of n headings obtained from the von Mises distribution with a concen-

tration parameter κ) and determine the (uncorrected) κ̂ value for each sample. We repeat this

process for a wide range of n and κ values and construct the distribution of κ values that give

rise to a specific κ̂ value for a fixed n value, which can be considered as the likelihood function,

P (κ|κ̂, n). We pre-calculate a look-up table of P (κ|κ̂, n) for 1 ≤ n ≤ 25 and 0 ≤ κ̂ ≤ 25,

which addresses the issues associated with both insufficient observations and small κ values.

In the model, an individual is informed by n observations and calculates κ̂ via Equation (2).

We then sample from the likelihood function P (κ|κ̂, n) to provide an estimate of the concen-

tration parameter of the von Mises distribution of the observed data. A comparison with the

distributions from the uncorrected and corrected maximum likelihood estimate reveals that the

likelihood function approach reduces the bias present without significantly inflating the number

of estimates of the concentration parameter that are zero (Supplementary Information, Figure

1).

Results

We begin by examining the navigation ability of individuals in our model for the suite of

inherent information fields presented in Figure 2. Initially, we distribute 100 individuals within

a square of size 20, uniformly at random. The centre of this square is located at a distance

of 300 from the target location. Initial headings are sampled according to the local inherent

information. Individuals undergo motion at a fixed velocity until a reorientation event occurs.

In a reorientation event, individuals undertake a three step process. First, an individual samples

a heading from a von Mises distribution where the distribution parameters are informed by the
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inherent information. Second, an individual infers von Mises distribution parameters from a

weighted combination of its sampled heading and the observed headings of the neighbours within

its perceptual range via Equations (1) and (2). Third, the individual samples a heading from

this inferred von Mises distribution and undergoes motion in the newly-sampled direction. Note

that the second and third step only occur if there are other individuals within the perceptual

range; otherwise the originally-sampled heading is retained. When an individual arrives within

a distance of 10 from the target location it is considered to have successfully navigated to the

target, and is removed from the system. Unless stated otherwise we assume an implicit rescaling

such that s = µ = 1. Consequently, the minimum mean migration time is ∼ 290 time units,

which occurs if all individuals move in a straight line towards the target. Therefore, over the

course of this journey each individual will, on average, re-evaluate its environment for navigation

information several hundred times. For each simulation we track the number of individuals yet

to reach the target location, the average number of neighbours within an individual’s perceptual

range, and the average distance to the target of the individuals yet to reach the target location.

All simulations are performed in Matlab R2020b, with the CircStat Toolbox employed for the

necessary circular statistics [36].

Constant information field

We first investigate navigation in a constant information field, for a suite of perceptual ranges

and three different background information values, and present the results in Figure 3. Note

that a perceptual range of zero corresponds to an individual navigating via inherent information

only. Unsurprisingly, increasing the background level of information improves the navigation

performance, as demonstrated by a decrease in the time required for individuals to arrive at

the target location. We next consider the influence of an increased perceptual range. Notably,

we do not observe a monotonically increasing relationship between perceptual range and nav-

igation ability. Rather, small perceptual ranges reduce navigation performance (compared to

purely local navigation) and an improvement only occurs above a certain threshold. Examining

the average number of neighbours offers insight into the root of this phenomenon. Perceptual

ranges of five yield fewer than five neighbours throughout the simulated migration. This im-

plies that relying on relatively few observations reduces navigation ability due to the uncertainty

present in that small set of observations. If we consider the heading selection mechanism in

the model, navigation using only inherent information corresponds to a single sample from a

von Mises distribution centred around the heading of the target site, for a specified concentra-

tion parameter. In contrast, when group information is incorporated, navigation corresponds

to a sample from an inferred von Mises distribution, constructed from a weighted combination

of the aforementioned target heading sample and the headings of observed neighbours. The

inferred distribution is not necessarily centred around the heading of the target, and for few

observations the increase in the concentration parameter above background is insufficient to

compensate for the increased variance in the location parameter. The decrease in performance

is ameliorated by the presence of additional individuals within the perceptual range, as extra

observations provide both a more reliable estimate of the heading of the target location and a
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Figure 3: Navigation behaviour for 100 individuals in a constant information field. (a),(d),(g)
The number of individuals remaining in the system over time. (b),(e),(h) The average number
of neighbours within the perceptual range. (c),(f),(i) The distance between the target location
and the average location of the individuals. Results are presented for a perceptual range of 0
(black, dashed), 5 (blue), 10 (magenta), 20 (orange), 50 (purple) and 500 (green). Parameters
used are α = β = 0.5 and (a)-(c) Ω0 = 1, (d)-(f) Ω0 = 0.25, (g)-(i) Ω0 = 4. All data are the
average of ten realisations of the model.
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further increase in the concentration parameter, ultimately improving navigation performance.

