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Abstract 

The UK Biobank (UKB) is a large-scale epidemiological study and its imaging 

component focuses on the pre-symptomatic participants. Given its large sample size, rare 

imaging phenotypes within this unique cohort are of interest, as they are often clinically 

relevant and could be informative for discovering new processes and mechanisms. 

Identifying these rare phenotypes is often referred to as “anomaly detection”, or “outlier 

detection”. However, anomaly detection in neuroimaging has usually been applied in a 

supervised or semi-supervised manner for clinically defined cohorts of relatively small 

size. There has been much less work using anomaly detection on large unlabeled cohorts 

like the UKB. Here we developed a two-level anomaly screening methodology to 

systematically identify anomalies from ~19,000 UKB subjects. The same method was 

also applied to ~1,000 young healthy subjects from the Human Connectome Project 

(HCP). In primary screening, using ventricular, white matter, and gray matter-based 

imaging phenotypes derived from multimodal MRI, every subject was parameterized with 

an anomaly score per phenotype to quantitate the degree of abnormality. These anomaly 

scores were highly robust. Anomaly score distributions of the UKB cohort were all more 

outlier-prone than the HCP cohort of young adults. The approach enabled the 

assessments of test-retest reliability via the anomaly scores, which ranged from excellent 

reliability for ventricular volume, white matter lesion volume, and fractional anisotropy, to 

good reliability for mean diffusivity and cortical thickness. In secondary screening, the 

anomalies due to data collection/processing errors were eliminated. A subgroup of the 

remaining anomalies were radiologically reviewed, and a substantial percentage of them 

(UKB: 90.1%; HCP: 42.9%) had various brain pathologies such as masses, cysts, white 
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matter lesions, infarcts, encephalomalacia, or prominent sulci. The remaining anomalies 

of the subgroup had unexplained causes and would be interesting for follow-up. Finally, 

we show that anomaly detection applied to resting-state functional connectivity did not 

identify any reliable anomalies, which was attributed to the confounding effects of brain-

wide signal variation. Together, this study establishes an unsupervised framework for 

investigating rare individual imaging phenotypes within large heterogeneous cohorts. 

 

Keywords: Machine learning; Big data; Multimodal MRI; Individual-level analysis; 

Radiological findings.  

 

Abbreviations 

VV: ventricular volume 

WMLV: white matter lesion volume 

FA: fractional anisotropy 

MD: mean diffusivity 

CTh: cortical thickness 

RSFC: resting-state functional connectivity 

UKB: UK Biobank 

HCP: Human Connectome Project 

SD: standard deviation 
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Introduction 

Identifying image-based biomarkers for neurological and psychiatric disorders has 

been an important goal of neuroimaging. A common approach is to recruit diagnosed 

patients for assembling clinically defined cohorts. This strategy helps identify biomarkers 

for disease progression, but searching for pre-symptomatic biomarkers needs to image 

individuals before disease onset (Miller et al., 2016). Therefore, there is growing interest 

in collecting large pre-symptomatic cohorts to help search for relevant imaging 

biomarkers over a broad range of diseases. For example, UK Biobank (UKB) is enrolling 

500,000 subjects 40-69 years of age for extensive phenotyping and subsequent long-

term monitoring of health outcomes (Allen et al., 2012). One hundred thousand subjects 

in this cohort will also be imaged by MRI, making it the largest multimodal MRI cohort in 

the world (Littlejohns et al., 2020). 

Given the large sample size, the UKB cohort enables a unique opportunity to 

discover rare brain imaging phenotypes. These rare imaging phenotypes are of interest 

because they are often clinically relevant and could also be informative for discovering 

new processes and mechanisms. These rare observations are only expected to constitute 

a very small portion of the dataset. Rare observations are quantitative imaging 

phenotypes that differ by a large amount from most other observations around the group 

average. They are defined as phenotypes that are many standard deviations (SD) away 

from the average. Identifying them is often commonly referred to as “anomaly detection”, 

or “outlier detection” (Tan et al., 2006). Anomaly detection in neuroimaging has been 

applied as a data cleaning method to remove artefactual observations. For example, the 

built-in outlier detection feature in the FSL package is used to identify motion-corrupted 
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functional MRI timepoints via one of the unidimensional motion metrics (Jenkinson et al., 

2012). More sophisticated machine learning algorithms such as one-class support vector 

machine, Gaussian process regression, and autoencoders have been used to identify 

deviations of healthy individuals or groups of diagnosed patients’ from the normal subjects 

(Marquand et al., 2016; Mourao-Miranda et al., 2011; Pinaya et al., 2019; van Hespen et 

al., 2021). These studies usually relied on a relatively small cohort using only one imaging 

phenotype, making them difficult to generalize. Notably, the methods used in these 

studies were either supervised or semi-supervised, which requires diagnostic labels for 

all subjects (supervised) or at least the labels of normal subjects (semi-supervised) in 

advance (Goldstein and Uchida, 2016). However, diagnostic labels are not always 

available for imaging cohorts designed to capture pre-symptomatic participants such as 

the UKB, making these approaches challenging to implement. 

To address these issues and to identify rare imaging phenotypes in individual 

subjects, in the present study, we developed a two-level anomaly screening methodology 

that was applied to the UKB cohort of about 19,000 individuals. The same method was 

also applied to the Human Connectome Project (HCP) cohort of about 1,000 individuals. 

The HCP cohort, composed of healthy young adults aged 22-37, was used as a 

supplement to the UKB cohort, in which the latter includes much older subjects with 

different and often undetermined pathologies. Both cohorts have had the datasets curated 

with established procedures to review and decide on the inclusion of individual brain 

imaging data (Alfaro-Almagro et al., 2018; Glasser et al., 2013). Thus, these datasets 

should be of high quality, contain relatively few acquisition/processing errors, and give a 

wide range of ages to detect anomalies and to infer their causes. Here we made use of 
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the multimodal MRI data to derive ventricular, white matter, and gray matter-based 

imaging phenotypes of the brain (Fig. 1a). The first step was to parameterize each subject 

with an “anomaly score” per imaging phenotype in an unsupervised manner without any 

prior labels (Fig. 1b). This anomaly score quantifies how far an individual deviates from 

most other subjects. Anomaly subjects were defined as having an anomaly score greater 

than 3, which is equivalent to 4.7 times the SD above the average for a standard normal 

distribution. The robustness of anomaly scores for each imaging phenotype was 

examined. Anomaly score reliability was characterized in the subjects that had repeat 

MRI scans. Correlations of anomaly scores between different imaging phenotypes were 

also evaluated. The next step was to validate these anomalies (Fig. 1c). The anomalies 

were categorized according to whether there were data collection/processing errors, or 

whether the individual had positive radiological findings determined by a board-certified 

neuroradiologist. Finally, some individuals were considered to be novel anomalies 

because there was no specific reason to explain their large deviations from the average. 
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Fig. 1. Schematic illustration of the anomaly detection pipeline. (a) Brain imaging phenotypes used for anomaly 

detection. (b) Primary screening. For a unidimensional phenotype (VV, WMLV), the anomaly score of an individual was 

obtained from the volume measurement by subtracting the third quartile (Q3) and dividing the difference by the 

interquartile range (IQR) of the volume measurements. For a multidimensional phenotype (FA, MD, CTh, RSFC), an 

autoencoder was trained to replicate the input at its output. The input was a matrix (matrix size = dimensionality of the 

given phenotype × number of subjects). As an example, for display purposes, a grayordinate-wise CTh map, which 

was a column from the input matrix for CTh anomaly detection, is shown at the input. The subject-specific replication 

errors were measured by the root mean square errors (RMSE) between each input and the replicated output. The 

anomaly score of an individual was obtained from this subject-specific replication error by subtracting Q3 and dividing 

the difference by IQR of the replication errors. The subjects with an anomaly score > 3 were considered as anomaly 

subjects. (c) Secondary screening. The anomalies identified in primary screening were first checked for association 

with data collection/processing errors (left column). For the remaining anomalous subjects without the errors, a 

subgroup was reviewed by a board-certified neuroradiologist (middle column). The remaining anomalous subjects 

without positive radiological findings were considered as novel anomalies (right column). 
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Materials and Methods 

Datasets 

Brain imaging data were obtained from two cohorts: the UKB (Miller et al., 2016) 

(https://www.ukbiobank.ac.uk) and HCP (Van Essen et al., 2013) (Young Adult, 

https://www.humanconnectome.org). For the UKB cohort, the initial imaging visit data of 

19411 subjects (9172 males and 10239 females; age 44-80) were used in the present 

study (UKB “discovery” group). If available (not marked as “unusable” or “incompatible” 

by the UKB), each UKB subject’s T1w (3D magnetization-prepared rapid acquisition 

gradient echo [MPRAGE]) and T2w FLAIR structural MRI, spin echo (SE) echo-planar 

imaging (EPI) diffusion MRI (dMRI), and gradient echo (GE) EPI rsfMRI data were used. 

