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Abstract

Bulk RNA-seq data quantify the expression of a gene in an individual by one
number (e.g., fragment count). In contrast, single cell RNA-seq (scRNA-seq)
data provide much richer information: the distribution of gene expression across
many cells. To assess differential expression across individuals using scRNA-seq
data, a straightforward solution is to create “pseudo” bulk RNA-seq data by
adding up the fragment counts of a gene across cells for each individual, and
then apply methods designed for differential expression using bulk RNA-seq data.
This pseudo-bulk solution reduces the distribution of gene expression across cells
to a single number and thus loses a good amount of information. We propose to
assess differential expression using the gene expression distribution measured by
cell level data. We find denoising cell level data can substantially improve the
power of this approach. We apply our method, named IDEAS (Individual level
Differential Expression Analysis for scRNA-seq), to study the gene expression
difference between autism subjects and controls. We find neurogranin-expressing
neurons harbor a high proportion of differentially expressed genes, and ERBB
signals in microglia are associated with autism.
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Background
Single cell RNA-seq (scRNA-seq) data provide an unprecedented high-resolution

view of gene expression variation within a bulk tissue sample, and thus help im-

prove our understanding of the molecular basis of complex human diseases. For

example, by comparing scRNA-seq data between cases and controls, we may iden-

tify cell-type-specific gene expression signatures that are related to disease etiology

and progression [1, 2].

Early scRNA-seq studies often collect many cells from one or a few individuals

and seek to compare gene expression between two groups of cells. Several methods

have been developed towards this end [3–7]. As the scRNA-seq techniques evolve

from a new revolution to a standard approach, many researchers start to collect

scRNA-seq data from multiple individuals, and thus differential expression (DE)

testing across individuals becomes an imperative task. The existing cell level DE

methods are inappropriate for individual level DE testing as the sampling space of

the cell level DE methods are cells but not individuals, and a significant p-value

asserts DE if we sample more cells from the same set of individuals. In contrast,

we focus on statistical inference in the population, i.e., whether we observe DE if
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we collect scRNA-seq data from more individuals.

In this paper, we assume the cells have been clustered into a few cell types if

needed, and then we assess DE for each cell type separately. For individual level DE,

one may first estimate cell type-specific gene expression per individual by pooling

the gene expression across cells of the same cell type to create pseudo-bulk RNA-

seq data for each cell type and then apply DE testing methods for bulk RNA-

seq data [8, 9]. This pseudo-bulk approach captures shift of mean expression but

may miss higher-order differential expression patterns, e.g., variance changes. To

fully exploit the information in scRNA-seq data, we propose a new approach that

captures the cell type-specific gene expression of an individual by a probability

distribution and then compare such distributions across individuals. We refer to

our method as Individual level Differential Expression Analysis for ScRNA-seq data

(IDEAS).

Results
An overview of IDEAS

IDEAS performs DE testing gene by gene with respect to a categorical or continu-

ous variable. To simplify the discussion, we consider a simple situation of two-group

comparison between cases and controls (Figure 1). The first step of IDEAS is to esti-

mate the distribution of one gene’s expression in each individual using a parametric

or non-parametric method, conditioning on cell level covariates. The parametric

method can be estimating a negative binomial (NB) or zero-inflated negative bino-

mial (ZINB) distribution. The non-parametric method can be kernel density esti-

mation or empirical estimation of cumulative distribution function (CDF). The next

step is to calculate the distance between the gene expression distributions of any

two individuals by the Jensen-Shannon divergence (JSD, using density estimates)

or Wasserstein distance (Was, using CDF estimates) [10]. The final step is to assess

whether within-group distances tend to be smaller than between-group distances.

We define our test statistics by a pseudo F-statistic [11] and its null distribution

can be estimated by permutations. This permutation procedure is computationally

efficient because we do not need to re-calculate the distance matrix for each permu-

tation. When sample size is large (e.g., n > 50), based on the connection between

distance-based regression and kernel regression [12], we can use the asymptotic re-

sults from kernel regression to calculate p-values [13]. More details of IDEAS method

are presented in the Methods Section.