We observe in Figure 3(a) that a perceptual range of 10, corresponding to between 10 and 20

neighbours, results in navigation performance that is more efficient than local navigation. The

benefit of additional neighbours appears to plateau around 30 neighbours, as perceptual ranges

of 20, 50 and 500 (effectively perceiving the entire population) demonstrate a similar navigation

ability. As a further test we consider a set of simulations in which the number of individuals,

N , and rmax are both altered such that Nr2max is kept constant. This ensures that approxi-

mately the same number of observed neighbours are within the perceptual range throughout

each simulation. The resulting simulations (Supplementary Information, Figure 2) show that

the proportion of remaining individuals remains similar for each perceptual range considered,

corroborating our hypothesis that the number of observed neighbours is the critical measure

that informs navigation ability.

We repeat the analysis presented in Figures 3(a)-(c) for a four-fold increase and a four-fold

decrease in background information, and present the results in Figures 3(d)-(f) and 3(g)-(i),

respectively. Broadly, we observe the same trend, where small perceptual ranges lead to both

a reduction in the number of neighbours and greater uncertainty. For the lower level of back-

ground information, Figures 3(d)-(f), navigation performance remains degraded for even larger

perceptual ranges. For example, compare the navigation performance for a perceptual range

of 10 in Figure 3(e) to the corresponding perceptual range in Figure 3(b). Lower background

information results in an increase in the spread of the population, generating a precipitous

drop in the average number of neighbours and, in turn, a decrease in navigation ability. For

higher background information (Figures 3(g)-(i)) the population does not spread out to the

same extent. As such, the number of neighbours within the perceptual range is higher than

in both Figures 3(b) and 3(e), and the change in navigation ability due to a small perceptual

range is less pronounced. Interestingly, for the low level of background information (Figures

3(d)-(f)), a large number of neighbours within the perceptual range corresponds to a more pro-

nounced increase in navigation ability (relative to purely local navigation), compared to higher

levels of background information. This implies that in low information environments there is

more benefit associated with maintaining a close-knit population structure, with respect to

navigation, than in high information environments. We observe this phenomena across a suite

of background information levels and perceptual ranges (Supplementary Information, Figure 3).

Varying information fields

We now consider navigation for the random, increasing and decreasing background informa-

tion fields, illustrated in Figure 2. In the random information field the inherent information is

sampled from a uniform distribution on (0, 2Ω0). Navigation behaviour, presented in Figures 4

(a)-(d), is similar to that observed for the constant information field with the same mean infor-

mation level, suggesting that local fluctuations in background information do not significantly

impact navigation ability compared to the mean background information. Under increasing
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Figure 4: Navigation behaviour for 100 individuals in (a)-(d) a random information field, (e)-
(h) an increasing information field, and (i)-(l) a decreasing information field. (a),(e),(i) A
schematic representation of each type of field. (b),(f),(j) The number of individuals remaining
in the system over time. (c),(g),(k) The average number of neighbours within the perceptual
range. (d),(h),(l) The distance between the target location and the average location of the
individuals. Results are presented for a perceptual range of 0 (black, dashed), 5 (blue), 10
(magenta), 20 (orange), 50 (purple) and 500 (green). Parameters used are (a)-(d) Ω0 = 1,
(e)-(l) Ωmax = 2, Ωmin = 0.5, ω = 1/50, γ = 50 and α = β = 0.5. All data are the average of
ten realisations of the model.
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Figure 5: Navigation behaviour for 100 individuals in a chasm information field. (a) A schematic
representation of the field. (b) The number of individuals remaining in the system over time.
(c) The average number of neighbours within the perceptual range. (d) The distance between
the target location and the average location of the individuals. Results are presented for a
perceptual range of 0 (black, dashed), 5 (blue), 10 (magenta), 20 (orange), 50 (purple) and 500
(green). We note that the levelling off of the distance to the target statistics under low perceptual
ranges is due to a few individuals remaining trapped in the information void. Parameters used
are Ω0 = 1, c = {x | 125 ≤ ||x − xtarget|| ≤ 175}, imposing a void of fixed width 50, and
α = β = 0.5. All data are the average of ten realisations of the model.

(Figures 4(e)-(h)) and decreasing (Figures 4(i)-(l)) information fields we again see that a small

number of observed neighbours reduces navigation ability, compared to local navigation, and

that observing sufficiently many neighbours enhances navigation ability. For the decreasing

field the effect of perceptual range on navigation ability is not particularly strong, as the high

information level at the beginning of the simulation allows the population to remain together.

In contrast, when the increasing information field is considered, an initially low level of infor-

mation leads to population dispersal. As such, there is a stronger relationship between the

perceptual range and the navigation ability.

