1	Diagnosis and analysis of unexplained cases of childhood
2	encephalitis in Australia using metagenomic next-
3	generation sequencing
4	8 1 8
5	Ci-Xiu Li ^{1,2} †, Rebecca Burrell ^{2,3} †, Russell C Dale ⁴ , Alison Kesson ^{2,3} ,
6	Christopher C Blyth ^{5,6,7} , Julia E Clark ^{8,9} , Nigel Crawford ¹⁰ , Cheryl A.
7	Jones ^{2,3,11} ⁺ , Philip N. Britton ^{2,3,11} ⁺ , Edward C. Holmes ^{1,2} ⁺ ⁺ on behalf of the
8	Australian Childhood Encephalitis study investigators.
9	
10	¹ School of Life and Environmental Sciences and School of Medical Sciences, The University
11	of Sydney, NSW, Australia.
12	² Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, The
13	University of Sydney, NSW, Australia.
14	³ The Children's Hospital at Westmead, Westmead, NSW, Australia.
15	⁴ Kids Neuroscience Centre, Children's Hospital at Westmead Clinical School, Faculty of
16	Medicine, University of Sydney, NSW, Australia.
17	⁵ Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and School
18	of Medicine, University of Western Australia, Nedlands, WA, Australia.
19	⁶ Department of Infectious Diseases, Perth Children's Hospital, Nedlands, WA, Australia.
20	⁷ Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre,
21	Nedlands, WA, Australia.
22	⁸ Infection Management, Queensland Children's Hospital, Brisbane, QLD, Australia.
23	⁹ School of Clinical Medicine, Childrens Health Queensland Clinical Unit, University of
24	Queensland, QLD, Australia.
25	¹⁰ Murdoch Children's Research Institute, Royal Children's Hospital Flemington Road,
26	Parkville, VIC 3052 Australia.

- ²⁷ ¹¹Kids Research, Sydney Children's Hospitals Network (Westmead), Westmead, NSW,
- 28 Australia,
- 29
- 30 *Correspondence to:
- 31 Prof. Edward C. Holmes
- 32 Marie Bashir Institute for Infectious Diseases & Biosecurity,
- 33 School of Life & Environmental Sciences and School of Medical Sciences
- 34 The University of Sydney | Sydney | NSW | 2006 | Australia
- 35 T+61 2 9351 5591; E edward.holmes@sydney.edu.au
- 36
- 37 [†]Contributed equally to the paper.

38 Abstract

Encephalitis is most often caused by a variety of infectious agents, the identity of which is 39 40 commonly determined through diagnostic tests utilising cerebrospinal fluid (CSF). Immunemediated disorders are also a differential in encephalitis cases. We investigated the clinical 41 42 characteristics and potential aetiological agents of unexplained encephalitis through 43 metagenomic next-generation sequencing of residual clinical samples of multiple tissue types 44 and independent clinical review. A total of 43 specimens, from both sterile and non-sterile sites, were collected from 18 encephalitis cases with no cause identified by the Australian 45 Childhood Encephalitis study. Samples were subjected to total RNA sequencing to determine 46 the presence and abundance of potential pathogens, to reveal mixed infections, pathogen 47 genotypes, and epidemiological origins, and to describe the possible aetiologies of 48 49 unexplained encephalitis. From this, we identified five RNA and two DNA viruses associated 50 with human infection from both non-sterile (nasopharyngeal aspirates, nose/throat swabs, 51 urine, stool rectal swab) and sterile (cerebrospinal fluid, blood) sites. These comprised two human rhinoviruses, two human seasonal coronaviruses, two polyomaviruses and one 52 53 picobirnavirus. With the exception of picobirnavirus all have been previously associated with respiratory disease. Human rhinovirus and seasonal coronaviruses may be responsible for five 54 55 of the encephalitis cases reported here. Immune-mediated encephalitis was considered 56 clinically likely in six cases and RNA sequencing did not identify a possible pathogen in these cases. The aetiology remained unknown in nine cases. Our study emphasises the 57 importance of respiratory viruses in the aetiology of unexplained child encephalitis and 58

- 59 suggests that the routine inclusion of non-CNS sampling in encephalitis clinical
- 60 guidelines/protocols could improve the diagnostic yield.
- 61

62 Author Summary

63	Encephalitis is caused by both infectious agents and auto-immune disorders. However, the
64	aetiological agents, including viruses, remain unknown in around half the cases of
65	encephalitis in many cohorts. Importantly, diagnostic tests are usually based on the analysis
66	of cerebrospinal fluid which may limit their utility. We used a combination of meta-
67	transcriptomic sequencing and independent clinical review to identify the potential causative
68	pathogens in cases of unexplained childhood encephalitis. Accordingly, we identified seven
69	viruses associated with both sterile and non-sterile sampling sites. Human rhinovirus and
70	seasonal coronaviruses were considered as most likely responsible for five of the 18
71	encephalitis cases studied, while immune-mediated encephalitis was considered the cause in
72	six cases, and we were unable to determine the aetiology in nine cases. Overall, we
73	demonstrate the role of respiratory viruses as a cause of unexplained encephalitis and that
74	sampling sites other than cerebrospinal fluid is of diagnostic value.
75	
76	Kaywards Unavalained anoanhalitis mata transcriptomics non starile sites virus nothegan

76 Keywords. Unexplained encephalitis, meta-transcriptomics, non-sterile sites, virus, pathogen
77 discovery

78 Introduction

79	Encephalitis, defined as inflammation of the brain tissue, is caused by a broad range of
80	infectious agents, including bacteria, viruses, fungi and parasites, as well as a number of auto-
81	immune disorders [1, 2]. However, in 40% to 60% of cases in many cohorts the aetiological
82	agents remain unknown [3, 4]. Investigation is challenging because clinical presentation may
83	be atypical and the differential diagnosis may include unusual and opportunistic pathogens –
84	especially if the patient is immunosuppressed - or a non-infective cause. The conventional
85	means of infectious encephalitis diagnosis are specific PCR assays on central nervous system
86	samples including cerebrospinal fluid (CSF) and brain biopsy, as well as
87	immunohistochemical and serological assays [4]. Failure to detect a causative agent by such
88	routine laboratory diagnostics may reflect a lack of diagnostic tests for rare, novel or
89	divergent pathogens, limited volume of CNS samples, and overlapping clinical presentation
90	caused by infectious and non-infectious processes [5].
90 91	caused by infectious and non-infectious processes [5]. The incidence of all-cause childhood encephalitis (including infection-associated
91	The incidence of all-cause childhood encephalitis (including infection-associated
91 92	The incidence of all-cause childhood encephalitis (including infection-associated encephalopathy) is estimated to be between 3.8 and 5.0 per 100,000 population aged \leq 14
91 92 93	The incidence of all-cause childhood encephalitis (including infection-associated encephalopathy) is estimated to be between 3.8 and 5.0 per 100,000 population aged \leq 14 years [6]. The leading causes are picornaviruses (enteroviruses and parechoviruses), herpes
91 92 93 94	The incidence of all-cause childhood encephalitis (including infection-associated encephalopathy) is estimated to be between 3.8 and 5.0 per 100,000 population aged \leq 14 years [6]. The leading causes are picornaviruses (enteroviruses and parechoviruses), herpes simplex viruses 1 and 2, influenza (infection associated encephalopathy), bacterial meningo-
91 92 93 94 95	The incidence of all-cause childhood encephalitis (including infection-associated encephalopathy) is estimated to be between 3.8 and 5.0 per 100,000 population aged \leq 14 years [6]. The leading causes are picornaviruses (enteroviruses and parechoviruses), herpes simplex viruses 1 and 2, influenza (infection associated encephalopathy), bacterial meningo- encephalitis and immune-mediated causes such as acute disseminated encephalo-myelitis