Design of simulation studies

We evaluated the performance of IDEAS as well as a pseudo-bulk approach using

simulations. We used DESeq2 [9] for DE analysis on pseudo-bulk data that were

generated by adding up the counts across all the cells per individual. We considered

four versions of our methods, with two methods to estimate within-individual dis-

tributions (ZINB or non-parametric (NP)) and two methods to estimate distances

across individuals (JSD or Was).

We simulated scRNA-seq data based on a real dataset of 62,166 cells from the

prefrontal cortex (PFC) of 13 autism patients and 10 controls [1] in the following
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steps. First, we estimated a ZINB distribution for each gene and each cell using

a data denoising neural network method called DCA (deep count autoencoder)

[14]. Next, we focused on the 8,626 L2/3 neuron cells to guide our simulation. We

simulated the expression for 8,000 genes in 23 individuals (13 cases and 10 controls,

360 cells per individual) with one-to-one correspondence to the 8,000 genes that

were expressed in the highest fractions of the cells (roughly > 20% of the 8,626 L2/3

neuron cells). For each gene, we assumed a ZINB distribution for its expression in

the i-th individual and estimated four parameters: µi = log(mean), φi = log(over-

dispersion), πi = logit(proportion of zero-inflation), and σi (the log-transformed

standard deviation of log(mean) across all the cells of the i-th individual). The first

three parameters were estimated by taking median over the cell level estimates by

DCA. We estimated a multivariate normal distribution for these four parameters

across the 23 individuals. Finally, we used this distribution to simulate parameters

for 23 individuals and used the simulated parameters to simulate count data from

ZINB distributions. We divided the 8,000 simulated genes into three groups. In the

first and second 1,000 genes, we added DE signal in mean value (meanDE, 1.2-fold

change) and variance (varDE, 1.5 fold change), respectively. The remaining 6,000

genes did not have any DE signal, and were referred to as equivalently expressed

(EE) genes. These EE genes were used to evaluate the type I error.

IDEAS can identify more DE patterns than the pseudo-bulk method

DESeq2 has slightly inflated type I error, slightly higher power than IDEAS for

meanDE situation, and almost no power in the varDE situation (Figure 2A). In con-

trast, all four IDEAS methods control type I error very well and they all have much

higher power than DESeq2 in the varDE situation (Figure 2A). We also illustrate

a varDE gene that shows no DE signal in pseudo-bulk data (Figure 2B) while the

difference of variation can be detected when examining the distribution of gene

expression (Figure 2C).

NB is sufficient to capture gene expression distribution derived from UMI counts.

Several recent studies have shown that a NB distribution is often sufficient to model

the scRNA-seq data using UMI (unique molecular identifier) [15–18]. When apply-

ing IDEAS on simulated data, the results (the p-values for all the genes) using NB

or ZINB distribution are highly consistent (Supplementary Figure 1). Comparison

of NB versus ZINB distribution using real data reaches similar conclusions (Supple-

mentary Figure 2). Therefore, by default, NB distribution is used in the following

analysis. Our implementation still allows ZINB distribution, which may be useful

for scRNA-seq data generated without using UMI.

Parametric approach is more robust to the sparsity of the scRNA-seq data

The cell level read-depth often varies considerably (Figure 3A), and thus needs to

be accounted for when estimating individual-specific distributions. Adjusting for

cell level read-depth (or any other cell level covariates) is straightforward for the

parametric approach. We can run a NB regression against the log-transformed read-

depth and then use the conditional NB distribution when setting the read-depth to

certain value (e.g., the median value from all the cells across individuals). For the
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non-parametric approach, we can employ a linear regression with log-transformed

counts as the response variable and the log-transformed read-depth as a covariate,

and then use the fitted value given median read-depth plus residuals as the read-

depth corrected data.