For the HCP cohort, the 3T data from the 1200 Subjects Release (1113 subjects: 550 

males and 656 females; age 22-37) were used in the present study. If available, each 

HCP subject’s T1w (3D-MPRAGE) and T2w (3D sampling perfection with application-

optimized contrast using different flip-angle evolutions [SPACE]) structural MRI, SE-EPI 

dMRI, and GE-EPI rsfMRI data were used. For both cohorts, some subjects only had 

usable structural MRI data, resulting in a reduced sample size of dMRI and rsfMRI data. 

For the HCP rsfMRI data, a smaller group of 795 subjects using an improved image 

reconstruction algorithm “r227” was used. The detailed demographic information is 

summarized in Table S1.  

The UKB data were acquired on identical 3T Siemens Skyra MRI scanners, and 

the HCP data were acquired on a 3T Siemens Connectome Skyra MRI scanner. The 

detailed UKB and HCP data acquisition protocols can be found elsewhere (Alfaro-

Almagro et al., 2018; Glasser et al., 2013). The UKB was approved by the North West 
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Multi-centre Research Ethics Committee. The HCP project was approved by the 

Institutional Review Board of Washington University. For each cohort, informed consent 

was obtained from all participants. The present study was approved by the Office of 

Human Subjects Research Protections at the National Institutes of Health (ID#: 18-

NINDS-00353). 

 

Image preprocessing and extraction of imaging phenotypes 

The following imaging phenotypes were extracted from imaging preprocessing 

outputs: ventricular volume (VV), white matter lesion volume (WMLV), fractional 

anisotropy (FA), mean diffusivity (MD), cortical thickness (CTh), and resting-state 

functional connectivity (RSFC). The detailed procedures are described as follows. 

T1w MPRAGE and T2-FLAIR images (T2w SPACE images if from the HCP cohort) 

were preprocessed by the HCP structural pipeline (v4; https://github.com/Washington-

University/HCPpipelines) (Glasser et al., 2013) based on FreeSurfer (v6.0.0; 

https://surfer.nmr.mgh.harvard.edu) (Fischl, 2012). To obtain the ventricular 

segmentation from the subjects without usable T2-FLAIR images or the subjects who 

failed the HCP pipeline, these subjects’ data were preprocessed with FreeSurfer v6.0.0 

directly using their T1w images (one subject failed FreeSurfer v6.0.0 was reprocessed 

with FreeSurfer v7.1.0). Also, the subjects with large segmentation defects in their 

enlarged ventricles were reprocessed with “-bigventricles” flag in FreeSurfer v6.0.0 

directly using their T1w images. The quality of ventricular segmentation was manually 

inspected. Each subject’s VV was calculated by summing up the volumes of lateral 

ventricles, temporal horns of the lateral ventricles, choroid plexuses, third ventricle, and 
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fourth ventricle. WMLV In the UKB cohort was calculated by the Brain Intensity 

Abnormality Classification Algorithm (BIANCA) (Griffanti et al., 2016), a k-nearest-

neighbor-based automated supervised method, using T2-FLAIR images but also T1w 

images as its inputs. Because of the lack of HCP T2-FLAIR data, WMLV In the HCP 

cohort was obtained from the volumes of T1w white matter hypointensities segmented by 

FreeSurfer, which uses probabilistic information estimated from a built-in set of manually 

segmented images (Fischl et al., 2002). For both cohorts, CTh values in the standard 

CIFTI grayordinate space (with folding-related effects corrected) from only the subjects 

preprocessed successfully by the HCP structural pipeline, were used for primary 

screening. 

In both cohorts, dMRI data underwent FSL eddy-current and head-movement 

correction (Andersson and Sotiropoulos, 2016), gradient distortion correction, diffusion 

tensor model fitting using the b = 1000 shell (Basser et al., 1994), and Tract-Based Spatial 

Statistics (TBSS) analyses (Smith et al., 2006). The TBSS skeletonized images were 

averaged within the ROIs of the John Hopkins University white matter atlas (Mori et al., 

2008). Here the original MD values were multiplied by 10000 to convert to the unit of 10-

4 mm2/s. The FA or MD maps of 27 major white matter ROIs (Table S2) were used for 

primary screening.  

UKB rsfMRI data were preprocessed by the UKB rsfMRI pipeline (v1; 

https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1) (Alfaro-Almagro et al., 

2018), and the ICA + FIX denoised data (Griffanti et al., 2014; Salimi-Khorshidi et al., 

2014) were brought to the HCP standard surface space using Ciftify (v2.3.2; 

https://github.com/edickie/ciftify) (Dickie et al., 2019). For each subject, the SD of percent 
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change time series of each grayordinate was calculated, and the grayordinates with this 

SD greater than 0.1 were considered as noisy grayordinates. These noisy grayordinates 

were masked from further analyses. HCP rsfMRI data were preprocessed by HCP 

functional pipeline (v3) (Glasser et al., 2013) and were also denoised by ICA + FIX. The 

two runs (left-to-right and right-to-left phase encoding directions) of the same session 

were demeaned, variance normalized, and then concatenated temporally, so each HCP 

subject had two sessions of preprocessed rsfMRI data. Using a well-established RSFC-

based parcellation scheme (333 parcels) (Gordon et al., 2016), RSFC was quantified by 

the Pearson cross-correlation coefficient between the ROI-averaged time series of each 

pair of parcels, with or without global signal regression, respectively. RSFC was also 

quantified using partial correlations with Tikhonov regularization (UKB: ρ = 0.5; HCP: ρ = 

0.01) (Pervaiz et al., 2020). Due to the symmetry of the RSFC matrices, the upper 

triangular parts of these matrices (333*332/2 = 55278 elements) from each of these three 

RSFC evaluation methods were used for primary screening respectively. 

 

Primary screening 

Two-level anomaly screening was performed for each dataset separately. In 

primary screening, each imaging phenotype was screened separately. In a given imaging 

phenotype, every subject was parameterized with an anomaly score. This anomaly score 

quantified the degree of abnormality in that imaging phenotype.  

For a unidimensional imaging phenotype (VV, WMLV), using VV as an example, 

the anomaly score of an individual was transformed from the VV value of this individual: 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 =  
𝑉𝑉−𝑄3

𝐼𝑄𝑅
                                                  (1) 
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where Q3 was the third quartile of the VV distribution of all subjects, and IQR was the 

interquartile range of this distribution. The anomaly score of the other unidimensional 

imaging phenotype, WMLV, was calculated similarly.  

For each multidimensional imaging phenotype (FA, MD, CTh, RSFC), an 

autoencoder was used to calculate the anomaly scores (Hawkins et al., 2002). Setting 

the dimensionality of the imaging phenotype as M and the number of subjects in a cohort 

as N, the inputs to the autoencoder were the values of that imaging phenotype across the 

whole cohort (M * N), and the autoencoder was trained to replicate this input at its output. 