99	Metagenomic next-generation sequencing (mNGS) has successfully identified a broad
100	range of infectious agents in a range of clinical syndromes [8-10] and is gradually being
101	established as a powerful and reliable diagnostic platform [8]. Indeed, mNGS has identified
102	an increasing number of novel or unexpected pathogens associated with encephalitis [11].
103	Total RNA sequencing – meta-transcriptomics – may be especially powerful as it provides a
104	simple way to characterise all the actively transcribing microbes in a sample and estimate
105	their abundance [12-14]. Not only does total RNA sequencing identify the RNA viruses
106	present in a sample, but also those DNA viruses, bacteria, parasites and fungi that are actively
107	transcribing RNA [15].
108	The Australian Childhood Encephalitis (ACE) study has comprehensively identified,
109	collected data, and reviewed cases of this severe syndrome nationally through active sentinel
110	hospital surveillance since 2013, and requested banking of salvaged laboratory biospecimens
111	from cases [7]. Herein, we describe the use of total RNA sequencing on samples of differing
112	tissue types obtained from 18 cases of childhood encephalitis categorised as having unknown
113	cause. Notably, several common respiratory viruses, including human seasonal coronaviruses
114	and rhinoviruses, were identified in samples outside of the CNS and potentially caused the
115	disease process in these cases.
116	
117	Results

Clinical evaluation 118

119	A total of 18 cases, representing patients from four Australian states (Figure 1A), were
120	chosen for study. These cases had previously been reviewed and confirmed to have
121	encephalitis using the Brighton criteria and International Encephalitis Consortium (IEC)
122	definitions [7], but with unknown causality (Table 1). The sex ratio of patients was 1.57:1
123	male to female, with ages ranging from neonates to twelve years (average, 4.5 years) such
124	that only pre-adolescent children were considered (Table 1).
125	Of the 18 unknown encephalitis patients, abnormal neuroimaging (MRI/CT)) was found
126	in 14/18, and EEG findings consistent with encephalitis were observed in 10/18 (Table 1).
127	Most patients had fever (13/18) and lethargy/drowsiness (11/18). Irritability was recorded in
128	6/18 patients, ataxia/unusual behaviour in 7/18, decreased level of consciousness (LOC) in
129	5/18, confusion in 4/18, headache in 6/18, vomiting in 5/18, poor feeding in 4/18 and status
130	epilepticus in 2/18 (Table 1). In addition, diarrhoea, cough, rash, convergent squint, coryza,
131	eye deviation, dysarthria, facial droop, urinary retention and hyperreflexia were observed in
132	one or two cases (Table 1). One patient was reported with respiratory illness in the two weeks
133	prior to admission. Three patients were transferred to an intensive care unit (ICU) within 24
134	hours of admission. One patient with severe combined immunodeficiency (SCID) died. Two
135	patients showed clinical improvement with corticosteroid treatment.

				CNS In	Iflammati	on			Reduced	Responsiv	eness				
Case No.	Sex/Age	Respiratory symptoms	Gastro-intestinal symptoms	Fever	CSF pleocytosis	CSF WCC	MRI changes	EEG changes	Absent environment	Absent eye	Decreased arousability	Seizure LOC	*Focal neurological signs	Brighton criteria	International encephalitis consortium criteria
1	F/3.2mo		Y	Y	Y	11	Y	Y	Y	Y	Y	Y	Y	Level 2	Probable
2	M/7.1yo		Y	Y	Y	501		N/A	Y				Y	Level 2	Possible
3#	M/1.1yo		Y	Y		3	Y		Y	Y	Y	Y	Y	Level 2	Probable
4	M/7.4yo		Y	Y		2	N/A	Y	Y		Y			Level 2	Possible
5	М/9.5уо			Y		0		Y	Y	Y	Y		Y	Level 2	Possible
6	M/2.6yo			Y		1		N/A	Y	Y	Y		Y	Level 3	Possible
7	F/1.1yo		Y		Y	21	Y	Y	Y	Y	Y	Y	Y	Level 2	Probable
8 [†]	M/8.5yo			Y	Y	29	Y	N/A	Y	Y	Y		Y	Level 2	Probable
9	F/3.8wks			Y	Y	65	Y	Y	Y		Y		Y	Level 2	Possible
10 [†]	М/9.9уо		Y		Y	29	Y	N/A			Y			Level 2	Probable
11	M/3mo				Y	72	Y	N/A	N/A	Y			Y	Level 3	Probable
12 [†]	М/3.6уо		Y			0	Y	N/A					Y	Level 3	Probable
13	F/3.4yo	Y	Y	Y	Y	21	Y		Y	Y	Y	Y	Y	Level 2	Probable
14	M/12.6yo	Y	Y		Y	66		N/A	Y	Y	Y	Y	Y	Level 2	Possible
15	M/8.1yo			Y		6	Y	Y	Y	Y	Y		Y	Level 2	Probable
16	F/8.6mo				Y	31	Y	Y	Y	Y	Y	Y	Y	Level 2	Probable
17##	F/3.3yo			Y	N/A	N/A	N/A				Y	Y	Y	Level 3	Probable
18	F/7.8yo			Y	Y	7	Y	Y	Y	Y	Y	Y	Y	Level 2	Probable

Table 1. Demographic and clinical characteristics of the 18 patients studied here.

Y = Yes, N/A = Not Done. All cases had an initial expert panel diagnosis of Unknown Encephalitis. * Y is indicative of cases with one or more of the following: focal seizure, cranial nerve abnormality, visual impairment, motor weakness, altered deep tendon reflexes, cerebellar dysfunction, abnormal movement, or any other focal neurological signs. Respiratory symptoms included cough/coryza and increased work of breath requiring mechanical ventilation for both cases, gastrointestinal symptoms include diarrhoea and/or vomiting.

[#]This patient was with severe combined immunodeficiency (SCID) and the outcome was death.

^{##}This patient was reported with respiratory illness in the previous 2 weeks before admission.

†These patients were transferred to intensive care unit (ICU) within 24 hours of admission.

1	Diagnostic testing for a range of viral agents by PCR on CSF, blood/plasma, sputum and
2	stool samples were performed in the local hospitals. All were negative with the exception of
3	one positive detection of rotavirus from a stool sample, and one detection each of rhinovirus
4	and coronavirus (OC43) in respiratory samples (Table S1). None were considered significant
5	to the clinical presentation. Similarly, serological tests were negative (not consistent with
6	acute infection) for all cases (Table S1). Some cases were also tested for antibodies against
7	ganglioside, muscle specific tyrosine kinase (MUSK), acetylcholine receptor (AChR), N-
8	Methyl-D-Aspartate receptor (NMDAR), voltage-gated potassium channel (VGKC) and
9	neuromyelitis optica (NMO). All were negative (Table S1).
10	A multidisciplinary expert team (PNB, RD, AK, CAJ) re-reviewed clinical presentation,
11	available diagnostic testing using published criteria for assigning causation in encephalitis
12	and criteria for clinically diagnosing autoimmune encephalitis [16, 17]. Following this
13	review, nine were considered to likely have infectious causes, six immune-mediated causes,
14	and three could not be further classified (Table 2).