At this stage, the shortcoming of non-parametric method becomes obvious. In the

real dataset, after selecting the 8,260 genes that are expressed in at least 20% of

8,626 L2/3 neuron cells, there are still more than half of the genes with zero expres-

sion in more than 50% of the cells. In addition, the remaining non-zero counts tend

to be small, e.g., 1 to 5. A linear regression with such sparse data is highly unre-

liable. We illustrate this by comparing the -log10(DE p-value) for autism subjects

versus controls obtained by two approaches: NB fit or empirical CDF fit followed by

a distance calculation using the Wasserstein distance. The genes are divided into 5

categories based on the proportion of 0’s across those 8,626 L2/3 neuron cells. The

correlation of the two approaches decreases as the proportion of zero’s increases

(Figure 3B). After manual examination and comparison with results from pseudo

bulk approaches, we conclude this is mainly due to the limitation of non-parametric

approaches to handle sparse count data. Therefore, in the following analysis we fo-

cus on distribution estimation by the parametric approach (i.e., estimation of an

NB distribution). When calculating the distances between individuals, using JSD

or Wasserstein distance does not make much difference. We choose to focus on the

Wasserstein distance because of its optimal theoretical properties [10,19].

Data denoising improves the statistical power

One angle to explain the difference between IDEAS and the pseudo-bulk method

is through the bias-variance trade-off. The pseudo-bulk method summarizes the

expression of many cells by summing them up, which leads to information loss (po-

tential bias) but reduced variance. On the other hand, IDEAS tries to harvest the

information from individual cells at the cost of a potentially higher uncertainty in

estimating the gene expression distribution across cells. One direction to improve

IDEAS is via denoising the scRNA-seq data, which is a well-studied topic. A popu-

lar denoising method named DCA [14] is used in this paper. DCA estimates a ZINB

distribution for each gene and each cell based on a low-dimensional space that can

filter out some noise in the data.

We applied DCA to 62,166 cells of 17 cell types from the prefrontal cortex (PFC).

To assess the consequence of DCA denoising, we first focused on the 8,626 L2/3

neuron cells, one of the most abundant cell types. We sampled 5 counts from each

cell-specific ZINB estimated by DCA and pooled them across cells to estimate an

NB for each individual. We then proceeded testing using the Wasserstein distance.

This new approach using DCA denoised and augmented data (Figure 3D) has

higher power than the same NB-Wasserstein approach using observed count data

(Figure 3C).

This approach to sampling counts from cell-specific ZINB estimates by DCA is

flexible since we can use the sampled counts to fit an NB regression to account for
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any cell level covariates. However, it is also computationally intensive. An alterna-

tive approach is to directly estimate individual-level distributions by averaging the

cell specific ZINBs estimated by DCA (Supplementary Materials Section 1.1). This

direct computation approach gives similar results to the results from NB regression

(Supplementary Materials Section 2.2). Therefore, we use this direct computation

approach in the following analysis.

IDEAS combined with denoising improves the power to identify DE genes

We performed DE analysis between autism subjects and controls for all 17 cell

types. We only considered the genes that were expressed in at least 20% of the

cells for each cell type, and the number of genes varied a lot across cell types:

ranging from 578 (Microglia) to 9,291 (L5 6-CC) (Figure 4A). When controlling

false discovery rate to be 10%, DESeq2, IDEAS, and IDEAS combined with DCA

identified 268, 41, and 4,571 DE genes respectively (Supplementary Table 1). Most

of the DE genes found by any of the three methods were from a few cell types:

the interneuron cells and excitatory neurons on layer 2/3, as well as a subtype of

neurogranin (NRGN)-expressing neurons (Neu-NRGN-II), suggesting the relevance

of these cell types in autism.

These results confirm that denoising scRNA-seq data can substantially improve

the power of IDEAS. An example where the DE patterns become cleaner after

denoising is shown in Figure 4B. This gene, SLC4A8, transports sodium and ions

across cell membrane and is associated with glutamate release by neurons [20], and

thus it can have functional role in autism development.

We further estimated the proportion of DE genes using a p-value distribution [21].