Void information fields

We now turn our attention to void information fields, which describe a migration route that

involves passage through one or more regions with negligible navigating information. We con-

sider two forms of void information field: chasm fields, which contain a single void of fixed

width that must be traversed en-route to the target, and; patchy fields, which contain multiple

voids of variable size and shape. We first consider the chasm information field, and present

the navigation behaviour in Figure 5. Notably, navigating using inherent information only be-

comes ineffective. Considering the distance between the centre of the population and the target

location (Figure 5(d)) we observe that navigation is effective until reaching the region of zero

information. At this point, unbiased random motion is required to navigate through the zero

information region. Upon reaching the target-side of the void, an individual once more receives

non-negligible information concerning the location heading.

In contrast, individuals that incorporate group information can observe individuals that may

be outside of the zero information region, conferring a non-zero level of information regarding
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Figure 6: Effective concentration parameter and the average number of neighbours as a function
of the distance to the target location for 100 individuals in a chasm information field with a void
of width (a),(d) 50, (b),(e) 100 and (c),(f) 150 for perceptual ranges of 20 (blue), 50 (magenta)
and 500 (orange). The results for purely local navigation correspond to the dashed black line.
Parameters used are α = β = 0.5, Ω0 = 1 and (a),(d) c = {x | 125 ≤ ||x − xtarget|| ≤ 175},
(b),(e) c = {x | 100 ≤ ||x − xtarget|| ≤ 200}, (c),(f) c = {x | 75 ≤ ||x − xtarget|| ≤ 225}. All
results are the average of ten realisations of the model.
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the heading of the target location. Intuitively, increasing the perceptual range increases the nav-

igation ability of individuals. For a void of width fifty, navigation ability does not dramatically

improve for perceptual ranges larger than twenty, corresponding to a range where an individual

almost always observes neighbours outside the void. Note that even where an individual is itself

unable to observe a neighbour located outside of the zero information region, the neighbours

that it does observe could themselves be observing such individuals. Thus, improved navigation

follows via a relay of information from individuals outside to individuals deep inside the void.

To shed further light on this phenomenon we calculate the effective concentration parame-

ter and the number of neighbours as a function of distance from the target location for three

different perceptual ranges and three sizes of information void, and present the results in Figure

6. The effective concentration parameter at each distance to the target is obtained from fitting

a von Mises distribution to the differences between individual headings (at that distance to the

target) and the target heading. As expected, the effective concentration parameter decreases

inside the void, and this decrease is ameliorated by larger perceptual ranges. For larger voids, a

prolonged decrease in the effective concentration parameter is observed. Notably, this decrease

is asymmetric around the void midpoint. This asymmetry appears to arise through a short-lived

persistence in navigation performance in the random walk as the individuals initially move into

the void. Eventually, nearly all individuals find themselves within the void and group navigation

provides a reduced but, crucially, non-negligible benefit. Subsequently, individual motion ap-

proaches an unbiased random walk and the group becomes disperse. As some individuals emerge

on the target-side of the void, information begins to flow through to the individuals still within

the void, causing the effective concentration to increase as individuals approach the target-side

of the void. Larger perceptual ranges cause this increase to occur earlier, again demonstrating

the benefit of an increased perceptual range with respect to navigation performance.

We next consider patchy void information fields. For the random information field in Fig-

ure 4, we treat randomness as a uniform random variable, sampled each time an individual

undergoes reorientation. This can be interpreted as randomness at a fine scale, specifically at

the length scale of the run between reorientations. It is equally plausible, though, to consider

randomly-generated information fields that exhibit local correlation between information levels.

That is, if an individual is in a low information area due to external factors, such as noise

pollution, it is likely that the surrounding area is also a low information area. We generate such

random information fields using a modified form of fractional Brownian noise; details are given

in the Supplementary Information. Three representative fields are presented in Figure 7, where

each field is generated following the same procedure but differences arise due to the number of

nodes in the grid used to generate the noise. An increase in the number of nodes corresponds

to finer structure present in the information field. For example, the information field in Figure