Case No.	Initial Diagnosis	Independent Clinical Review	Virus	Specimen	Abundance (RPM)	mNGS conclusion	Final Diagnosis
1	Unknown	Possible infectious	Human Rhinovirus A9	NPA	8399	Possible	Possible infectious encephalitis - Human Rhinovirus A9
	encephalitis						
2	Unknown	Unclear cause					Encephalitis – unknown cause
	encephalitis						
3	Unknown	Possible infectious	Human coronavirus OC43	NPA	523673	Possible/	Possible infectious encephalitis - Human coronavirus OC43
	encephalitis		WU Polyomavirus	NPA	1548	indeterminate	
4	Unknown	Possible infectious					Encephalitis – unknown cause
	encephalitis						
5	Unknown	Possible immune					Possible immune mediated encephalitis
	encephalitis	mediated					
6	Unknown	Unclear cause					Encephalitis – unknown cause
	encephalitis						
7	Unknown	Possible infectious					Encephalitis – unknown cause
	encephalitis						
8	Unknown	Possible immune					Possible immune mediated encephalitis
	encephalitis	mediated					
9	Unknown	Possible infectious	Human coronavirus OC43	Blood	82	Possible	Possible infectious encephalitis - Human coronavirus OC43
	encephalitis						
10	Unknown	Possible immune	JC polyomavirus	Urine	80	Unlikely	Possible immune mediated encephalitis
	encephalitis	mediated					
11	Unknown	Possible infectious	Human Rhinovirus B52	NPA	454711	Possible/	Possible infectious encephalitis - Human Rhinovirus B52
	encephalitis		Human Rhinovirus B52	Stool	87	indeterminate	

Table 2. Possible pathogen identification by metagenomic next-generation sequencing (mNGS) and final diagnosis.

12	Unknown	Possible immune					Possible immune mediated encephalitis
	encephalitis	mediated					
13	Unknown	Unclear cause					Encephalitis – unknown cause
	encephalitis						
14	Unknown	Possible infectious					Encephalitis – unknown cause
	encephalitis						
15	Unknown	Possible immune	Human coronavirus OC43	NPA	170	Unlikely	Possible immune mediated encephalitis
	encephalitis	mediated					
16	Unknown	Possible infectious					Encephalitis – unknown cause
	encephalitis						
17	Unknown	Possible infectious	Human coronavirus HKU1	Rectal Swab	6060	Possible	Possible infectious encephalitis - Human coronavirus HKU1
	encephalitis		Human coronavirus HKU1	Respiratory	2939	Possible	
			Human picobirnavirus	Stool	2124	Unlikely	
18	Unknown	Possible immune					Possible immune mediated encephalitis
	encephalitis	mediated					

17 Meta-transcriptomic exploration of potential infectious microbes

18	A total of 43 specimens, comprising CSF, blood, serum, urine, stool, rectal swabs (rectal
19	SW), nasal swabs (respiratory SW), throat swabs (throat SW), nasopharyngeal aspirates
20	(NPA) and endotracheal aspirates (ETA), were utilised in metagenomic testing (Figure 1B).
21	All 43 samples were individually examined using meta-transcriptomics, generating 2.77
22	billion raw paired-end reads in total (between 12.2 and 81.0 million reads per sample) (Table
23	S2). For each library, 48.46 to 85.79% of the reads were retained after removal of low
24	complexity and redundant reads (Figure S1, Table S2), and 1.10 to 80.19% of these reads
25	were subsequently retained after removal of human reads (Figure S1, Table S2). The resultant
26	sequence reads and assembled contigs were annotated against NCBI reference databases,
27	revealing a number of microbes, including potential pathogens. These are described in more
28	detail below.

29

30 Detection of viral sequences in clinical samples of encephalitis

Blastx comparisons against the nr database identified at least 7 virus species (5 RNA viruses and 2 DNA viruses) associated with human infection (Figure 2). The total virus positive rate of specimens was 23% (10/43), while the total virus positive rate of patients was 39% (7/18). All the viruses identified are known to be associated with overt disease, with the exception of a picobirnavirus present in one stool sample that may represent a bacteriophage [18]. Among these viruses, human coronavirus OC43 (HCoV-OC43) was present in three cases, while human coronavirus HKU1 (HCoV-HKU1), human rhinovirus A (HRVA), human rhinovirus

38	B (HRVB), JC polyomavirus (JCPyV) and WU polyomavirus (WUPyV) were detected in
39	one case each. Finally, HCoV-HKU1 was detected in both respiratory swab and rectal swab
40	of case 17, while HRVB was detected in both NPA and stool of case 11 (Figure 2).
41	CSF was available for testing from 9/18 cases and we observed a relative absence of possible
42	virus sequence detections amongst these CSF samples.
43	Virus expression levels were quantified by estimating their relative abundance (RPM,
44	reads per million). Accordingly, the highest virus abundance was 523,673 RPM (HCoV-
45	OC43, case 03 in NPA), followed by 454,710 RPM (HRV-B52, case 11 in NPA) (Figure 2,
46	Table 2). Viruses with greater than 1,000 RPM (> 0.1% of total reads) included HCoV-
47	HKU1 (case 17, in rectal swab and respiratory swab), HRV-A9 (case 01, in NPA), HPBV
48	(case 17, in stool) and WU polyomavirus (case 03, in NPA) (Figure 2, Table 2). The
49	abundance level of HCoV OC43-was greater than 100 RPM in case 15 (throat swab) and
50	lower than 100 RPM in case 09 (blood) (Figure 2, Table 2).
51	To identify specific viral genotypes/lineages and their epidemiological origins,
52	phylogenetic analyses were performed using the resulting complete or partial virus genomes
53	(Table S3). This revealed that all HCoV-HKU1, HCoV-OC43, WUPyV and JCPyV
54	sequences determined here were >99.5% identical to the most closely related sequences
55	available on publicly available data bases (Table S3), belonging to genotypes B, G, 3b and
56	2B, respectively (Figure3A, 3B, 3E and 3F). Two sequences of human rhinovirus B52 -
57	HRV-B52/11-4818/VIC/AU/2019 and HRV-B52/11-4817/VIC/AU/2019 - detected in an
58	NPA and stool specimen from case 11 shared 100% sequence identity with each other yet

59 were relatively distant to known viruses (92.8% nt identity) (Figure 3C, Table S3), such that it likely represents a new genotype of this virus. The human rhinovirus A9 identified here, 60 61 HRV-A9/01-14618/NSW/AU/2019, exhibited 96.5% sequence identity to the most closely publicly available sequence (Figure 3D, Table S3). 62 One picobirnavirus was identified from one stool sample (case 17), and the near 63 64 complete sequences of two segments were obtained (Figure 4B). Segment 1 contains two 65 open reading frames, with ORF2 encoding the viral capsid protein and ORF1 encoding a hypothetical protein with unknown function, while segment 2 contains an ORF encoding the 66 67 viral RNA-dependent RNA polymerase (RdRp) gene (Figure 4B). The conserved motif of the ribosomal binding site (RBS) nucleotide sequence (AGGAGG) is present upstream of the 68 ORF2 of segment 1 and RdRp of segment 2 (Figure 4B). Two copies of the conserved 69 ExxRxxNxxxE aa motif are identifiable un ORF2 of segment 1(Figure 4B). Phylogenetic 70 71 analysis based on RdRp showed that HPBV/17-26618/WA/AU/2019 is related to primate PBVs within genogroup 1 (Figure 4A), and the RdRp shared 72.4% amino acid sequence 72 73 identity with the corresponding protein of macaque PBV (AVD54068) (Table S3). 74

75 Characterization of infecting bacteria

We characterised microbial taxonomic clades belonging to seven phyla and 74 species
(Figure 5A). The dominant bacterial families identified were *Enterobacteriaceae* (63.64%,
estimated using MetaPhlAn2), followed by *Veillonellacae* (10.18%), *Enterococcaceae*(6.07%), *Pseudomonadaceae* (5.89%), *Clostridiales family xi incertae* (5.30%),

80 Streptococcaceae (2.75%), and Bacteroidaceae (1.45%) (Figure 5). As Escherichia coli,

81	unclassified Escherichia and unclassified Veillonella were observed in almost every library
82	(Figure 6), they were considered unlikely to be infectious agents. Enterococcus faecalis, as
83	part of intestinal microbiota and an opportunistic pathogen, was detected in two sterile sites:
84	blood (case 06) and CSF (case 14), although with extremely low abundance (1 and 14 RPM;
85	53 and 549 reads, respectively) (Figure 6). In other cases, the bacteria identified were known
86	human colonisers or of indeterminate pathogenic status and were observed in non-sterile sites
87	making them unlikely pathogens (Figure 6). No bacterial sequences detected were considered
88	potentially pathogenic.