Here, this autoencoder was comprised of an input layer (M dimensions), a hidden layer 

of 10 neurons, and an output layer (M dimensions). A sparsity proportion of 0.05 was 

used, and the sparsity regularization coefficient was set to 1. The L2 weight regularization 

coefficient was set to 0.001. The sigmoid function was used as the activation function, 

and the mean squared error function adjusted for sparse autoencoder was used as the 

loss function. A scaled conjugate gradient descent algorithm (Moller, 1993) was used for 

training this autoencoder. Regional deviation values (M * N) were calculated by 

subtracting the autoencoder-predicted output from input, and the value in the ith row and 

jth column of this matrix characterizes deviations from the value predicted by the 

autoencoder. For each subject, these values can be plotted in the white matter ROIs (FA 

or MD) or in grayordinates on the brain surface (CTh), respectively, to visualize regional 

deviations. The subject-specific replication errors (also known as “reconstruction error” in 

the context of autoencoder) were measured by the root mean square errors between each 

input and the replicated output. The anomaly score of an individual was obtained by 

transforming this subject-specific replication error: 
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𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 =  
𝑒𝑟𝑟𝑜𝑟−𝑄3

𝐼𝑄𝑅
                                                 (2) 

where Q3 was the third quartile of the replication error distribution of all subjects, and IQR 

was the interquartile range of this distribution. The autoencoders were implemented using 

the ‘trainAutoencoder’ function in the MATLAB and were trained using a GPU cluster 

(https://hpc.nih.gov). Multiple autoencoders were used for an imaging phenotype when 

the input (UKB CTh, UKB RSFC) was too large to fit into the GPU memory: In these 

scenarios, the input data were split into 9 to 10 smaller groups in a stratified manner, 

which preserved the ratio of age and sex in each group. For each group, an autoencoder 

was trained using the data of that group as the input. The trained autoencoders were then 

applied to the full dataset and the output of the cohort was obtained by averaging the 

outputs from each of these autoencoders. For HCP RSFC, because each subject had two 

sessions, the RSFC data of the first sessions were used to train the autoencoder. 

In the above analyses, to control the effects of two covariates (age, brain volume) 

on anomaly detection, their correlations with VV, WMLV, and the autoencoder replication 

errors of multidimensional imaging phenotypes were evaluated. The covariates with 

correlation >0.3 were regressed out from VV, WMLV, or the replication errors before 

applying Eq. (1) or (2). Therefore, brain volume and age were regressed out from UKB 

VV, but only brain volume was regressed out from HCP VV (Fig. S1). Age was regressed 

out from UKB WMLV, and brain volume was regressed out from HCP WMLV (Fig. S1). 

The outlying subjects only comprised a small portion of the cohort used for training 

the autoencoder, therefore the trained autoencoder cannot replicate these rare anomalies 

as well as the commonly seen normal subjects. This contributed to the larger replication 

errors and subsequently larger anomaly scores for the outlying subjects. In statistics, Q3 
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+ 3 * IQR is commonly used to define extreme outliers in that distribution (Tukey, 1977). 

This is equivalent to an anomaly score of 3. Here, ((Q3 + 3 * IQR) – Q3)/IQR = 3. 

Therefore, subjects with an anomaly score of greater than 3 were considered anomalies 

in primary screening.  

 

Secondary screening 

In secondary screening, the anomaly subjects identified in primary screening were 

first checked to see if the anomalies were associated with data collection/processing 

errors.  

For each VV anomaly subject, ventricle segmentation quality was visually 

inspected by overlaying the border of the segmented ventricle mask on the T1w image. 

For each WMLV anomaly subject, white matter lesion segmentation quality was visually 

inspected by overlaying the border of the segmented lesion mask on the T2-FLAIR image 

(T1w image if from the HCP cohort). The anomaly subjects with incorrect segmentation 

were deemed to be associated with data collection/processing errors.  

For the subjects with usable dMRI data, the dMRI motion parameters 

(*.eddy_restricted_movement_rms) were calculated by FSL’s eddy tool (Andersson and 

Sotiropoulos, 2016), and the head motion of each subject was summarized by the mean 

and largest values of the volumetric movements between adjacent frames. The subjects 

with at least one of these two summary parameters above the upper inner fence (Q3 + 

1.5 * IQR, commonly used to define mild outliers in statistics (Tukey, 1977)) of the cohort 

distribution were flagged with severe head motion. The registration quality was assessed 

by each subject’s mean deformation of the TBSS nonlinear registration, and the subjects 
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with this parameter above the upper inner fence (Q3 + 1.5 * IQR) of the cohort distribution 

were flagged with bad registration. The FA or MD anomaly subjects were also visually 

checked for registration quality and FOV coverage. The FA or MD anomaly subjects with 

incorrect FOV coverage, bad head motion, or bad registration were deemed to be 

associated with data collection/processing errors.  

For CTh, volume registration quality was quantified by the number of 

suprathreshold voxels in the Jacobian map of nonlinear registration. Surface registration 

quality was quantified by areal and shape distortion maps of folding alignment (MSMSulc) 

surface registration (Robinson et al., 2018). Using the aforementioned multidimensional 

anomaly detection method and these distortion maps as inputs, an anomaly score for the 

areal distortion map and an anomaly score for the shape distortion map were calculated 

for each subject. T1w/T2w ratio myelin maps (Glasser and Van Essen, 2011) were further 

used to detect potential surface segmentation issues that could be caused by the 

subject’s anatomy, and an anomaly score for the T1w/T2w ratio myelin map was 

calculated for each subject via multidimensional anomaly detection. White/pial surface 

segmentation quality of the CTh anomaly subjects was checked via HCP pipeline 

structural quality control scenes (https://github.com/Washington-University/StructuralQC; 

v1.4.0), and the CTh anomaly subjects with poor surface segmentation were flagged. T1w 

structural images of the CTh anomaly subjects were also inspected visually, and the 

subjects with visible motion artifacts such as ringing artifacts were flagged. Taken 

together, the CTh anomaly subjects with bad volume or surface registration quality, 

anomalous T1w/T2w ratio map, bad white/pial surface segmentation, or visible motion 
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artifacts in T1w images were deemed to be associated with data collection/processing 

errors.  

For RSFC, because the global signal has been recognized as a controversial 

confounding factor in rsfMRI data processing (Liu et al., 2017), the relationship between 

RSFC anomaly score and the global signal was assessed for each RSFC evaluation 

method. In previous studies of volume-based analyses (Wong et al., 2016; Wong et al., 

2013), percent change time series at each voxel was calculated by dividing the demeaned 

preprocessed rsfMRI time series by the mean, and a global mean percent change time 

series was obtained by averaging percent change time series across all brain voxels. The 

SD of this global mean percent change time series was defined as the global signal 

amplitude in these volume-based analyses. In the present study of surface-based 

analyses, a percent change time series was calculated at each grayordinate instead by 

dividing the demeaned ICA-FIX denoised CIFTI time series by the mean, and a global 

mean percent change time series was obtained by averaging percent change time series 

across all cortical grayordinates. The SD of this grayordinate-based global mean percent 

change time series was defined as the global signal amplitude in the present study.  

The anomaly subjects without data collection/processing errors were radiologically 

reviewed. T1w MPRAGE and T2-FLAIR images (T2w SPACE images if from the HCP 

cohort), as well as subjects’ age, were provided for a board-certified neuroradiologist 

(D.S.R.) for radiological review. The instructions to the neuroradiologist were to identify 

major findings that might plausibly account for the outlying anomaly score — not to identify 

subtle abnormalities that would have required dedicated review on clinical-grade display 

systems. When the neuroradiologist had any uncertain diagnoses, UKB health outcomes 
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data (UKB Category 1712), which recorded the first occurrence of various diseases, 

including neuropsychiatric and neurological disorders, were used in an attempt to 

determine the diagnoses. The anomaly subjects with findings of uncertain etiology, or 

without any positive radiological findings were considered as “novel” anomalies. VV 

anomalies of big ventricles but without any other noticeable pathology were also 

considered as novel anomalies. WMLV anomalies were considered as “novel” only when 

the distribution of white matter lesions was atypical. 

 

Evaluation of robustness of anomaly scores 

The initial imaging visit data of another 19350 subjects (9005 males and 10345 

females; age 47-82) were used in the present study (UKB “replication” group; see Table 

S3 for detailed demographic information) to evaluate the robustness of anomaly scores. 

This group had no overlapping subjects with the UKB discovery group.  

For VV anomaly score, because it’s unidimensional, its robustness was assessed 

by directly comparing the VV distribution of the discovery group against the distribution of 

the replication group via a two-sample Kolmogorov-Smirnov test. The robustness of 

WMLV anomaly score was assessed similarly.  