Here we estimated the proportion of DE genes as 1 − π̂0 = 1 − 2p̂0(0.5), where π̂0
was the estimated proportion of non-DE genes and p̂0(0.5) was the proportion of

genes with p-values larger than 0.5. The DE proportion estimates were higher for

excitatory neurons (e.g., layer 2/3 or layer 4 excitatory neurons) and interneurons

(e.g., vasoactive intestinal polypeptide (VIP) and somatostatin (SST) expressing

interneurons), partly due to relatively higher expression level in these cell types. In

contrast, few DE signals were detected in astrocytes, endothelial cells, or microglia,

possibly due to low gene expression in these cell types. Neu-NRGN-II was again

an exception where the number of expressed genes was low while all three methods

identified high proportion of DE genes (Figure 4A, Supplementary Table 2). Neu-

rogranin (NRGN) is a calmodulin-binding protein, and it has been associated with

Alzheimer’s disease [22] and schizophrenia [23]. Our results suggest that it is also

potentially associated with autism.

IDEAS improves the power to identify autism-related genes

The Simons Foundation Autism Research Initiative (SFARI) has compiled a list of

autism risk genes. Most of these genes are identified because they harbor more dis-

ruptive mutations in autism subjects than in a general population. DNA mutations

cannot directly affect biological function. At least part of their effect on biological

systems is mediated through gene expression, and thus these genes may be identi-

fied by DE analysis. We assessed whether there is significant overlap between cell
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type-specific DE genes (which are defined using a liberal p-value cutoff of 0.05) and

SFARI genes. IDEAS combined with DCA identified significant overlaps in four cell

types: excitatory neurons on layer 2/3 or layer 4, and interneurons expressing SST

or VIP (Figure 5A). In contrast, neither IDEAS nor DESeq2 identifies any signifi-

cant overlap. We observe similar patterns if we just ask whether SAFRI genes tend

to have smaller p-values by gene set enrichment analysis (GSEA) (Supplementary

Table 3). Lack of significant overlap between SFARI genes and DE genes could in-

dicate small proportions of overlap or limited power to identify DE genes and thus

that overlap is not statistically significant. For example, small proportion of over-

lap is the main reason for excitatory neurons on layer 2/3 (L2 3) (Figures 5B and

5D) while limited power to identify DE genes is the main reason for interneurons

expressing VIP (IN-VIP) (Figures 5C and 5E).

Differentially expressed pathways in microglia

Microglia is of particular importance for autism because it is the resident immune

cells in brain and immune response is an important factor of autism etiology [24].

In our analysis, although all the methods find few DE genes in microglia, gene set

enrichment analysis (GSEA) that uses the ranking of all the genes identifies a few

pathways that are differentially expressed between autism subjects and controls. At

adjusted p-value cutoff of 0.05, GSEA using the DE ranking by DESeq2 identifies

one pathway: signaling by ERBB4. Using the ranking by IDEAS combined with

DCA, GSEA identifies this pathway together with 9 others, including signaling by

ERBB2 (Supplementary Materials Section 2.5). An earlier study has shown that

ERBB signals can lead to proliferation and activation of microglia [25]. Separate

studies have also shown that exonic deletion of ERBB4 is associated with intellectual

disability or epilepsy [26]. Our findings, combined with these earlier studies, suggest

that ERBB signals may be an underlying factor that leads to different microglia

activities between autism subjects and controls.

Discussion
Our method IDEAS is designed for individual level DE analysis using single cell

RNA-seq data. IDEAS compares gene expression distribution across individuals,

and thus it can identify any pattern of DE including shift of mean or variance.

Such flexibility is important for scRNA-seq data because of the heterogeneity of

cell populations. For example, we can divide all the cells from a brain sample to

excitatory neurons, interneurons, and a few glia cell types such as astrocyte, mi-

croglia, oligodendrocyte, etc.. However, excitatory neurons and interneurons can be

further divided into many smaller categories. Therefore, the DE signal may exist in

a subset of the cells and IDEAS is more suitable to capture such subtle DE patterns

than the pseudo-bulk method that mainly assesses shifts in mean expression.