89

90 Correlation between results from clinical evaluation and mNGS

91 Among those cases with likely infectious causes following clinical evaluation, seven 92 harboured viruses at non-sterile sites (NPA, urine, stool, throat swab, rectal swab and 93 respiratory swab) and one in a sterile site (blood) (Table 2). Case 03, a 1-year-old boy with severe combined immunodeficiency (SCID), had the highest abundance of human 94 coronavirus OC43 (523,673 RPM) and medium abundance of Wu polyomavirus (1548RPM) 95 in NPA, indicating a possible synergistic interaction between these two viruses. Although 96 human coronavirus OC43 has not usually been considered a pathogen capable of causing 97 98 encephalitis, it's very high abundance and clinically likely infectious cause makes it a possible pathogen in this case. Human rhinoviruses (HRV-A9 and HRV-B52), that are 99 commonly associated with respiratory diseases, were detected in NPA of case 01 and 11, with 100

101	high to extremely high abundance (8399-454,711 RPM) (Figure 2, Table 2), respectively.
102	These cases were clinically considered likely infectious, suggesting that the two rhinoviruses
103	identified may be the causative pathogens. JC polyomavirus and human coronavirus OC43
104	were detected in cases 10 and 15 at relatively low abundance (80 and 170 RPM,
105	respectively). Although both these viruses have previously been associated with encephalitis
106	[19, 20], their low abundance and potential constitutive expression (JCV) make them less
107	likely to be pathogens in these two cases. Importantly, although HCoV-OC43 was not highly
108	abundant in case 09, it was detected in blood (sterile site), which indicates likely
109	pathogenicity in this case (Figure 2, Table 2). In addition, a high abundance of human
110	coronavirus HKU1 were detected in both respiratory swab and rectal swab of case 17, who
111	was reported with a respiratory illness in the before admission, suggesting potential
112	pathogenicity in this case.
113	Among those cases with likely immune-mediated cause following clinical evaluation,
114	viruses were detected in only two: case 10 (JCV) and case 15 (HCoV-OC43). However, in
115	both cases the viruses were at very low abundance and present at non-sterile sites and so were
116	considered unlikely pathogens. The relative lack of pathogen sequences among those cases
117	with likely immune-mediated causes was notable.
118	
119	Discussion
120	Identification of a causative agent in infectious encephalitis is most validly achieved by

obtaining a specimen directly at the site of inflammation, such as CSF or brain biopsy tissue, 121

122	although the latter is seen	as a last resort as samplin	g comes with associated risks [4]	

123	Therefore, in most cases, CSF is considered the best surrogate specimen for the assessment of
124	neurological disorders [21]. Unlike routine laboratory methods that are limited to the
125	detection of known or related agents, mNGS offers unprecedented opportunities to detect a
126	broad range of microbes including their relative abundance and has recently been employed
127	successfully in detecting a diverse array of potential pathogens not previously associated with
128	CNS disease [22], including astroviruses [3, 23, 24] and arenavirus [25] in cases of
129	encephalitis in immunocompromised and transplant-associated patients. Also of note was that
130	a pegivirus, although considered non-pathogenic, was detected using mNGS in a patient with
131	encephalitis [26], and this technique has recently detected parasitic worms, bacteria, and
132	fungi in CSF specimens from patients with CNS infection of unknown aetiology [5, 11, 27-
133	29].
134	Importantly, in instances where a CSF sample is unavailable or mNGS testing of CSF
135	fails to detect a pathogen, other sites and samples including respiratory tract (nasal and throat
136	swabs, NPA), gastrointestinal tract (faeces, rectal swab), urine or blood may provide an
137	additional indirect opportunity to test for the presence of potential pathogens that might have
138	transferred in the brain [4]. Further, for some well-established CNS pathogens, CSF testing
139	for viral nucleic acid shows low sensitivity. For example, flaviviruses and enterovirus A71
140	have been detected in throat swabs, stool or urine from patients with clinical encephalitis, yet
1/1	ware absent in CSE or plasma/serum collected concurrently [20, 22]. Among the cases with

- 141 were absent in CSF or plasma/serum collected concurrently [30-32]. Among the cases with
- 142 CSF available for testing (9/18 cases) here, none showed the presence of a possible viral

 human coronavirus OC43 and human coronavirus HKU1 – were detected in respirat gastrointestinal samples (NPA, respiratory swab and rectal swab) from four cases, al which were in high abundance (>1,000 RPM), indicating that they are experiencing 	•
	l of
146 which were in high abundance (>1,000 RPM), indicating that they are experiencing	
	active
147 replication in these patients. Further, these viruses were detected in patients consider	ed likely
148 to have an infectious aetiology in an independent clinical evaluation and so are const	dered
149 potential pathogens.	
150 Human coronaviruses are respiratory viruses infrequently reported with neuroin	vasive
properties in both mice and humans [20, 33, 34]. One study suggested that coronavir	us
152 infection in the central nervous system is as common as in respiratory tract, although	ı with
153 distinct features [35]. HCoV-OC43 has been identified in CSF and brain tissue in iso	lated
154 cases of children with acute encephalomyelitis or ADEM [20, 36]. In mice, HCoV-C	C43 has
been shown to directly invade the CNS via the olfactory route, indicating that intrans	asal
156 infection may play a role in propagating viruses [20, 37]. Our detection of HCoV in	NPA and
157 respiratory samples in high abundance suggests they are possible causative agents, a	nd that
158 the olfactory pathway needs further consideration as a route, albeit infrequent, for	
neuroinvasion in humans [33, 38]. The potential role of human coronaviruses in acu	e
160 neurological disease has been further highlighted by the growing evidence of neurological	ogical
161 disease of multiple phenotypes as infrequent clinical presentation of SARS-CoV-2 in	nfection
162 [39-42].	