7(a) uses 16 times as many nodes in each direction as in Figure 7(i), and exhibits much finer

spatial structure.
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Figure 7: Navigation behaviour for 100 individuals in a fractional Brownian information field for
different sizes of noise structures generated with (a)-(d) m = n = 400, (e)-(h) m = n = 100 and
(i)-(l) m = n = 25 spatial nodes (see Supplementary Information). (a),(e),(j) Representative
images of each randomly-generated field. (b),(f),(j) The number of individuals remaining in the
system over time. (c),(g),(k) The average number of neighbours within the perceptual range.
(d),(h),(l) The distance between the target location and the average location of the individuals.
Results are presented for a perceptual range of 0 (black, dashed), 5 (blue), 10 (magenta), 20
(orange), 50 (purple) and 500 (green). Parameters used are Ω0 = 1 and α = β = 0.5. All data
are the average of twenty realisations of the model.
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Figure 8: Navigation time required for 100 individuals in (a)-(b) a constant information field or
(c)-(d) a void information field for (a),(c) a suite of (α, β) values, and (b),(d) a range of α = β
values. Navigation time is defined as the average time taken for 90% of the population to reach
the target location. Here Ω0 = 1, rmax = 20, and (c)-(d) c = {x | 125 ≤ ||x − xtarget|| ≤ 175}.
All data are the average of ten realisations of the model. The dashed line in (a),(c) corresponds
to the results in (b),(d).

For the three patchy information fields, with different scales of spatial structure, we calculate

the navigation behaviour and present the results in Figure 7. Under the finest scale of spatial

structure, which is closest to the original random information field, we again see the trend

of increased navigation ability above a threshold number of observed neighbours. For coarser

spatial structure, however, local navigation becomes less effective than the smallest perceptual

range. For such information fields individuals can become trapped in low information areas,

and therefore rely on random motion to return to high information areas. The risk of becoming

trapped decreases with an increased perceptual range, as an individual can observe the move-

ment of neighbours in high information areas. For realistic environments, where regions of low

information may be present due to a range of external factors, this highlights the benefit of

employing group navigation.

Balancing inherent and group information

Thus far we have assumed that individuals equally balance inherent and group information. It

is also possible that individuals place different values on these information sources. We therefore

consider a range of values for α and β, representing the weight placed on the inherent informa-

tion for the heading and concentration parameters, respectively. For each parameter pair, we

calculate the average time required for 90% of the population to arrive at the target location in

a constant information field (Figures 8(a)-(b)). Neglecting inherent information, with respect

to the concentration parameter (low β values), results in an increase in navigation time. This

is due to the decrease in the inferred concentration parameter as less weight is placed on the

inherent observation. Striking a balance between group and inherent information, with respect

to the heading, reduces the navigation time. If an individual places too much weight on inherent

information, it does not benefit from the averaging of headings that occurs when considering

group information. Conversely, if an individual places too much weight on group information,

it becomes difficult to undergo significant changes in heading, as each individual relies heavily

on the directions of its neighbours. Figure 8(b) contains the subset of results in Figure 8(a)

17

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.443340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443340
http://creativecommons.org/licenses/by/4.0/


0 4000
Time

0

100
In

d
iv

id
u

a
ls

 r
e

m
a

in
in

g

0 4000
Time

0

100

N
e

ig
h

b
o

u
rs

0 4000
Time

0

300

D
is

ta
n

ce
 t

o
 t

a
rg

e
t

(a) (b) (c)

Reduced information

Reduced range

In
cr

e
a

se
 in

 n
a

v
ig

a
ti

o
n

 t
im

e
 (

%
)

Ω
0
 = 1 Ω

0
 = 0.5 Ω

0
 = 0.25

0

50
(d)

Figure 9: Navigation behaviour for 100 individuals in a chasm information field for (magenta)
noise-dependent information and (blue) noise-dependent perceptual range. (a) The number of
individuals remaining in the system over time. (b) The average number of neighbours within
the perceptual range. (c) The distance between the target location and the average location of
the individuals. (d) The increase in navigation time due to the presence of the information void,
that is, relative to a constant information field with the same Ω0 value. Results are presented for
Ω0 = 1 (solid), Ω0 = 0.5 (dashed), and Ω0 = 0.25 (dotted). Parameters used are α = β = 0.5,
rmax = 500 and c = {x | 125 ≤ ||x−xtarget|| ≤ 175}. All data are the average of ten realisations
of the model.

that satisfy α = β, that is, the same weighting is applied to both the heading and concen-

tration parameters. We observe that the minimum navigation time occurs near the middle of

the range. This is in contrast with the minimum navigation time in Figure 8(a), which occurs

for (α, β) = (0.3, 1). However, this overall minimum arises due to the reduction in uncertainty

when neglecting group information for the concentration parameter, as the distribution from

which the concentration parameter is inferred from becomes singular around the heading as

β → 1. As such, this may be an unrealistic assumption, as an individual would be equally

confident about an inferred heading obtained from two observations, of directly opposite head-

ings, as an inferred heading obtained from 100 observations clustered around a certain direction.

We perform a similar analysis for a chasm information field, and present the results in Fig-

ures 8(c)-(d). Compared to the constant information field, the region of poor navigation is now

found to occur for large α. Within this regime, an individual places too much weight on its

inherent information, with respect to the concentration parameter, which is clearly disadvan-

tageous when the individual finds itself within a void. In Figure 8(d) we present the subset of

results in Figure 8(c) that satisfy α = β. As for the constant field, the minimum clearly lies

in the centre of the range. Further investigations for increasing or decreasing fields yield the

same (Supplementary Information Figure 4), suggesting an overall optimum strategy in which

approximately equal weight is placed on inherent and group information.