For FA anomaly score, first, the robustness of the discovery group subjects’ 

anomaly scores was evaluated by the intraclass correlation (Shrout and Fleiss, 1979) 

(ICC) between two sets of their anomaly scores calculated separately using two different 

autoencoders: one autoencoder trained using the discovery group itself, and another 

autoencoder trained using the replication group. Second, the robustness of the replication 

group subjects’ anomaly scores was evaluated by the ICC between two sets of their 
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anomaly scores calculated separately using two different autoencoders: one autoencoder 

trained using the replication group itself, and another autoencoder trained using the 

discovery group. For each of these ICCs, a one-way random effects model was used: 

𝐼𝐶𝐶(1, 1) =  
𝑀𝑆𝑏−𝑀𝑆𝑤

𝑀𝑆𝑏+(𝑘−1)𝑀𝑆𝑤
                                                (3) 

where MSb is the between-subject mean square, MSw is the within-subject mean square, 

and k is the number of observations per subject (McGraw and Wong, 1996). The 

robustness of the anomaly scores of other multidimensional imaging phenotypes was 

assessed similarly.  

 

Evaluation of reliability of anomaly scores 

A subgroup (1427 subjects) of the UKB discovery group subjects had a repeat MRI 

session (aka “retest”) two to three years after the initial imaging visit (aka “test”). The test 

and retest data of these subjects were used to evaluate long-term reliability of anomaly 

scores. Short-term (~1 day) reliability of RSFC anomaly score was also assessed using 

the two sessions of the HCP rsfMRI data. For each unidimensional imaging phenotype, 

unlike the primary screening, their measurements in the reliability analysis were no longer 

adjusted for covariates. The Q3 and IQR were calculated from the full test data and 

applied to calculate anomaly scores for both test data and, for subjects who were scanned 

twice, retest data. For each multidimensional imaging phenotype, anomaly scores of the 

test visit calculated in the primary screening were used directly. To calculate the anomaly 

scores of the retest visit, the autoencoders that were trained on the full test data were 

applied to the retest data. The reliability was quantified by ICC between the anomaly 

scores of the test and retest data using Eq. (3). Reliability was defined as excellent (ICC > 
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0.8), good (0.6 < ICC < 0.8), moderate (0.4 < ICC < 0.6), fair (0.2 < ICC < 0.39), or poor 

(ICC < 0.2) (Guo et al., 2012) in the present study. 

 

Evaluation of the relationships between anomaly scores of different imaging 

phenotypes 

In the UKB discovery group, the relationships between anomaly scores of different 

imaging phenotypes were quantified using Pearson cross-correlation coefficients. The 

anomalies due to data collection/processing errors were excluded from this analysis. Two 

representative relationships of anomaly scores, WMLV versus VV, and WMLV versus FA, 

were also visualized using scatterplots. In each scatterplot, three zones were defined to 

categorize anomaly subjects. For WMLV versus VV, zone I covered the subjects who 

were VV anomalies but with normal WMLV (WMLV anomaly score < 1.5), zone II covered 

the subjects who were both VV and WMLV anomalies, and zone III covered the subjects 

who were WMLV anomalies but with normal VV (VV anomaly score < 1.5). The density 

of subjects in each zone was calculated by dividing the number of subjects by the area of 

the zone as follows: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑧𝑜𝑛𝑒 𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑍𝑜𝑛𝑒 𝐼

(1.5−min(𝑊𝑀𝐿𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒))∗(max(𝑉𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒)−3)
                 (4) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑧𝑜𝑛𝑒 𝐼𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑍𝑜𝑛𝑒 𝐼𝐼

(max (𝑊𝑀𝐿𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒)−3)∗(max(𝑉𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒)−3)
                  (5) 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑧𝑜𝑛𝑒 𝐼𝐼𝐼 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑖𝑛 𝑍𝑜𝑛𝑒 𝐼𝐼𝐼

(max (𝑊𝑀𝐿𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒)−3)∗(1.5−min(𝑉𝑉 𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒))
                (6) 

To evaluate the differences in densities across the three zones, a bootstrap 

procedure with replacement on subjects was used to generate 100,000 bootstrap 

samples of the original sample size. For each bootstrap sample, the density of each zone 
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was re-computed. A one-way ANOVA was then performed to evaluate the differences 

across the zones using the bootstrap samples. Similar analyses were also carried to 

evaluate the relationship between WMLV and FA anomaly scores. 

 

Results 

Anomaly detection was successfully performed for the following brain imaging 

phenotypes: VV, WMLV, FA, MD, and CTh, respectively. The robustness, distribution 

properties, and reliability of anomaly scores were evaluated. Individual anomalous 

patterns were examined for each imaging phenotype. Anomaly score relationships across 

these imaging phenotypes were assessed. In addition to these imaging phenotypes, 

anomaly detection was also performed for RSFC, but no anomalies that withstood the 

retest session were identified. One possible cause was the confounding effects of the 

global signal change. For this reason, RSFC results are reported separately as a failure 

example for detecting reliable anomalies.  

 

Robustness of anomaly scores 

The robustness of anomaly scores was tested using group comparisons between 

two large groups, a discovery group and a replication group. These two groups were of 

comparable size from the UKB cohort and had no overlapping subjects. For each 

unidimensional imaging phenotype, the anomaly score distribution of the discovery group 

was highly similar to that of the replication group (Fig. S2ab), and there was no significant 

difference between these two distributions (two-sample Kolmogorov-Smirnov tests: for 

VV, p = 0.36; for WMLV, p = 0.66). For each multidimensional imaging phenotype, the 
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discovery group subjects had highly reproducible anomaly scores regardless of whether 

the discovery group or the replication group was used for training the autoencoder. The 

ICC between the anomaly scores calculated using the autoencoder trained with either 

one of the two groups ranged from a lowest of 0.86 in MD, to a highest of 0.99 in CTh is 

0.98 (Fig. S2c-e). This also held for the anomaly scores of replication group subjects (ICC 

ranged from 0.90 to 0.98. Fig. S2c-e). Taken together, these results indicate that for each 

of these imaging phenotypes, anomaly scores were highly robust. 

 

Properties of anomaly score distributions 

The results presented throughout the rest of the manuscript were obtained using 

the UKB discovery group unless otherwise specified. The anomaly score histogram of 

each imaging phenotype is shown in the panels of Figs. 2 (VV, WMLV, FA, CTh) and S3a 

(MD), respectively. These distributions were all right-skewed and more leptokurtic than a 

standard normal distribution (see Table 1 for skewness and kurtosis values). In statistics, 

the third quartile plus three times the interquartile range (Q3 + 3 * IQR) of the distribution 

is commonly used to define extreme outliers (Tukey, 1977). This criterion was adopted in 

the present study to find anomalies, which corresponds to an anomaly score threshold of 

3. Based on this threshold, the percentage of anomalies ranged from a lowest of 0.6% in 

CTh, to a highest of 3.9% in WMLV (see Table 1 for details). These anomaly percentages 

are all much higher than a standard normal distribution predicts, because this threshold 

is equivalent to about 4.7 times the SD plus the mean in a standard normal distribution, 

which would only have 0.0001% of data above it. In addition, as a negative control, the 

anomaly score distributions for the HCP cohort (Fig. S4), composed of healthy young 
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adults, were also evaluated, and they were less right-skewed and less leptokurtic than 

the UKB cohort, as indicated by the lower skewness, kurtosis, and anomaly percentage 

values in the HCP cohort (Table S4). Taken together, the results suggest that the anomaly 

score distributions of the UKB cohort were all more outlier-prone than a standard normal 

distribution, and they were also more outlier-prone than the healthy young cohort of the 

HCP. 

 

 

Fig. 2. Anomaly score histograms. (a) VV. (b) WMLV. (c) FA. (d) CTh. The zoom panels on the second row show the 

histograms of anomaly subjects (anomaly score > 3).  
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Table 1. Summary of anomaly subjects in the UKB discovery group. 

Phenotype VV WMLV FA MD CTh 

Number of 
Subjects 

19411 18467 17947 17947 18393 

Skewness 1.77 4.36 7.54 9.04 1.69 

Kurtosis 10.06 37.27 191.12 178.31 9.54 

Number of 
Anomalies 

158 
(0.8%) 

716 
(3.9%) 

189 
(1.1%) 

258 
(1.4%) 

119 
(0.6%) 

Anomalies w/o 
data issue 

158 645 128 177 5 

Anomalies 
read by 

neuroradiologist 
39 63 37 38 5 

S
u

m
m

a
ry

 o
f 
ra

d
io

lo
g
ic

a
l 
re

v
ie

w
 

re
s
u
lt
s
 

Large 
ventricles 

36 18 9 9 1 

White 
matter 
lesions 

26 63 29 33 2 

Mass 2 1    

Cyst 4 1 1 2  

Infarct 6 16 9 12 1 

Encephalo-
malacia 

  3 3  

Prominent 
sulci 

2 1 3 1 4 

Other 
findings 

4 9 11 8  

Normal   2   

Note: Empty entries are zeros. 