163	Rhinoviruses (genus <i>Enterovirus</i>) are the cause of various respiratory illnesses [38].
164	Unlike some members within the same genus (polioviruses, echovirus, coxsackieviruses,
165	enteroviruses) often implicated in encephalitis, rhinoviruses are discounted as potential
166	causes of encephalitis in consensus criteria [43]. However, although rhinoviral CNS infection
167	is rare, there are reports of human rhinovirus A and B in respiratory specimens associated
168	with acute neurological disease including acute cerebellitis and meningitis, respectively, and
169	one rhinovirus (unknown species) was detected in CSF in a case of sepsis-like illness [44-46].
170	Further, enterovirus D68 is acknowledged as an emerging neurotropic enterovirus with
171	predominant replication in the respiratory tract [47, 48], suggesting that members of the
172	Enterovirus genus may have neuropathic potential more broadly. Although the two species of
173	rhinovirus detected in this study were identified in in nasopharyngeal aspirates, on the basis
174	of clinical evaluation and mNGS analysis they are considered possible causative agents.
175	Targeted assays of the CSF or antibody tests could be beneficial for pathogen determination
176	in future cases.
177	Another possible explanation for the pathogenicity of these respiratory viruses at non-
178	CSF sites is that they represent para-infectious encephalitis resulting from indirect CNS
179	pathogenicity. A variety of severe encephalopathy/encephalitis syndromes have been
180	described in association with viruses such as influenza, adenovirus and human herpes virus-6,
181	and it is possible that other respiratory viruses could produce disease via these mechanisms
182	[38, 49-53]. It is clear that larger studies are needed to better understand the role of non-CNS
183	samples in the detection of candidate pathogens amongst cases of encephalitis with otherwise

unknown cause. These studies should involve the testing of non-CNS samples in combination
with molecular and serological CSF and serum investigations.

186	The frequency and range of bacterial reads identified in almost all specimens analysed
187	highlights the challenge of applying and interpreting mNGS particularly to non-sterile
188	samples. Most reads corresponded to known human colonisers and/or organisms with
189	questionable pathogenicity. An exception was E. coli that was detected in sterile site samples
190	from several cases, but discounted given that reads were present in all samples analysed.
191	Similarly, E. faecalis was present in two sterile site samples in two cases, but at very low
192	abundance in sterile site specimens in two cases, and we were unable to confirm these
193	infections by PCR. Notably, all the cases studied received empiric antibiotic treatment with a
194	third-generation cephalosporin to which enterococci are inherently resistant. Concurrent or
195	preceding antibiotic usage is an important consideration in mNGS studies where treatment
196	may bias detection to resistant bacterial species [9].
197	An additional insight from this study is the apparent utility of clinical definitions of
198	immune-mediated encephalitis. Among the unknown encephalitis cases under enhanced
199	evaluation here, six were considered likely to be immune-mediated. Despite a similar number
200	and spectrum of samples available for mNGS, we found no possible pathogens using mNGS
201	among these six cases compared with possible pathogens in five of nine cases clinically
202	considered likely to be infectious by an independent clinical review panel. The frequency of
203	likely immune-mediated encephalitis in this case series of encephalitis of unknown cause
204	emphasises the need for further research to identify diagnostic biomarkers.

205	It is not possible to definitively determine that the viruses identified using mNGS here
206	were the causes of the encephalitis in each individual case studied. However, the combination
207	of enhanced clinical evaluation with mNGS appears a fruitful way forward in evaluation of
208	cases of unknown encephalitis [9].
209	
210	Methods
211	Ethics statement
212	This study was performed under the ethical approval of the Sydney Children's Hospitals
213	Network Human Research Ethics Committee (HREC/13/SCHN/191).
214	
215	Enrolment criteria and case definition
216	The cases selected in this study all met the case definition of encephalitis [54]. This included
217	patients aged <= 14 years admitted to hospital with encephalopathy, altered consciousness
218	that persisted for longer than 24 hours, including lethargy, irritability, or a change in
219	personality and behaviour, and at least two of the following criteria: (i) fever or history of
220	fever (≥38°C) during the presenting illness, (ii) seizures and/or focal neurological, (iii)
221	abnormal findings on electroencephalographic (EEG) consistent with encephalitis, and (iv)
222	abnormal results of neuroimaging (CT or MRI) suggestive of encephalitis (Table 1). In
223	addition, each of the study subjects tested negative with routine diagnostic protocols.
224	All samples were collected from diagnostic laboratories between March 2014 and
225	December 2016. All specimens were originally collected by trained clinicians using sterile

226	swabs or aseptic technique and were immediately sent to local laboratories where diagnostic
227	testing was undertaken. Following diagnostic testing, residual samples were stored at -20°C.
228	Following collection for research purposes, informed consent was obtained from
229	parents/guardians for research testing and specimens were then placed into -80°C storage
230	locally and transferred in batches on dry ice to a central specimen repository where they were
231	stored in a -80°C freezer.
232	
233	RNA extraction, library construction and sequencing
234	Samples were subjected to RNA extraction using the RNeasy plus universal kit (QIAGEN,
235	Chadstone Centre, Victoria, Australia). The concentration and quality of final extractions
236	were examined using a NanoDrop spectrophotometer (ThermoFisher Scientific, USA). The
237	Trio RNA-Seq kit (NuGEN Technologies, USA) was used for library preparation in all cases
238	as it targets low concentration RNA samples (as low as 500 pg) [55]. Paired-end (150 bp)
239	sequencing of these RNA library was performed using the Illumina NovaSeq platform. All
240	library preparation and sequencing steps were performed by Australian Genome Research
241	Facility (AGRF), Melbourne.
242	
243	Microbial characterization
244	For each library/case, quality control was performed and adaptor sequences and low-
245	quality/low-complex reads were removed using BBmap (https://jgi.doe.gov/data-and-

246 tools/bbtools/bb-tools-user-guide/bbmap-guide/) and CD-HIT-DUP [56]. Human reads were

247	removed by mapping to the human genome. Non-human reads were then compared against
248	reference virus database downloaded from GenBank and the NCBI non-redundant protein
249	database using Blastn and Diamond [57] blastx, respectively, with e-value thresholds of 1 $ imes$
250	10^{-10} and 1×10^{-4} . Blast hits were then annotated by taxonomy. Reads were <i>de novo</i> assembled
251	using Megahit [58, 59] from the virus-positive library in which they were identified based on
252	the blast procedure described above. In cases with low genome coverage, reads were directly
253	mapped to the sequence of a close relative, and a consensus genome was obtained from the
254	mapped reads. To exclude contamination due to index hopping, for each virus only those
255	present at >0.1% of the highest viral abundance were considered true positives. Sequence
256	specific primers were designed, and RT-PCR and Sanger sequencing were performed to
257	verify and confirm the presence of viruses with highly similar sequences that appeared in
258	multiple libraries.
259	Virus abundance were estimated as Reads Per Million (RPM) [55], calculated by using
260	the relation "mapped reads / total reads * one million". For picobirnavirus, open reading
261	frames were predicted using orffinder (https://www.ncbi.nlm.nih.gov/orffinder/) and gene
262	annotated against the conserved domain database (CDD) [60].
263	The resulting complete or partial virus genomes (Table S3), as well as related
264	background viruses from GenBank, were aligned using MAFFT version 7 [61] and subjected
265	to phylogenetic analysis using the maximum likelihood method available in PhyML 3.0 [62]
266	employing the General Time Reversible (GTR) model of nucleotide substitution with a
267	gamma distribution of among-site rate variation and 1000 bootstrap replicates.

Bacterial taxonomic profiling was initially performed using MetaPhlAn2 [63] w	268	Bacterial taxonom	ic profiling was	s initially performed	d using MetaPhlAn2	[63] wit
---	-----	-------------------	------------------	-----------------------	--------------------	----------

- 269 default parameters, mapping the non-human sequence reads to a set of ~1 million unique
- 270 clade-specific marker genes from ~13,500 bacterial and archaeal species.

271

272 Data availability

- 273 All non-human sequence reads generated here have been deposited on the NCBI Sequence
- 274 Read Achieve (SRA; BioProject accession PRJNA633210).