Methods designed to assess DE across cells can be modified using a mixed effect

model framework to account for cell-cell dependence within an individual, and to

perform DE across individuals. For example, MAST has such an option [4]. However,

such approaches capture both cell-level and individual level DE signals, and when

sample size is small, the cell-level variance may dominate the DE signal. Therefore,

it should be used with caution especially when sample size is small.
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A key step of IDEAS is to estimate gene expression distribution for each individ-

ual. We have demonstrated that non-parametric estimates of gene expression distri-

bution are often unreliable, especially for the genes with low expression. Therefore

we recommend parametric approaches, e.g., estimating gene expression distribution

for one individual by a negative binomial distribution, which is a Poisson-Gamma

mixture. In addition to the parametric or non-parametric estimates, an alternative

is a semi-parametric one using a Poisson mixture with a non-parametric mixing

distribution. We pursued this approach in a separate work [19].

We have observed that denoising scRNAseq data can improve the power of IDEAS.

However, this also creates some uncertainty in real data analysis as the effect of

denoising depends on the methods as well as the cell populations. In general, a

denoising method works well if there is a latent structure in the data that are not

confounded with case/control status. For example, considering scRNA-seq data of

many cells that can be grouped into a few cell types, then the latent structure in

the data are cell type-specific gene expression. Therefore, we recommend running

the denoising procedure for all the cells of different types. We have used DCA for

denoising. DCA handles read-depth difference across cells by a simple approach:

dividing the observed read counts by read-depth. There is room to improve it by

making more flexible correction of the read depth, for example, through a condi-

tional variational autoencoder [27]. We will explore such more flexible denoising

methods in a future work.

Methods
IDEAS

Input and output

The input data for IDEAS include gene expression data (a matrix of scRNA-seq

fragment counts per gene and per cell), the variable of interest (e.g., case-control

status), together with two sets of covariates. One set is cell level covariates, such as

read-depth per cell. The cell level covariates are used to estimate the gene expression

distribution of each individual across all the cells. The other set is individual-level

covariates such as age, gender, batch effect, etc.. The output of IDEAS is a permu-

tation p-value for each gene under the null hypothesis that the expression of this

gene is not associated the variable of interest, given the rest covariates.

Calculation of distance matrix across individuals

We examine two metrics to evaluate the distance between the gene expression dis-

tributions of two individuals. One is the Jensen-Shannon divergence (JSD) and the

other one is the Wasserstein distance. For two probability distributions denoted by

P and Q:

JSD(P,Q) = [DKL(P‖M) +DKL(Q‖M)]/2,

where M is a distribution whose density function is fM (x) = 0.5[fP (x) + fQ(x)],

andDKL(P‖M) =
∫
x
fP (x) log [fP (x)/fQ(x)] dx is the Kullback-Leibler divergence.

The Wasserstein distance has attracted lots of attention in the machine learning

fields recently [10]. We use the Wasserstein-1 distance, which is also referred to
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as the earth-moving distance. Intuitively, it is the minimum amount of effort to

move the mass from one distribution to the other distribution. For one dimensional

problem, the Wasserstein distance has a close form:

Was(P,Q) =

∫
|FP (x)− FQ(x)|dx,

where FP (x) and FQ(x) denote the cumulative distribution functions for P and Q,

respectively.

We explore two approaches to estimate the distribution of gene expression across

all the cells of an individual. The first approach is a parametric one where we

estimate the gene expression distribution by an NB or a ZINB distribution. Here

we describe our method for the ZINB and NB is a special case for ZINB. Since our

method is applied for each gene separately, we describe the procedure for one gene

and ignore gene index to simplify the notation. Let Yi be a random variable for gene

expression of individual i. Then a ZINB is a mixture distribution of a zero-inflation

component and a negative binomial distribution component:

f(Yi) = πiI(Yi = 0) + (1− πi)fNB(µi, θi), (1)

where πi is the zero-inflation proportion, µi and θi are the mean value and over-

dispersion parameter for a negative binomial distribution, respectively, such that

the variance of the negative binomial distribution is µi + µ2
i /θi.