 

Long-term test-retest reliability of anomaly scores 

A subgroup of the discovery group subjects had a repeat MRI session two to three 

years after the initial visit. The anomaly scores of test versus retest of each imaging 

phenotype are visualized in the scatterplots of Figs. 3 (VV, WMLV, FA, CTh) and S3b 

(MD), respectively. VV anomaly scores had excellent test-retest reliability, as indicated 

by the close-to-one value of anomaly score ICC (ICC = 0.98) between test and retest. 

The reliabilities of WMLV and FA anomaly scores were lower than VV but still excellent 

(WMLV ICC = 0.82; FA ICC = 0.87). The reliabilities of MD and CTh anomaly scores were 
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lower than the former three but still in the range of good reliability (MD ICC = 0.75; CTh 

ICC = 0.62). This can also be seen in the distributions of test-retest anomaly score change. 

Fig. S5a shows the distribution fits of anomaly score change of each imaging phenotype. 

These distributions were near-symmetrical and centered around zero, indicating the 

means of anomaly score changes were near zero. Larger dispersion of an anomaly score 

change distribution indicates the anomaly scores changed more in the test-retest and 

thus had lower reliability. Indeed, the dispersions (Fig. S5b) were consistent with the ICC 

analysis results. Taken together, the results suggest anomaly scores had good-to-

excellent long-term, test-retest reliability. 

 

 

Fig. 3. Long-term test-retest reliability of anomaly scores. (a) VV. (b) WMLV. (c) FA. (d) CTh. In each scatterplot, each 

subject’s anomaly score of the initial imaging visit (aka “test”; year 2014+) is plotted against the anomaly score of the 

first repeat imaging visit (aka “retest”; year 2019+). The UKB subjects that had both test and retest data available are 

shown in these scatterplots. ICC: intraclass correlation between anomaly scores of the two visits. Red dashed line: 

anomaly threshold (anomaly score = 3).  

 

Summary percentages of anomalies 

The total number of anomalies in the UKB discovery group across all imaging 

phenotypes (excluding RSFC) was 1440. Because there were anomaly subjects who 

were anomalies in more than one imaging phenotype (Fig. S11c), of these 1440 
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anomalies, there were 1110 distinct subjects. Eight hundred ninety-nine (899/19411, 

4.6%) of them were not associated with data collection/processing errors. One hundred 

eleven (111) of these 899 subjects were reviewed by a neuroradiologist (Fig. S6). The 

subjects with the most extreme anomaly scores not caused by data issues were all 

included (Fig. S6). Ninety and one-tenths percent (90.1%, 100/111) of these 111 subjects 

had positive radiological findings. 

In comparison, there were 21 distinct anomaly subjects in the HCP cohort, and 

each of them was anomalous in only one imaging phenotype. Fourteen (14/1113, 1.3%) 

of them were not associated with data collection/processing errors. All these 14 subjects 

were read by a neuroradiologist, and 42.9% (6/14) of them had positive radiological 

findings.  

Representative individual anomaly subjects are reported in the next few 

subsections per their imaging phenotype. 

 

Individuals with anomalous ventricular volume 

As an example, Fig. 4a shows a VV anomaly subject versus a normal subject. This 

subject had significantly enlarged lateral ventricles compared to the latter one (~8.2 

difference in anomaly score). None of the VV anomalies were associated with data 

collection/processing errors. Thirty-nine of the UKB VV anomalies were reviewed by a 

board-certified neuroradiologist. A substantial percentage (31/39, 79.5%) of the UKB VV 

anomalies being read were identified with positive radiological findings of different brain 

pathologies. The major pathologies identified were mass, cyst, infract, and white matter 

lesions (Table 1), and some were directly linked to ventriculomegaly. For example, a third 
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ventricle mass (possibly a choroid plexus papilloma), a fourth ventricle mass (possibly an 

ependymoma), and a colloid cyst, all causing obstructive hydrocephalus, were found in 

three VV anomaly subjects (Fig. 4b). Other examples include a frontoparietal arachnoid 

cyst (Fig. 4b), a mega cisterna magna, an infarct, intraventricular nodules, and partial 

agenesis of the corpus callosum (Fig. S7a). The remaining VV anomalies that were read 

(UKB: 8/39, 20.5%) were referred to as the “novel” anomalies. In these cases, they had 

either large ventricles with the pathology of uncertain etiology (Fig. S7b), or large 

ventricles without any noticeable pathology (Figs. 4c, d, and S7c). In addition to the UKB 

subjects, a few interesting HCP anomaly subjects are also reported herein. HCP VV 

anomalies had monozygotic twins in this “novel” group (Figs. 4d and S7c). In one family 

(Fig. 4d), the female monozygotic twins were both VV anomalies, but their non-twin 

brother had normal VV. In another family (Fig. S7c), one twin of a male monozygotic twin 

pair was a VV anomaly, but the other twin and his non-twin brother both had normal VV. 

These twin data open the possibility of probing genetic and environmental causes 

underlying the anomalously large VV. Taken together, the results indicate VV anomalies 

were either associated with brain pathologies or were novel. 

 

 

 

 

 

 

 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.441017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.441017


27 
 

 

Fig. 4. Individuals with anomalous VV. (a) Structural images of an example of a VV anomaly subject (left column, 

anomaly score = 7.2) and an example of a normal VV subject (right column, anomaly score = -1.0). (b) Structural 

images showing positive radiological findings in four representative anomaly subjects (anomaly scores: UKB subject 

4099198, 4.0; UKB subject 1891892, 8.3; UKB subject 1049285, 7.5; UKB subject 2166014, 8.3). (c) Structural images 

of a novel VV anomaly (anomaly score = 7.0). (d) Structural images of a family (monozygotic twins and their non-twin 

brother). The twins (first and second rows, anomaly scores: 3.8, 3.4) were novel VV anomalies, but their non-twin 

brother (third row, anomaly score: -0.5) had normal VV. *Note: UKB Subject IDs in this study were pseudonymized and 

unique to the UKB application 22875. A “bridging” tool could be used to relate these pseudonym ized IDs to the UKB 

datasets supplied to other researchers (https://biobank.ndph.ox.ac.uk/showcase/help.cgi?cd=bridging). †Note: For 

HCP subjects, a key that maps their alphabet IDs to HCP-assigned numeric subject IDs will be available in the 

ConnectomeDB (https://db.humanconnectome.org) upon publication as per the HCP Restricted Data Use Terms. 
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Individuals with anomalous patterns of white matter-based imaging phenotypes 

Anomaly detection on the white matter was performed with WMLV, FA, and MD, 

respectively. As an example, Fig. 5a shows a WMLV anomaly subject versus a normal 

subject (~26.5 difference in anomaly score). The anomaly subject had irregular 

periventricular white matter lesions extending into the deep white matter with large 

confluent areas, whereas an example normal subject had only tiny lesions on the 

periventricular caps. Fig. 5b shows regional FA deviation maps of an FA anomaly subject 

versus a normal subject (~9.5 difference in anomaly score). For this representative 

anomaly subject, regional FA negatively deviated in all 27 white matter ROIs used in this 

study, whereas the FA of the representative normal subject had almost no deviations. Fig. 