275

276 Clinical evaluation

All 18 cases had previously undergone clinical review as part of the Australian Childhood

278 Encephalitis study and been determined to have an unknown cause [7]. A clinical evaluation

- 279 panel was convened comprising a clinical paediatric neurologist (RD), paediatric infectious
- 280 disease physician (CJ), clinical epidemiologist (PB) and clinical microbiologist (AK) who re-

281 evaluated each case in terms of clinical presentation, available diagnostic testing and

282 response to empiric therapies using published criteria for assigning causation in encephalitis

[43] and clinically diagnosing autoimmune encephalitis [16]. This panel was blinded to the

284 mNGS results.

285

286 Logic model for determining pathogenic potential of mNGS detections

287 We applied a logic model (Figure S2) to determine the likely significance of mNGS results

288 based upon the nature of the sample from which mNGS detection occurred, the organism

abundance and pathogenicity, and accounting for the enhanced clinical evaluation findings to

290 arrive at a final clinical diagnosis.

291 Acknowledgments

- 292 We acknowledge The University of Sydney HPC service (Artemis) for providing high-
- 293 performance computing resources that have contributed to the research reported in this paper.

294

295 Author Contributions

- 296 Conceptualization: Cheryl A. Jones, Philip N. Britton, Edward C. Holmes.
- 297 Data curation: Ci-Xiu Li, Rebecca Burrell.
- 298 Formal analysis: Ci-Xiu Li, Rebecca Burrell, Philip N. Britton, Edward C. Holmes.
- 299 Funding acquisition: Cheryl A. Jones, Philip N. Britton, Edward C. Holmes.
- 300 Investigation: Russell C. Dale, Alison Kesson, Christopher C Blyth, Julia E Clark, Nigel
- 301 Crawford, Cheryl A. Jones
- 302 Methodology: Ci-Xiu Li, Rebecca Burrell
- 303 **Resources:** Rebecca Burrell, Alison Kesson, Christopher Blyth, Julia Clark, Nigel Crawford.
- 304 Writing original draft: Ci-Xiu Li.
- 305 Writing review & editing: Ci-Xiu Li, Rebecca Burrell, Russell C. Dale, Christopher C
- 306 Blyth Julia E Clark, Cheryl A. Jones, Philip N. Britton, Edward C. Holmes.

307 **References**

308	1.	Granerod J, Tam CC, Crowcroft NS, Davies NWS, Borchert M, Thomas SL. Challenge
309		of the unknown: A systematic review of acute encephalitis in non-outbreak situations.
310		Neurology. 2010; 75: 924-932. doi: 10.1212/WNL.0b013e3181f11d65. PMID:
311		20820004.
312	2.	Singh TD, Fugate JE, Rabinstein AA. The spectrum of acute encephalitis Causes,
313		management, and predictors of outcome. Neurology. 2015; 84: 359-366. doi:
314		10.1212/Wnl.00000000001190. PMID: 25540320.
315	3.	Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W, Shah D, et al. Astrovirus
316		VA1/HMO-C: an increasingly recognized neurotropic pathogen in immunocompromised
317		patients. Clin Infect Dis. 2015; 60: 881-888. doi: 10.1093/cid/ciu940. PMID: 25572899.
318	4.	Kennedy PGE, Quan PL, Lipkin WI. Viral encephalitis of unknown cause: current
319		perspective and recent advances. Viruses. 2017; 9: 138. doi: 10.3390/v9060138. PMID:
320		28587310.
321	5.	Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu GX, et al. Actionable
322		diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med. 2014;
323		370: 2408-2417. doi: 10.1056/NEJMoa1401268. PMID: 24896819.
324	6.	Britton PN, Khoury L, Booy R, Wood N, Jones CA. Encephalitis in Australian children:
325		contemporary trends in hospitalisation. Arch Dis Child. 2016; 101: 51-56. doi:
326		10.1136/archdischild-2015-308468. PMID: 26475868.

327	7.	Britton PN, Dale RC, Blyth CC, Clark JE, Crawford N, Marshall H, et al. Causes and
328		clinical features of childhood encephalitis: a multicenter, prospective cohort study. Clin
329		Infect Dis. 2020; 70: 2517-2526. doi: 10.1093/cid/ciz685. PMID: 31549170.
330	8.	Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for
331		pathogen detection. Annu Rev Pathol. 2019; 14: 319-338. doi: 10.1146/annurev-
332		pathmechdis-012418-012751. PMID: 30355154.
333	9.	Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, et al. Clinical
334		metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med.
335		2019; 380: 2327-2340. doi: 10.1056/NEJMoa1803396. PMID: 31189036.
336	10.	Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019; 20: 341-355. doi:
337		10.1038/s41576-019-0113-7. PMID: 30918369.
338	11.	Wilson MR, O'Donovan BD, Gelfand JM, Sample HA, Chow FC, Betjemann JP, et al.
339		Chronic meningitis investigated via metagenomic next-generation sequencing. JAMA
340		Neurol. 2018; 75: 947-955. doi: 10.1001/jamaneurol.2018.0463. PMID: 29710329.
341	12.	Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. Best
342		practices for analysing microbiomes. Nat Rev Microbiol. 2018; 16: 410-422. doi:
343		10.1038/s41579-018-0029-9. PMID: 29795328.
344	13.	Shi M, White VL, Schlub T, Eden JS, Hoffmann AA, Holmes EC. No detectable effect
345		of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila

346	melanogaster. Proc Biol Sci. 2018; 285: 20181165. doi: 10.1098/rspb.2018.1165. PMID:
347	30051873.

- 14. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, et al. Redefining the invertebrate
- 349 RNA virosphere. Nature. 2016; 540: 539-543. doi: 10.1038/nature20167. PMID:
- 350 27880757.
- 351 15. Shi M, Zhang YZ, Holmes EC. Meta-transcriptomics and the evolutionary biology of
- 352 RNA viruses. Virus Res. 2018; 243: 83-90. doi: 10.1016/j.virusres.2017.10.016. PMID:
- *29111455.* 353
- 16. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach
- to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016; 15: 391-404. doi:
- 356 10.1016/S1474-4422(15)00401-9. PMID: 26906964.
- 17. Cellucci T, Van Mater H, Graus F, Muscal E, Gallentine W, Klein-Gitelman MS, et al.
- 358 Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient.
- 359 Neurol Neuroimmunol Neuroinflamm. 2020; 7: e663. doi:
- 360 10.1212/NXI.00000000000663. PMID: 31953309.
- 361 18. Krishnamurthy SR, Wang D. Extensive conservation of prokaryotic ribosomal binding
- 362 sites in known and novel picobirnaviruses. Virology. 2018; 516: 108-114. doi:
- 363 10.1016/j.virol.2018.01.006. PMID: 29346073.

364	19.	Tan CS	, Koralnik IJ.	Progressive	multifocal	leukoence	phalopathy	v and othe	r disorders
201	· · ·	I WILL CO.	, ILOIGHING IV.	I IOGIODITO	111001011000001	10011001100	pinaropatin		

- 365 caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 2010; 9: 425-437.
- 366 doi: 10.1016/S1474-4422(10)70040-5. PMID: 20298966.
- 367 20. Morfopoulou S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, et al.
- 368 Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med. 2016; 375:
- 369 497-498. doi: 10.1056/NEJMc1509458. PMID: 27518687.
- 21. Ellul M, Solomon T. Acute encephalitis diagnosis and management. Clin Med. 2018;
- 371 18: 155-159. doi: 10.7861/clinmedicine.18-2-155. PMID: 29626021.
- 372 22. Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics:
- application of next generation sequencing for undiagnosed cases. J Infect. 2018; 76: 225-

374 240. doi: 10.1016/j.jinf.2017.12.014. PMID: 29305150.