Suppose we observe gene expression across ni cells of the i-th individual, denoted

by yi. A naive approach is to estimate a ZINB distribution using yi. This approach

will most likely have little power for differential expression testing because cell level

read depth can vary a lot across cells / individuals, and thus it may dominate the

estimated distribution and obscure any other signals. Therefore, we perform ZINB

regression (or NB regression if NB distribution is assumed) of confounding factors

such as the cell level read-depth.

The second approach is a non-parametric one. The specific solution depends on

the distance metric used. For JSD, we estimate density using kernel method, by

R function density with default Gaussian kernel. For Was, we use the R function

wasserstein1d from R package transport, which takes input data points to cal-

culate inverse of CDF and Wasserstein distance. In either case, we log transform

the observed count data and then use a linear regression to obtain the adjusted log

counts when all the covariates are set to their medians.

Data augmentation using auto-encoder

ScRNA-seq data are often noisy due to the limited number of RNA molecules per

cell. Many methods have been developed to denoise scRNA-seq data. We employ

one of such methods named deep count autoencoder network (DCA) [14] in our

analysis. DCA exploits the low-dimensional structure of scRNA-seq data by an

autoencoder, a neural network method. The input to DCA is the observed count
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matrix and the output is the estimated ZINB distribution for each gene and each

cell. Note that this ZINB is a cell-specific distribution, and it is different from what

we seek to estimate, which is an individual-specific distribution. We can achieve this

goal in two ways. One is to simulate m counts from each cell-specific distribution

and then pool them across cells to estimate the individual-specific distribution.

This approach gives more flexibility to account for cell-level covariates though it

is computationally intensive. The other approach is to directly add up the density

estimates across cells to estimate the individual level distribution.

Calculation of p-value

We compare two approaches to calculate a p-value for each gene given the distance

matrix across all individuals and individual level covariates. One is a distance-based

test known as Permutational Multivariate Analysis of Variance (PERMANOVA)

[11, 28], and the other one is kernel based regression implemented in R package

MiRKAT [13]. When sample size is larger, kernel regression should have more compu-

tational advantages since it can calculate p-values using the asymptotic distribution

of the test-statistic, though for studies with small or moderate sample sizes, kernel

regression will also rely on permutation to assess p-values. For either kernel regres-

sion or PERMANOVA, the distance matrix D needs to be transformed to a kernel

matrix G by

G =

(
I− 1

n
11′
)
A

(
I− 1

n
11′
)
, (2)

where A = −(1/2)D2 and G is the Grower’s centered matrix of A [11, 29]. This

matrix may have some negative eigenvalues. Following earlier works, we set those

negative eigenvalues to 0 [12,30].

Let Z be the set of variables including the variable of interest (X) and all the

covariates. Let HZ be the hat matrix HZ = Z(Z′Z)−1Z′, and denote the trace of

a square matrix U by tr(U). Then the (pseudo) F statistic [11, 28] that quantifies

the collective association between the gene expression and all the variables in Z is

F =
tr(HZGHZ)

tr[(I−HZ)G(I−HZ)]
. (3)

To generate the distribution of F under permutation, we permute X or re-sample

X given all the covariates, following the PERMONVA-S method [31], and combine

the permuted/re-sampled X with the covariates and generate a new data matrix

Zp. The re-sampling approach is more desirable because it maintains the associa-

tion between X and other covariates. However, when sample size is small, it could

be unstable and thus we use permutation by default. Given Zp, we can calcu-

late the F-statistic following equation (3). Note that our method is different from

PERMONVA-S since we consider all the covariates when calculating the F-statistics

while PERMONVA-S only considers the variable of interest. When the covariates

have strong association with gene expression, our method can remove their impact

and thus increases the power for testing.
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Availability of data and materials