Range-reducing or information-reducing noise

For the void information fields above, disturbances are considered in the form of step-like changes

to inherent information, so that an individual entering the void possesses negligible inherent in-

formation. It could also be appropriate to consider disturbances in the form of perceptual range
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Figure 10: Comparison of migration from 55◦N, 3◦E to 62◦N, 1◦W in the North Sea for 100
individuals in the presence of noise from oil rigs (blue) or in the presence of pristine soundscapes
(magenta). (b) The number of individuals remaining in the system over time. (c) The average
number of neighbours within the perceptual range. (d) The distance between the target location
and the average location of the individuals. Parameters used are Ω0 = 1, α = β = 0.5,
rmax = 114 km, s = 8 km/h. Orange lines are a subset of simulated individual trajectories.

reduction, i.e. an impaired individual can only perceive its neighbours up to a reduced distance.

To test this we examine whether an individual can more efficiently undertake navigation where

it cannot detect its neighbours due to noise, compared to where the individual loses the inherent

information regarding the target location due to noise. Specifically, an individual entering a

void region is impacted through either (i) zero inherent information yet a full perceptual range,

or (ii) full inherent information yet zero perceptual range.

We illustrate the impact of this alternative representation under the chasm information field

in Figure 9, where the background information is either low (Ω0 = 0.25), medium (Ω0 = 0.5) or

high (Ω0 = 1). We observe that at higher background information levels, an individual is able to

more efficiently navigate with a loss of perceptual range within an information void, compared

to a reduced level of inherent information. A loss of perceptual range means that the individual

will navigate based solely on its inherent information. Provided that there is a sufficient level

of background information, navigation remains efficient. In contrast, for lower background

information levels, navigation is more efficient with a loss of inherent information, compared

to a loss of perceptual range. Here, the loss of inherent information is less significant, as the

population relies on collective navigation to undertake efficient migration. These results suggest

that different navigation strategies can be optimal, depending on the information available to

the individual.

Case study

To illustrate our approach, we consider migration through real world environments subject to

different levels of anthropogenic noise. Specifically, we consider movements of minke whales

(Balaenoptera acutorostrata) through portions of the North East Atlantic Ocean, surrounding

the British Isles. Minke whales are the most frequently observed whale in these waters, found

west of Ireland, off the north and east of Scotland and up to Iceland, Norway and beyond

[37, 38, 39]. Sightings become less frequent in the southern North Sea, although seasonal ag-
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gregations have been observed in the Dogger Bank area near Denmark [40]. Notably, minke

whales sightings remain largely confined to the April to October period and it is assumed that

the population migrates south to winter in the mid Atlantic [41, 37]. We will consider two case

studies of minke whale migration: first, a south to north migration through the North Sea from

feeding grounds; second, migration through the East Atlantic Ocean, from southwest of Ireland

to the west of Norway.

While minke whales are typically seen singly, or in pods of two or three, their vocalisations

have been estimated to permit communication with conspecifics more than 100 km away [18].

Yet this calculation assumes a relatively “pristine” ocean soundscape, while modern marine

environments are subject to significant anthropogenic activities that act to amplify ambient

noise levels, such as shipping, wind farms, and oil exploration and drilling [15, 16]. Minke whale

behaviour is strongly altered by ocean noise, for example through source avoidance [42, 43, 44]

or raising call intensity [18]. The latter “Lombard effect” partially compensates for the noise,

yet an ∼ 80% loss of their communication range has been estimated when ambient noise is

raised 20 dB [18].

Motivated by the above, we construct an approximation of the noise levels present in the

North Sea, in particular by exploiting the availability of offshore well location data (data ob-

tained from the UK Oil and Gas Authority [45]). Specifically, the soundscape is formed through

a sum of Gaussian noise profiles centred at each site. This is of course a simplification of the

noise levels in the North Sea, as each offshore well may or may not be currently in operation,

and we also do not include further significant noise sources, such as those due to shipping [46].

Consequently, this case study is primarily for illustrative purposes. Individual behaviour is

modelled as detailed previously. However, to account for the presence of coastlines, jumps in

the random walk that would result in an individual crossing onto land are aborted. Coastlines

are constructed according to the Global Self-consistent, Hierarchical, High-resolution, Geogra-

phy Database [47]. Under an ambient noise level of 65 dB it is estimated that minke whales

are able to communicate up to 114 km [18] and it has been observed that minke whales travel

at a speed of approximately 8 km/h [48]. In the absence of data, we make the assumption that

minke whales undergo reorientation, on average, every 30 minutes.