S3c shows regional MD deviation maps of an MD anomaly subject versus a normal 

subject (~5.5 difference in anomaly score), in which a large positive MD deviation was 

observed in the left superior longitudinal fasciculus of the anomaly subject. 
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Fig. 5. Individuals with anomalous patterns of white matter-based imaging phenotypes. (a) T2 FLAIR images of an 

example of a WMLV anomaly subject (left column, anomaly score = 25.3) and an example of a normal WMLV subject 

(right column, anomaly score = -1.2). The red line represents the boundary of white matter lesion regions segmented 

using BIANCA. (b) Regional FA deviation maps (overlaid on T2 FLAIR images) of an example of an FA anomaly subject 

(left column, anomaly score = 8.5) and an example of a normal FA subject (right column, anomaly score = -1.0). (c) 

Structural images showing positive radiological findings in representative anomaly subjects of multiple sclerosis 

(anomaly scores: WMLV 7.7, FA 6.5, MD 10.1), lacunar infarcts with moderate small vessel disease (anomaly scores: 

WMLV 10.3, FA 5.6, MD 5.0), cyst (anomaly scores: MD 9.8), and encephalomalacia (anomaly scores: FA 3.5, MD 

10.0). (d) Novel anomalies. Left column: T2 FLAIR images of an anomaly subject with severe biparietal non-typical 

distributed white matter lesions of uncertain etiology (anomaly scores: WMLV 16.4, FA 5.6, MD 10.1). Right column: 
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regional FA deviation map (overlaid on T2 FLAIR images) of an anomaly subject that was radiologically normal. The 

cause of anomalous FA was unknown (FA anomaly score: 3.2). An FA deviation map visualizes how the FA values in 

a subject deviate from the autoencoder-predicted FA values. For display purposes, in FA deviation maps, each white 

matter ROI is displayed in its full size instead of only the TBSS skeleton. 

  

More frequent data collection/processing errors were found in these white matter 

anomalies as compared to the VV anomalies (Table 1). Some of these errors occurred at 

the data acquisition stage, due to head motion artifacts (Figs. S8a and S9b) or the 

selection of a wrong FOV (Fig. S9a). Others occurred at the data processing stage, such 

as incorrect segmentation (Fig. S8bc) or incorrect registration (Figs. S9c).  

A proportion of the white matter anomalies without the data errors were reviewed 

by the neuroradiologist and there were many positive radiological reads. 98.4% (62/63) 

of the reviewed WMLV anomalies, 91.9% (34/37) of the reviewed FA anomalies, and 97.4% 

(37/38) of the reviewed MD anomalies were identified with positive radiological findings 

(Table 1). For instance, likely multiple sclerosis was identified in a subject who was 

anomalous in WMLV, FA, and MD (Fig. 5c). The diagnosis of multiple sclerosis was 

confirmed by the UKB health outcomes data. Lacunar infarcts and moderate small vessel 

disease were identified in another subject who was also anomalous in all three of the 

white matter-based imaging phenotypes (Fig. 5c). A parahippocampal cyst was identified 

in an MD anomaly subject (Fig. 5a). Encephalomalacia (Fig. 5a) was identified in a subject 

who was anomalous in both FA and MD. There were also white matter anomalies that 

were not explained by data collection/processing error nor positive radiological reads. Fig. 

5d shows two examples of these “novel” anomalies. In one subject with anomalous 

patterns in WMLV, FA, and MD (Fig. 5d, left panel), severe biparietal atypically distributed 

white matter lesions of uncertain etiology were identified. In another FA anomaly subject 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.441017doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.441017


31 
 

with no noticeable pathology (Fig. 5d, right panel), anomalously low FA value was found 

specifically in the genu of corpus callosum (Fig. S3d). Taken together, these results 

indicate that the anomalies of white matter-based imaging phenotypes had more frequent 

data errors and were associated with a large variety of different positive radiological 

findings. Novel anomalies, each with unique patterns, only constituted a small fraction of 

these anomalies. 

 

Individuals with anomalous patterns of cortical thickness 

We next examined the individuals with anomalous CTh. As an example, Fig. 6a 

shows regional CTh deviation maps of an anomaly subject versus a normal subject (~4.9 

difference in anomaly score). Widespread negative CTh deviations, representing thinner 

cortices in these regions, were observed in this anomaly subject. Data 

collection/processing errors were found to be most abundant in CTh anomalies, 

constituting 95.8% (114/119) of the anomaly subjects, indicating that CTh is very sensitive 

to data collection/processing errors. Similar to the errors found in the white matter 

anomalies, these errors were due to head motion during data collection (Fig. S10a), 

incorrect segmentation/registration in data processing (Figs. S10b and S10c), or the 

combination of these issues (Fig. S10d). For the anomaly subjects with good data 

collection/processing quality, all were identified with positive radiological findings, such 

as prominent sulci or atrophy (Fig. 6b). Taken together, these results suggest that most 

CTh anomalies were associated with data collection/processing errors. 
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Fig. 6. Individuals with anomalous patterns of CTh. (a) Regional CTh deviation maps (displayed on inflated cortical 

surfaces) of an example of a CTh anomaly subject (first row, anomaly score = 4.3) and an example of a normal CTh 

subject (second row, anomaly score = -0.6). A CTh deviation map visualizes how the CTh values in a subject deviate 

from the autoencoder-predicted CTh values. (b) Structural images showing positive radiological findings in two 

representative CTh anomaly subjects (anomaly scores: UKB subject 4715343, 3.7; UKB subject 5134578, 3.2). 

 

Anomaly score relationships across imaging phenotypes 

The relationship of anomaly scores across different imaging phenotypes was 

assessed via pairwise Pearson correlation coefficients (Fig. 7a). Correlations between 

some white matter-based imaging phenotypes (FA versus MD; WMLV versus MD) were 

moderate (0.4 < r < 0.6), indicating they can capture similar anomalous patterns in the 

white matter. All the other correlations were weak (0.2 < r < 0.4) or very weak (r < 0.2), 

indicating they were complementary and provided independent information. 
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Fig. 7. Relationship between anomaly scores of different imaging phenotypes. (a) Correlations between the anomaly 

scores of different imaging phenotypes in the UKB cohort. The subjects with data collection/processing errors were not 

included in this analysis. The two representative relationships shown in (b) and (c) are encircled with red boxes. (b) 

WMLV anomaly score plotted against VV anomaly score. Zone I covered the VV anomalies with normal WMLV (WMLV 

anomaly score < 1.5). Zone II covered the subjects who were both VV and WMLV anomalies. Zone III covered the 

WMLV anomalies with normal VV (VV anomaly score < 1.5). (c) WMLV anomaly score plotted against FA anomaly 

score. Zone I covered the FA anomalies with normal WMLV (WMLV anomaly score < 1.5). Zone II covered the subjects 

who were both FA and WMLV anomalies. Zone III covered the WMLV anomalies with normal FA (FA anomaly score < 

1.5). 

 

 To further illustrate these relationships, Fig. 7b shows a scatterplot of WMLV 

versus VV anomaly scores, which were poorly correlated (r = 0.19). Very few subjects 
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were both VV and WMLV anomalies, as evidenced by the sparser data in Zone II than 

Zone I or III (Fig. 7b). Indeed, the density of Zone II was significantly lower than the other 

two zones (p ≈ 0, one-way analysis of variance [ANOVA] of 100000 bootstrap samples. 

Fig. S11a). It is therefore likely that the biological processes that led to large increases in 

WMLV are commonly independent of those that led to very enlarged VV. To illustrate 

another weak correlation, Fig. 7c shows a scatterplot of two white matter-based imaging 

phenotypes, WMLV versus FA anomaly scores (r = 0.34). The density of Zone II was 

significantly lower than Zone III (p ≈ 0, one-way ANOVA of 100000 bootstrap samples. 

Fig. S11b) but was close to Zone I. Fig. S11c shows two examples of these anomalies of 

anomalies. The upper panel of Fig. S11c shows a subject that was an anomaly in both 

VV and WMLV. This subject, diagnosed with ventriculomegaly and moderate white matter 

disease, had both periventricular and deep white matter lesions. The lower panel of Fig. 

S11c shows a subject that was an anomaly in VV, WMLV, FA, and MD. The radiological 

read determined there was small vessel disease, evidenced by the white matter lesions, 

and probable Alzheimer’s disease, evidenced by the parieto-temporal atrophy. 