- 23. Sato M, Kuroda M, Kasai M, Matsui H, Fukuyama T, Katano H, et al. Acute
- 376 encephalopathy in an immunocompromised boy with astrovirus-MLB1 infection
- detected by next generation sequencing. J Clin Virol. 2016; 78: 66-70. doi:
- 378 10.1016/j.jcv.2016.03.010. PMID: 26991054.
- 24. Quan PL, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, et al.
- 380 Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg Infect Dis.
- 381 2010; 16: 918-925. doi: 10.3201/eid1606.091536. PMID: 20507741.

- 382 25. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, et al. A new arenavirus in a cluster
- 383 of fatal transplant-associated diseases. N Engl J Med. 2008; 358: 991-998. doi:
- 384 10.1056/NEJMoa073785. PMID: 18256387.
- 385 26. Tuddenham R, Eden JS, Gilbey T, Dwyer DE, Jennings Z, Holmes EC, et al. Human
- 386 pegivirus in brain tissue of a patient with encephalitis. Diagn Microbiol Infect Dis. 2020;
- 387 96: 114898. doi: 10.1016/j.diagmicrobio.2019.114898. PMID: 31753519.
- 388 27. Guo LY, Li YJ, Liu LL, Wu HL, Zhou JL, Zhang Y, et al. Detection of pediatric
- 389 bacterial meningitis pathogens from cerebrospinal fluid by next-generation sequencing
- 390 technology. J Infect. 2019; 78: 323-337. doi: 10.1016/j.jinf.2018.12.001. PMID:
- 391 30550819.
- 392 28. Fan S, Qiao X, Liu L, Wu H, Zhou J, Sun R, et al. Next-generation sequencing of
- 393 cerebrospinal fluid for the diagnosis of neurocysticercosis. Front Neurol. 2018; 9: 471.
- doi: 10.1016/j.clineuro.2020.105752. PMID: 29971042.
- 29. Fan S, Ren H, Wei Y, Mao C, Ma Z, Zhang L, et al. Next-generation sequencing of the
 cerebrospinal fluid in the diagnosis of neurobrucellosis. Int J Infect Dis. 2018; 67: 20-24.
- doi: 10.1016/j.ijid.2017.11.028. PMID: 29196276.
- 398 30. Tsai JD, Tsai HJ, Lin TH, Chang YY, Yang SH, Kuo HT. Comparison of the detection
- 399 rates of RT-PCR and virus culture using a combination of specimens from multiple sites
- 400 for enterovirus-associated encephalomyelitis during enterovirus 71 epidemic. Jpn J Infect
- 401 Dis. 2014; 67: 333-338. doi: DOI 10.7883/yoken.67.333. PMID: 25241681.

- 402 31. Ooi MH, Solomon T, Podin Y, Mohan A, Akin W, Yusuf MA, et al. Evaluation of
- 403 different clinical sample types in diagnosis of human enterovirus 71-associated hand-
- 404 foot-and-mouth disease. J Clin Microbiol. 2007; 45: 1858-1866. doi:
- 405 10.1128/JCM.01394-06. PMID: 17446325.
- 406 32. Perez-Velez CM, Anderson MS, Robinson CC, McFarland EJ, Nix WA, Pallansch MA,
- 407 et al. Outbreak of neurologic enterovirus type 71 disease: a diagnostic challenge. Clin
- 408 Infect Dis. 2007; 45: 950-957. Epub 2007/09/21. doi: 10.1086/521895. PMID:
- 409 17879907.
- 410 33. Dube M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal
- 411 transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol.

412 2018; 92: e00404-18. doi: 10.1128/JVI.00404-18. PMID: 29925652.

- 413 34. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory
- 414 coronaviruses. J Virol. 2000; 74: 8913-8921. Epub 2000/09/12. doi:
- 415 10.1128/jvi.74.19.8913-8921.2000. PMID: 10982334.
- 416 35. Li YY, Li HP, Fan RY, Wen B, Zhang J, Cao XY, et al. Coronavirus infections in the
- 417 central nervous system and respiratory tract show distinct features in hospitalized
- 418 children. Intervirology. 2016; 59: 163-169. doi: 10.1159/000453066. PMID: 28103598.
- 419 36. Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the
- 420 central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics.
- 421 2004; 113: e73-76. doi: 10.1542/peds.113.1.e73. PMID: 14702500.

422	37.	Jacomy H, St-Jean JR, Brison E, Marceau G, Desforges M, Talbot PJ. Mutations in the
423		spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from
424		encephalitis to flaccid paralysis and demyelination. J Neurovirol. 2010; 16: 279-293. doi:
425		10.3109/13550284.2010.497806. PMID: 20642316.
426	38.	Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dube M, et al. Human
427		coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of
428		the central nervous system? Viruses. 2019; 12: 14. doi: 10.3390/v12010014. PMID:
429		31861926;.
430	39.	Paterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha T, et al. The
431		emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory
432		findings. Brain. 2020; 143: 3104-3120. doi: 10.1093/brain/awaa240. PMID: 32637987.
433	40.	Lindan CE, Mankad K, Ram D, Kociolek LK, Silvera VM, Boddaert N, et al.
434		Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational,
435		multicentre collaborative study. Lancet Child Adolesc Health. 2020; 5: 167-177. doi:
436		10.1016/S2352-4642(20)30362-X. PMID: 33338439.
437	41.	Kremer S, Lersy F, Anheim M, Merdji H, Schenck M, Oesterle H, et al. Neurologic and
438		neuroimaging findings in patients with COVID-19: A retrospective multicenter study.
439		Neurology. 2020; 95: e1868-e82. doi: 10.1212/WNL.000000000010112. PMID:
440		32680942.

441	42.	Almqvist J, Granberg T, Tzortzakakis A, Klironomos S, Kollia E, Ohberg C, et al.
442		Neurological manifestations of coronavirus infections - a systematic review. Ann Clin
443		Transl Neurol. 2020; 7: 2057-2071. doi: 10.1002/acn3.51166. PMID: 32853453.
444	43.	Granerod J, Cunningham R, Zuckerman M, Mutton K, Davies NW, Walsh AL, et al.
445		Causality in acute encephalitis: defining aetiologies. Epidemiol Infect. 2010; 138: 783-
446		800. doi: 10.1017/S0950268810000725. PMID: 20388231.
447	44.	Harvala H, McIntyre CL, McLeish NJ, Kondracka J, Palmer J, Molyneaux P, et al. High
448		detection frequency and viral loads of human rhinovirus species A to C in fecal samples;
449		diagnostic and clinical implications. J Med Virol. 2012; 84: 536-542. doi:
450		10.1002/jmv.23203. PMID: 22246843.
451	45.	Pelkonen T, Roine I, Anjos E, Kaijalainen S, Roivainen M, Peltola H, et al.
452		Picornaviruses in cerebrospinal fluid of children with meningitis in Luanda, Angola. J
453		Med Virol. 2012; 84: 1080-1083. doi: 10.1002/jmv.23304. PMID: 22585725.
454	46.	Hazama K, Shiihara T, Tsukagoshi H, Matsushige T, Dowa Y, Watanabe M. Rhinovirus-
455		associated acute encephalitis/encephalopathy and cerebellitis. Brain Dev. 2019; 41: 551-
456		554. doi: 10.1016/j.braindev.2019.02.014. PMID: 30850156.
457	47.	Blomqvist S, Savolainen C, Raman L, Roivainen M, Hovi T. Human rhinovirus 87 and
458		enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features. J
459		Clin Microbiol. 2002; 40: 4218-4223. doi: 10.1128/jcm.40.11.4218-4223.2002. PMID:
460		12409401.