In the first case study, we consider the change in minke whale navigation from a purported

feeding ground in the North Sea [40] to a target location in the East Atlantic Ocean either in the

presence of the anthropogenic noise in the North Sea, or in a pristine soundscape. The pristine

soundscape corresponds to a constant level of background information available to the individ-

uals. The information field arising from the offshore activity, as well as the navigation results,

are presented in Figure 10. We observe that the migration occurs approximately 15% slower

due to the presence of the noise pollution. This may impose a significant cost on the whales,

who must expend additional energy to successfully navigate toward their target, reducing the

energy stored for annual migration and breeding. Further, the noise pollution results in the
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Figure 11: Comparison of migration from 50◦N, 19◦W to 65◦N, 5◦E in the East Atlantic Ocean
for 100 individuals in the presence of (a) no noise pollution, (b) small-scale noise pollution, (d)
medium-scale noise pollution or (e) large-scale noise pollution. (c) The number of individuals
remaining in the system over time. (f) The average number of neighbours within the perceptual
range. Parameters used are Ω0 = 1, α = β = 0.5, rmax = 114 km, s = 8 km/h. Orange lines
are a subset of simulated individual trajectories.

group structure becoming dispersed. Close-knit group structure can be beneficial in terms of

defence from predation [49], foraging [50], and, as we have demonstrated, for efficient navigation.

In the second case study, we consider potential increases in offshore noise pollution through

the East Atlantic Ocean. We examine four different levels of noise pollution: the baseline case

of approximately consistent noise; small-scale noise pollution, where 20% of the migration route

contains significant noise pollution; medium-scale noise pollution, where 40% of the migration

route contains significant noise pollution, and; large-scale noise pollution, where the entire

migration route is enveloped by significant noise pollution. Sample trajectories under each noise

pollution condition, as well as the navigation behaviour, are presented in Figure 11. Again, we

observe that an increase in the total amount of noise corresponds to a decrease in navigation

performance. Interestingly, the sample trajectories indicate that the whales somewhat avoid the

areas of noise pollution, despite the model not containing any specific noise source avoidance

behaviour. This is likely due to the decrease in target-oriented motion in the areas of noise

pollution, resulting in random walks that cause the whales to leave the noisy area. Once

outside of the area of noise pollution, the inherent information available to the whales increases

and effective navigation toward the target location can take place. This highlights the need for

areas with pristine soundscapes, where it remains possible to communicate and acquire inherent
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information effectively.

Conclusion

Migratory behaviour, conducted as a group across long distances, is a routine phenomena ex-

hibited by many animal species [1]. The consistency of migration relies on the ability of animals

to detect appropriate orienteering cues and/or to perceive group members that are migrating

toward the same target. Both cue detection and perception can be inhibited by natural or

anthropological phenomena, such as noise pollution. It is unclear how collective migration is

impacted by this uncertainty in detection and communication. We have developed a novel

mathematical model of collective migration and navigation that incorporates decision making

under uncertainty. We employ this model to investigate how different information fields impact

navigation performance, and illustrate the model via a case study application, specifically a

disruption to minke whale migration due to anthropogenic noise pollution in the North East

Atlantic Ocean.

We observe a bimodal relationship between perceptual range and navigation performance

for various information fields, in which increasing the maximum perceptual range from zero

at first reduces, but subsequently improves, navigation performance. Using group information

raises certainty via increasing the concentration parameter, but at the expense of deviating the

location parameter from the target heading. When the number of observed neighbours is low,

the latter outweighs the former and navigation worsens. More observations tilts the balance

the other way, and the intuitive improvement due to group navigation is observed. This sug-

gests that the number of neighbours, rather than perceptual range, is the critical determinant

as to whether group information improves navigation. Further, the critical perceptual range

will depend on the degree to which the population remains clustered. Our model, though, has

applied the “metric distance” approach to communication, i.e. permitting interactions with any

number of individuals up to some fixed distance apart. This is a common assumption in models

[8] and is consistent with, for example, visual or auditory systems, where there is an upper

limit on the perceptual range. It is less certain, however, whether an individual can process

more than a certain number of neighbours; the “topological distance” model postulates that an

individual reacts to a fixed number of nearest neighbours, regardless of proximity [51]. This is

more relevant for animals that are densely clustered, where an individual could feasibly observe

many other individuals within its perceptual range. Whether this alternative approach robustly

(i.e. regardless of the form of navigational field and degree of clustering) generates improved

navigation above a critical fixed interaction number remains to be explored.