 

Anomaly detection for resting-state functional connectivity did not identify any 

reliable anomalies 

Finally, we show a case where anomaly detection failed. Sixty UKB subjects’ 

RSFC anomaly scores were above the anomaly threshold (Fig. S12a), however, they 

were later found to be confounded by global signal amplitude and no individual remained 

an RSFC anomaly in both test and retest sessions. RSFC anomaly scores were only 

moderately reliable overall (ICC = 0.42. Fig. S12b). At an individual level, the larger the 
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anomaly score in the initial imaging visit, the more the score decreased in the repeat 

imaging visit, as shown by the negative correlation between the anomaly score in the 

initial imaging visit and test-retest score change (r = -0.53. Fig. S12c). Because of this 

low reliability, among the subjects with available test-retest data, none had both visits 

identified as anomalies. This change in test-retest anomaly scores was found to be 

correlated with the change of global signal amplitude (r = 0.42. Fig. S12d); indeed, the 

RSFC anomaly score itself was found to be moderately correlated with the global signal 

amplitude (r = 0.48. Fig. S12e). The association was not due to head motion, because 

the moderate correlation persisted after excluding subjects with large head motion (r = 

0.51. Fig. S12f). The association between RSFC anomaly score and global signal 

amplitude also persisted when using partial correlations to evaluate RSFC, although they 

became negatively correlated in this case (r = -0.70. Fig. S12g). Global signal regression 

reduced the association, but RSFC anomaly score (using full correlations) was still weakly 

correlated with global signal amplitude (r = 0.39). Remarkably, when we carried out similar 

analyses on the HCP cohort, the results were very similar (Fig. S13). Thus, determining 

if there are people with anomalous RSFC requires data processing improvements, 

especially those strategies that can better remove global signal fluctuations. 

 

Discussion  

In this study, a semi-automated, two-level screening methodology was used to 

detect anomalies in MRI imaging phenotypes of VV, WMLV, FA, MD, and CTh (Fig. 1). 

We demonstrated that anomaly scores of these imaging phenotypes were highly robust 

(Fig. S2). Anomaly score distributions of the UKB cohort were all more outlier-prone than 
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a standard normal distribution (Figs. 2 and S3a) and were also more outlier-prone than 

the HCP cohort of young adults (Fig. S4). We showed that anomaly scores had good-to-

excellent long-term test-retest reliability (Figs. 3 and S3b). VV anomalies were associated 

with positive radiological findings or were novel (Figs. 4bcd and S7). The white matter-

based anomalies were associated with more data collection/processing errors (Figs. S8 

and S9) or positive radiological findings (Fig. 5c), and a small fraction of them were novel 

(Figs. 5d and S3e). CTh anomalies were mostly due to data collection/processing errors 

(Fig. S10a-d). The anomaly scores of different imaging phenotypes were mostly 

independent (Fig. 7). Finally, we also showed that no reliable anomalies could be 

detected for RSFC, which was associated with the confounding effects of global signal 

fluctuations (Figs. S12 and S13). 

 

The approach to screen anomalies at an individual level in large neuroimaging 

cohorts 

Large-scale neuroimaging datasets have emerged in recent years, with anywhere 

from 1,000 (Di Martino et al., 2014; Holmes et al., 2015; Van Essen et al., 2013) to more 

than 10,000 subjects (Hagler et al., 2019; Miller et al., 2016). Most studies using these 

datasets generally focus on the average imaging characteristics at a group level. 

Meanwhile, there has been much less work on anomaly detection in neuroimaging 

(Marquand et al., 2016; Mourao-Miranda et al., 2011; Pinaya et al., 2019; van Hespen et 

al., 2021). To fill this gap, we set out to investigate individual anomalous patterns from 

the two large-scale cohorts: the UKB and HCP.  
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To show generalizability, anomaly detection was performed for six commonly used, 

well-established brain imaging phenotypes. White matter-based imaging phenotypes 

were derived by the UKB and were readily available, so our approach can be conveniently 

applied for any new UKB subjects’ WMLV, FA, and MD data. For the other imaging 

phenotypes (VV, CTh, RSFC), because they were initially obtained via different 

preprocessing pipelines between the UKB and HCP, the UKB structural MRI data were 

reprocessed by the HCP pipeline (Glasser et al., 2013), and the UKB resting-state fMRI 

(rsfMRI) data were further processed by Ciftify (Dickie et al., 2019), to make the 

preprocessing more uniform. This brought them into the same HCP standard surface 

space for the convenience of future comparisons with many other HCP-style studies 

(Harms et al., 2018; Lewandowski et al., 2020), but with the nontrivial computational 

expense of reprocessing the UKB data. The imaging phenotypes derived in the present 

study will be made available to researchers (e.g., via the UKB), so they will be accessible 

without the need to repeat the reprocessing done here. 

The data of most imaging phenotypes were curated very well, as evidenced by 

weak or very weak correlations between their anomaly scores and confounding factors 

(Fig. S14). The head motion and brain registration-related confounding factors evaluated 

here were either suggested or equivalent to the ones described in recent work on 

confound modeling of the UKB brain imaging data (Alfaro-Almagro et al., 2021). However, 

there was inevitably a small fraction of data with acquisition or processing errors. It is 

therefore critical to identify the anomalies associated with such issues. This was achieved 

by screening the anomalies via visual inspection and multiple different data quality control 

metrics (head motion level, brain registration quality, etc.; see Materials and Methods for 
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details) to ensure the capture of different types of errors including wrong FOV (Fig. S9a), 

head motion artifact (Figs. S8a, S9b, and S10a), incorrect segmentation (Figs. S8bc and 

S10b), and incorrect registration (Figs. S9c and S10c). Thus, as one of the major uses of 

anomaly detection (Goldstein and Uchida, 2016), our method is valuable for curating large 

neuroimaging datasets. 

The next screen was for a neuroradiologist to read the anomaly individuals that did 

not have data collection/processing errors. One hundred eleven (111) UKB anomaly 

subjects were reviewed by a neuroradiologist. Although these individuals were only a 

subgroup of all the UKB anomalies, they still covered a wide range of anomaly scores 

above the threshold (Fig. S6) and were sufficient to capture a diverse category of 

anomalous phenotypes. Indeed, a large percentage (90.1%, 100/111) had positive 

radiological findings, such as masses, cysts, white matter lesions, infarcts, 

encephalomalacia, and prominent sulci. Most of these brain pathologies likely would have 

led to a recommendation to see a physician for follow-up. For example, a VV anomaly 

subject (Fig. 4b) was diagnosed with a colloid cyst causing hydrocephalus and the 

neuroradiologist’s read recommended this individual see a neurosurgeon for follow-up. 

Thus, our method is useful for detecting participants with clinical issues. 

The anomalies that did not have data issues or positive radiological findings were 

considered “novel,” which is potentially valuable for investigating underlying mechanisms. 

It should be noted that some WMLV anomaly subjects, categorized as the anomalies 

associated with positive radiological findings, were identified with white matter disease. 

However, this is mostly due to the large amount of WMLV. The underlying etiology may 

still be ambiguous, requiring further evaluations to see if there was a known clinical cause 
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for the large WMLV. Therefore, in the present study, the WMLV anomalies were 

considered as “novel” only when the distribution of white matter lesions was atypical of a 

specific etiology. 

 

Potential underlying mechanisms of novel anomalies 

Of the anomalies that were read by the neuroradiologist, eleven UKB anomalies 

and eight HCP anomalies had no radiological determination of a known clinical phenotype. 

These anomaly subjects had no brain-related disorders reported previously: none of the 

eleven UKB subjects had any prior diagnosis of mental and behavioral disorders, nervous 

system disorders, or circulatory brain disorders according to their health outcomes data, 

and all HCP subjects recruited were healthy young adults. Eight UKB and five HCP 

subjects were novel VV anomalies. The VV of these UKB subjects, ranging between 87.4 

mL and 142.4 mL, was comparable to the upper range of VV in Alzheimer’s disease 

patients (Schott et al., 2005). The VV of these HCP subjects were between 45.4 mL and 

56.2 mL, which were still much larger than the volumes of normal young healthy subjects. 