The list of SFARI ASD risk genes was downloaded from https://gene.sfari.org/database/human-gene/. These

genes were scored as “syndromic” (mutations that are associated with a substantial degree of increased risk and

consistently linked to additional characteristics not required for an ASD diagnosis) and/or 7 categories from 1 to 7,

with high, strong, and suggestive evidence for categories 1-3. Here we use the 350 genes that belong to the

syndromic category or categories 1 to 7. Our software package and data analysis pipeline for simulations and autism

data are available at https://github.com/Sun-lab/ideas.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Authors’ contributions

Authors’ information

Author details
1Public Health Science Division, Fred Hutchison Cancer Research Center, Seattle, USA. 2Department of Statistics,

University of Washington, Seattle, USA. 3Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research

Center, Seattle, USA. 4Department of Biostatistics, University of Washington, Seattle, USA. 5Department of

Biostatistics, University of North Carolina, Chapel Hill, USA.

References
1. Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A., Goyal, N., Rowitch,

D.H., Kriegstein, A.R.: Single-cell genomics identifies cell type–specific molecular changes in autism. Science

364(6441), 685–689 (2019)

2. Schulte-Schrepping, J., Reusch, N., Paclik, D., Baßler, K., Schlickeiser, S., Zhang, B., Krämer, B., Krammer,
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Figures

Fig1 Overview.pdf

Figure 1 An overview of the IDEAS pipeline.

Fig2 Simu.pdf

Figure 2 (A) Simulation results for 6,000 equivalently expressed (EE) genes, 1,000 genes with DE
signal in mean value, and 1,000 genes with DE signal in variance. The distribution of gene
expression within each individual was estimated by non-parametric (NP: kernel density for the
Jensen-Shannon divergence (JSD) and empirical CDF for the Wasserstein distance (Was)) or
parametric (ZINB: zero-inflated negative binomial) method, respectively. (B) Illustration of the
pseudo-bulk data of 23 individuals for one gene with DE signal on variance. (C) Illustration of the
same gene in panel (B) for its empirical distribution in 23 individuals. The counts are truncated at
7 for illustration.

Fig3 ASD.pdf

Figure 3 (A) Distribution of cell-level read-depth, with median around 10,000 and range from
2,414 to 105,488. (B) Correlation between the -log10(p-values) of DE testing between the two
approaches to estimating individual-specific distribution: ZINB or empirical CDF. The genes were
divided into 5 groups based on the proportion of cells where the observed gene expression is 0.
(C) The P-value distribution when estimating individual-specific distribution using ZINB, followed
by a distance calculation using the Wasserstein distance and a p-value calculation using
permutation. (D) Same as (C) except that the input data are not the observed counts but the
counts sampled from the cell specific ZINB estimated by DCA [14].

Fig4 DE.pdf

Figure 4 (A) The left panel shows the number of genes we studied for each cell type. A gene is
included in our study if it is expressed in at least 20% of the cells. The right panel shows the
estimates of the proportion of genes that are differentially expressed between autism subjects and
controls for each cell type. (B) An example where IDEAS (combined with DCA) identifies strong
DE signals while DESeq2 does not.

Additional Files
Additional file 1 — Supplementary Materials

Supplementary Methods and Results.
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Fig5 SAFRI.pdf

Figure 5 (A) Fisher’s exact test p-values to assess whether autism related genes (SFARI genes)
have significant overlap with differential expressed genes (nominal p-values < 0.05). (B-C) Odds
ratios and their 95% confidence intervals derived from Fisher’s exact test in panel (A) for two cell
types: layer 2/3 excitatory neurons (L2 3) and vasoactive intestinal polypeptide (VIP)–expressing
interneurons (IN-VIP). (D-E) Estimates of the proportion of DE genes among those SFARI genes
or non-SFARI genes for two cell types: L2 3 and IN-VIP. (F) Pathways that are over-represented
by the genes that are differentially expressed between autism subjects and controls in microglia.
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