Lengthy migrations towards a target can be divided into a set of stages [4]: a long distance

phase, a homing phase, and a pinpointing phase. Often, distinct navigational cues will be used

in the distinct phases [4]. For example, the mechanisms used by marine turtles to home on

remote nesting beaches is believed to involve the geomagnetic field at longer distances, and ol-
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factory or visual information at shorter ranges [52, 53, 54]. Within a context such as this, void

information fields can be viewed as an information gap, where the navigator must cross some

space of low information to bridge the regions where long and short distance cues are effective.

Group navigation becomes particularly advantageous here, where for large-scale information

voids any nonzero level of group information improves navigation. An observation acquired

from a minimally more knowledgeable neighbour is sufficient to provide some target-oriented

drift. Benefits of group navigation extend to very short perceptual ranges, that is, where the

perceptual range is a full order of magnitude below the dimensions of the void region. Informa-

tion reaches the centre of the void through a relay, so that an individual deep inside the void

will still receive some information even when all of its observed neighbours are inside the void.

This can occur as just one of those neighbours’ neighbours may be in a region of high inherent

information.

Navigation can be disrupted by a decrease in inherent information (i.e. reduced quality of

the external navigating cue) and/or a decrease in group information. As expected, the loss of

either information source reduces navigation performance. Notably, though, a distinct response

is observed according to the general level of inherent information: a loss of inherent infor-

mation is more disruptive when the background navigation information is high, while a loss

of group information has a more severe impact when the background navigation information

is low. This reinforces the notion that group navigation is particularly advantageous within

weaker information environments and stems from the degree to which the population spreads:

low (high) information environments leads to greater (lower) spreading and the average number

of neighbours in the perceptual range is lower (higher). It is perhaps logical to suppose, there-

fore, that populations will have evolved different strategies for reducing the impact of different

types of navigational disruption. This could occur, for example, by spreading out to the lim-

its of their perceptual range when passing through low information regions and maintaining a

tight/compact form when the perceptual range is inhibited. Against such a strategy, spreading

out could render the population vulnerable to unpredictable communication range loss, e.g.

sudden noise sources. We note that our current model does not allow the population to control

their separation through attraction/repulsion behaviour, and a natural extension is to adapt

the model to include such behaviour [7]. Admitting control of group structure can facilitate

investigations of whether particular group shapes are advantageous, such as an elongated shape

to allow information transfer across voids. “Leader-type” individuals are also likely to be im-

portant for group structure, for example by adopting a specific spatial position with respect to

the group to maximise information transfer.

We have restricted our attention to static information fields, that is, levels of inherent infor-

mation that only vary in space. Temporal variation could occur due to, for example, weather

conditions or intermittent human activity. The degree to which dynamic variation impacts on

journeys will, naturally, depend on the duration of the disruption: the return of little penguins

(Eudyptula minor) from daily foraging is delayed by heavy fog, possibly due to their reliance
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on visual navigating cues [55]. The impact of longer lasting dynamic variability could, to a

degree, be inferred from the existing results. Slowly shifting cloud cover could be represented

by evolving patchy void environments, and group navigation is always beneficial in such scenar-

ios. Dynamic variability could also arise from the behaviour of individuals that have reached

the target. The arbitrary modelling decision here has been to remove such individuals from

the system, and hence those individuals no longer influence navigation. It is also possible that

individuals actively communicate on arrival, providing information about the target location.

Such behaviour has been suggested in humpback whale populations, where individuals sing

upon reaching winter grounds, which may attract other humpbacks to the area [56].

Anthropogenic activity has substantially increased ocean noise levels over the past century

[14, 15]. As a case study, we have explored noise-impacted minke whale migration through

the North East Atlantic Ocean. Hypothesising that minke whales use vocal communication

to share navigation information, we have shown that increasing noise pollution decreases nav-

igation performance, thereby demanding longer travel times. Migration is costly, depleting

an animal’s energy reserve without any guarantee of replenishment en-route, and hence any

increased expenditure is disadvantageous to population fitness. Without an explicit represen-

tation of noise source avoidance, pathways are diverted from high noise areas as the animal

searches for a route with adequate navigation information. Nevertheless, it remains important

to stress that this study has been primarily expository in nature, and several further exten-

sions demand consideration. First, as highlighted above, we have ignored the consequences

of other behavioural interactions, for example an individual changing direction and speed to

avoid a noise source, or regulating intergroup spacing. Second, we have ignored ocean currents,

which could act to assist or hinder navigation and impact on sound propagation. Third, our

incorporation of noise impacts has been rather simplistic: we neglect other potential sources,

such as shipping, and we do not explicitly include the physics of noise propagation within the

ocean. These caveats aside, the framework is highly adaptable, can be easily translated to other

geographical locations, and can be extended in a modular fashion to include data inputs such

as ocean currents, bathymetry and sound profiles.