Our data also showed unexplained variations of VV between two monozygotic twin pairs 

in novel anomalies. In terms of VV abnormality, the two female individuals within a 

monozygotic twin pair both had anomalously large VV (Fig. 4d), suggesting a shared 

congenital, developmental, or environmental causes. In the other monozygotic twin pair, 

only one twin had anomalous large VV (Fig. S7c). This is probably due to environmental 

influences or a de novo mutation early in development. Further genetic or clinical 

investigations will be required to elucidate the underlying mechanisms. 
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One HCP VV anomaly and one UKB triple-anomaly of WMLV, FA, and MD were 

novel anomalies due to uncertain etiology. In that HCP VV anomaly subject, unexplained 

signal abnormalities were identified in the thalamus and brainstem (Fig. S7b). A follow-

up T2-weighted fluid-attenuated inversion recovery (FLAIR) scan could be helpful to 

diagnose this case. In that UKB triple-anomaly, severe bilateral, confluent, and 

symmetrical white matter lesions were identified in the parietal white matter (Fig. 5d, left 

panel). The pattern of lesions was different from small vessel disease or multiple sclerosis, 

but was similar to reported cases of X-linked adrenoleukodystrophy (Geraldes et al., 

2018). In the health outcomes data, this male subject was also reported to have hearing 

loss, a possible symptom of X-linked adrenoleukodystrophy, again indicating the 

possibility of this rare genetic disorder in this novel anomaly subject.  

Two UKB FA anomalies, two HCP FA anomalies, and one HCP MD anomaly were 

novel because they had no data collection/processing errors and they were radiologically 

normal. Anomalously low FA values were found in the corpus callosum, superior 

longitudinal fasciculus, cingulum, posterior thalamic radiation, and limbs of the internal 

capsule (Figs. 5d, right panel, and S3e). A previous study showed that low FA in normal-

appearing white matter preceded the conversion of these low FA regions into white matter 

lesions (de Groot et al., 2013). These novel FA anomaly subjects may be at risk to 

develop lesions later in these regions of anomalously low FA. For the HCP MD anomaly, 

many small perivascular spaces were presented on the structural image. These 

perivascular spaces were not abnormal, but could raise the MD. All of these novel 

anomaly subjects would benefit from follow-up assessments to study underlying 

mechanisms and to see if they progress to any specific clinical diagnosis.  
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Anomaly detection for resting-state functional connectivity was confounded by 

global signal fluctuations 

Anomaly detection was also performed for RSFC because the rsfMRI data in part 

may report on subject-specific patterns in brain activity. Unfortunately, interpretation of 

the signal is confounded by the fact that it also contains contributions from instrumental 

and autonomic sources, and these, as well as any neuronal sources, may be strongly 

dependent on the experimental conditions and the subject’s mental state. One of these 

confounds is the so-called “global signal,” i.e. the brain-averaged rsfMRI signal, which 

may vary with changes in autonomic activity, the subject’s vigilance state, the amount of 

head motion during the experiment, and even time of day (Orban et al., 2020; Ozbay et 

al., 2019; Power et al., 2015; Wong et al., 2013). While rsfMRI confound removal has 

been an active area of research for some time, no consensus yet exists on the optimal 

way to remove the global signal (Liu et al., 2017; Murphy et al., 2009; Murphy and Fox, 

2017). Many studies evaluated RSFC with or without global signal regression in parallel, 

and some other work used partial correlations for RSFC instead (Pervaiz et al., 2020). In 

the present study, we opted to evaluate RSFC in these three ways and perform anomaly 

detection for each of them respectively. Our results showed that RSFC anomaly score 

was correlated with global signal amplitude in all these three ways and also regardless of 

the cohort used (Figs. 12 and 13), indicating global signal amplitude is a large confound 

in RSFC anomaly detection. RSFC anomaly score, which quantifies each individual in the 

cohort, may be a useful index for assessing the effectiveness of different processing 

strategies of the global signal. No matter the exact cause, it is remarkable that no 
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individual remained an RSFC anomaly in both test and retest. Considering the strong 

dependence of the rsfMRI signal on various factors that may change between repeat 

scans, including contributions from both neuronal and non-neuronal sources, it remains 

uncertain whether RSFC anomalies are reproducible in the human population. This failure 

case is helpful for researchers who wish to use RSFC for individual-level analysis.  

 

Potential limitations 

Although diverse neurological pathologies were presented in the subjects with 

large anomaly scores, it should be noted that the goal of the present study was not to 

outperform or replace human neuroradiologists, nor was it designed to compete with 

many machine learning approaches for diagnosing specific diseases. Instead, the present 

study aimed at discovering “interesting” anomalous imaging phenotypes, albeit rare, from 

the largely unlabeled cohort of the UKB. Therefore, we did not quantitively evaluate the 

effectiveness of our automatic anomaly detection in terms of identifying pathologies. For 

the same reason, we did not compare our method with other unsupervised anomaly 

detection algorithms. Despite this, the quality of our method can be appreciated by 

comparing it with manual radiological screening in the first 1000 UKB subjects (Gibson et 

al., 2017). In Gibson et al.’s study, 1.8% of the subjects screened via systematic 

radiologist review had incidental findings in their brain MRIs, whereas 90.1% of the 

anomaly subjects reviewed radiologically in our study had incidental findings. This 

indicates that our method can effectively identify a subgroup that is greatly enriched with 

incidental findings from a large cohort. 
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Another limitation is that the imaging phenotypes used here were derived from the 

outputs of conventional neuroimaging data processing pipelines, instead of directly using 

raw structural images, which could potentially compromise the richness of the input data. 

It would be interesting to use brain images directly in future studies of anomaly detection. 

Although some of the imaging phenotypes, for example, total VV, would seem to be global 

and not sensitive to focal problems, many of the verified abnormalities such as mass, cyst, 

infract, nodules, and partial agenesis of the corpus callosum were found in the VV 

anomaly subjects (Figs. 4 and S7). Indeed, it has been found enlargement of lateral 

ventricles is associated with various neurological and psychiatric disorders (Kempton et 

al., 2011; Kuller et al., 2016; Kuller et al., 2005; Mak et al., 2017; Nestor et al., 2008; 

Wright et al., 2000). We also found that the VV anomaly score was significantly higher in 

the repeat imaging visit than in the initial imaging visit (p ≈ 9*10-205, one-sample Wilcoxon 

test. Fig. S15a), and VV outlying subjects usually presented larger long-term test-retest 

changes than normal subjects (r = 0.57. Fig. S15b). The larger change in the VV outlying 

subjects is most likely due to faster progression of the processes underlying the anomaly, 

either because of the development of pathology or the rate of change due to aging. For 

example, the UKB subject with the largest test-retest change in VV anomaly score had 

bifrontal subdural hematomas on the initial imaging visit that resolved on the repeat 

imaging visit. The hematomas may cause ventricle compression at the initial time point. 

Alternatively, or in addition, the tissue injury related to subdural hematomas could cause 

atrophy and ventricular expansion afterward. As the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) cohort has clearly shown, MRI as a function of age can be useful to 

distinguish pathology from more “normal” aging (Weiner et al., 2010; Weiner et al., 2012). 
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 T2-FLAIR data was not available for the HCP Young Adult cohort, therefore, HCP 

subjects’ white matter lesions were segmented via their T1w images using FreeSurfer. 

However, false positive lesions caused by FreeSurfer segmentation errors for T1w 

hypointensities were noticed in the periventricular regions or near the gray matter-white 

matter boundaries (Fig. S8c), potentially reducing sensitivity to white matter anomalies in 

this young cohort. Future work on more robust algorithms for detecting white matter 

lesions in T1w images will certainly improve the anomaly detection in the cohorts without 

T2-FLAIR data. 

 

Conclusions 

The present study characterized individual anomalous patterns across multiple 

imaging phenotypes in two large imaging cohorts. Every subject was parameterized with 

an anomaly score per phenotype to quantitate the abnormality. These anomaly scores 

were highly robust. Anomaly score distributions of the UKB cohort were all more outlier-

prone than the HCP cohort of young adults. The approach enabled the assessments of 

test-retest reliability via the anomaly scores, which ranged from excellent reliability for VV, 

WMLV, and FA, to good reliability for MD and CTh. The individual-level analyses of the 

anomalies revealed their association with data collection/processing errors or different 

brain pathologies. A number of the novel anomalies can be used as candidates for future 

screening of potential underlying biological mechanisms. Finally, no consistent anomalies 

were detected for RSFC. The variability of RSFC anomaly scores was associated with 

the variations in global signal amplitude that are difficult to remove. Taken together, 

anomaly detection of large neuroimaging datasets was valuable for data curation, 
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reliability assessment, and the identification of individuals for medical follow-up or further 

study of novel mechanisms. Anomaly detection methods should contribute to the effort of 

developing automatic processes to analyze and interpret brain imaging data in large 

population cohorts. 
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