Data access. The code used to implement the mathematical framework is available at

https://github.com/DrStuartJohnston/collective-navigation. The look-up table is available at
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Supplementary Information

Concentration parameter estimation

Comparing the likelihood function, P (κ|κ̂, n), the distribution of the uncorrected maximum

likelihood estimate, P (κ̂|κ, n), and the distribution of the corrected maximum likelihood es-

timate, P (κ̂∗|κ, n), shows that both the corrected estimate and the likelihood function avoid

the heavy tail present in the uncorrected estimate, Figure 12. However, the likelihood function

approach reduces the bias present without significantly inflating the number of estimates of the

concentration parameter that are zero.
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Figure 13: Navigation behaviour for 50 (orange), 100 (magenta) and 200 (blue) individuals
in a constant information field. (a) The number of individuals remaining in the system over
time. (b) The proportion of the initial number of individuals remaining in the system over time.
(c) The average number of neighbours within the perceptual range. (d) The distance between
the target location and the average location of the individuals. Results are presented for a
perceptual range of 10 (blue), 10

√
2 (magenta) and 20 (orange). Parameters used are Ω0 = 1

and α = β = 0.5. All data are the average of ten realisations of the model.

Critical perceptual range

To clarify the relationship between the perceptual range, the number of observed neighbours

and the navigation ability of the population, we present results where we vary the initial num-

ber of individuals, N , as well as the perceptual range, rmax. Crucially, we select these values

such that Nr2max is constant. This is approximately equivalent to ensuring that there are the

same number of observed neighbours within the perceptual range in each simulation. In Figure

13(a), we observe that for a perceptual range of ten, there are more individuals remaining in

the simulation compared to larger perceptual ranges. However, if we consider the proportion of

remaining individuals, presented in Figure 13(b), we see that the results are extremely similar

for all three perceptual ranges. The number of observed neighbours is relatively consistent, as

shown in Figure 13(c), as is the average distance between the target location and the population.

These results corroborate our above hypothesis that the number of observed neighbours is the

critical measure that informs navigation ability. However, it is not necessarily straightforward

to determine the number of neighbours a priori, as it depends both on the background level

of information, which influences population dispersal, and the perceptual range, which allows

individuals to observe neighbours that are located farther away.

We extend our earlier analysis for a suite of perceptual range and background information

combinations to determine the critical perceptual range, where collective navigation becomes

more efficient than navigation based solely on inherent information. We calculate the time

taken for 90% of the population to reach the target for a given perceptual range and back-

ground information level, relative to local navigation for that background level, and present

the results in Figure 14. We observe a decreasing relationship between the critical percep-

tual range and the background information. This reinforces the previous observation that the

benefit of a larger perceptual range is more pronounced for lower background information levels.
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Figure 14: Relative navigation time required for 100 individuals in a constant information
field for a suite of background information levels (Ω0) and maximum perceptual ranges (rmax).
Relative navigation time is defined as the average time taken for 90% of the population to
reach the target location, compared to navigation based on purely inherent information, that
is, rmax = 0. Here α = β = 0.5. All data are the average of ten realisations of the model.

Balancing inherent and group information

We repeat the analysis in Figure 8 (Main manuscript) for both increasing and decreasing in-

formation fields and present the results in Figure 15. The observed navigation time across the

α and β parameter space for both the increasing and decreasing information fields are quali-

tatively similar to the constant information field. Again, the minimum navigation time under

the restriction that α = β arises when α = β = 0.5 or α = β = 0.6, suggesting that an approx-

imately equal weighting between inherent and group information results in optimal navigation

performance.

Fractional Brownian noise information fields

For further details on how to generate fractional Brownian noise information fields see [22]. We

generate information fields, ΩFBN(x), according to process detailed in [22], and impose a scaling

such that the noise is defined between zero and one. To generate distinct information-rich and

information-poor regions, we transform the noise level according to obtain the information field:

Ω(x) =

ΩFBN(x)2 if ΩFBN ≤ 0.5,

1− (1− ΩFBN(x))2 if ΩFBN > 0.5.
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Figure 15: Navigation time required for 100 individuals in a (a),(d) void information field,
(b),(e) increasing information field, and (c),(f) decreasing information field for (a)-(c) a suite
of (α, β) values, and (d)-(f) a range of α = β values. Navigation time is defined as the average
time taken for 90% of the population to reach the target location. Parameters used are (a),(d)
Ω0 = 1, (b)-(c), (e)-(f) Ωmax = 2, Ωmin = 0.5, ω = 1/50, γ = 50. All data are the average of
ten realisations of the model. All data are the average of ten realisations of the model. The
dashed line in (a)-(c) corresponds to the results in (d)-(f).

32

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.09.443340doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.09.443340
http://creativecommons.org/licenses/by/4.0/