461	48. Lauinger IL, Bible JM, Halligan EP, Aarons EJ, MacMahon E, Tong CY. Lineages, sub-
462	lineages and variants of enterovirus 68 in recent outbreaks. PLoS One. 2012; 7: e36005.

- 463 doi: 10.1371/journal.pone.0036005. PMID: 22536453.
- 464 49. Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated
- 465 with influenza and other viral infections. Acta Neurol Scand. 2007; 115: 45-56. doi:
- 466 10.1111/j.1600-0404.2007.00809.x. PMID: 17362276.
- 467 50. Mizuguchi M, Abe J, Mikkaichi K, Noma S, Yoshida K, Yamanaka T, et al. Acute
- 468 necrotising encephalopathy of childhood: a new syndrome presenting with multifocal,
- 469 symmetric brain lesions. J Neurol Neurosurg Psychiatry. 1995; 58: 555-561. doi:
- 470 10.1136/jnnp.58.5.555. PMID: 7745402.
- 471 51. Britton PN, Dale RC, Blyth CC, Macartney K, Crawford NW, Marshall H, et al.
- 472 Influenza-associated encephalitis/encephalopathy identified by the Australian Childhood
- 473 Encephalitis study 2013-2015. Pediatr Infect Dis J. 2017; 36: 1021-1026. doi:
- 474 10.1097/INF.00000000001650. PMID: 28654561.
- 475 52. Takanashi J. Two newly proposed infectious encephalitis/encephalopathy syndromes.
- 476 Brain Dev. 2009; 31: 521-528. doi: 10.1016/j.braindev.2009.02.012. PMID: 19339128.
- 477 53. Bohmwald K, Galvez NMS, Rios M, Kalergis AM. Neurologic alterations due to
- 478 respiratory virus infections. Front Cell Neurosci. 2018; 12: 386. doi:
- 479 10.3389/fncel.2018.00386. PMID: 30416428.

- 480 54. Granerod J, Ambrose HE, Davies NWS, Clewley JP, Walsh AL, Morgan D, et al. Causes
- 481 of encephalitis and differences in their clinical presentations in England: a multicentre,
- 482 population-based prospective study. Lancet Infect Dis. 2010; 10: 835-844. doi:
- 483 10.1016/S1473-3099(10)70222-X. PMID: 20952256.
- 484 55. Li CX, Li W, Zhou J, Zhang B, Feng Y, Xu CP, et al. High resolution metagenomic
- 485 characterization of complex infectomes in paediatric acute respiratory infection. Sci Rep.
- 486 2020; 10: 3963. doi: 10.1038/s41598-020-60992-6. PMID: 32127629.
- 487 56. Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. CD-HIT: accelerated for clustering the next-
- 488 generation sequencing data. Bioinformatics. 2012; 28: 3150-3152. doi:
- 489 10.1093/bioinformatics/bts565. PMID:23060610.
- 490 57. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND.
- 491 Nat Methods. 2015; 12: 59-60. doi: DOI 10.1038/nmeth.3176. PubMed PMID:
- 492 25402007.
- 493 58. Li DH, Luo RB, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A
- 494 fast and scalable metagenome assembler driven by advanced methodologies and
- 495 community practices. Methods. 2016; 102: 3-11. doi: 10.1016/j.ymeth.2016.02.020.
- 496 PMID: 27012178.
- 497 59. Li DH, Liu CM, Luo RB, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node
 498 solution for large and complex metagenomics assembly via succinct de Bruijn graph.

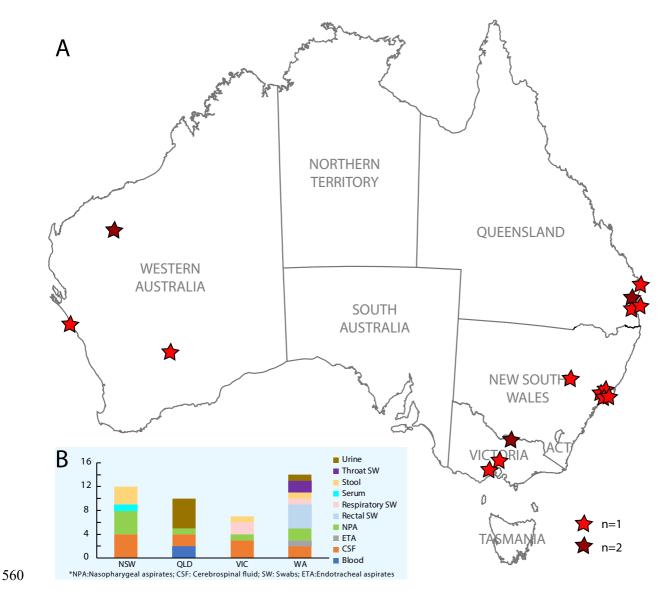
499	Bioinformatics. 2015; 31: 1674-1676. doi: 10.1093/bioinformatics/btv033. PMID:
500	25609793.

- 501 60. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu SN, Chitsaz F, Geer LY, et al.
- 502 CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015; 43: D222-D226.
- 503 doi: 10.1093/nar/gku1221. PMID: 25414356.
- 504 61. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale
- 505 multiple sequence alignments. Bioinformatics. 2018; 34: 2490-2492. doi:
- 506 10.1093/bioinformatics/bty121. PMID: 29506019.
- 507 62. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
- algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
- 509 performance of PhyML 3.0. Syst Biol. 2010; 59: 307-321. doi: 10.1093/sysbio/syq010.
- 510 PMID:20525638.
- 511 63. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al.
- 512 MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015; 12:
- 513 902-903. doi: 10.1038/nmeth.3589. PMID: 26418763.

515 Figure legends

517	Fig. 1. Geographic context of the study. (A) Maps showing the residential postal codes
518	within Australia of patients with clinical diagnosis as encephalitis reported at the Children's
519	Hospital at Westmead (CHW) between March 2014 and September 2016. Red star indicates
520	one case and dark red star indicates two cases. (B) The bar chart showing the diversity of
521	sample types collected in four states (NSW, QLD, VIC and WA) in Australia, coloured by
522	sample types.
523	
524	Fig. 2. Diversity and abundance of viruses identified in this study. The bar chart shows
525	number of virus species in each sample: RNA viruses (blue) and DNA viruses (yellow). The
526	heatmap shows the abundance level of different virus species within each library. The
527	abundance level of reads was normalized to unique reads mapped per million input reads
528	(RPM). HCoV-OC43, human coronavirus OC43; HCoV-HKU1, human coronavirus HKU1;
529	HRV-A9, human rhinovirus A9; HRV-B52, human rhinovirus B52; Echo6, echovirus E6;
530	HCoV-HKU1, human coronavirus HKU1; HPBV, human picobirnavirus; JCPyV, JC
531	polyomavirus; WUPyV, WU polyomavirus.
532	
533	Fig. 3. Phylogenetic relationships and intra-specific diversity and of viruses identified by
534	mNGS in this study. Viruses identified as part of this project are marked in red and viruses
535	from the same type/subgroup are shaded light red, whereas those representing background

536	phylogenetic diversity are shown in black. All horizontal branch lengths are scaled to the
537	number of nucleotide substitutions per site, and trees are mid-point rooted for clarity.
538	

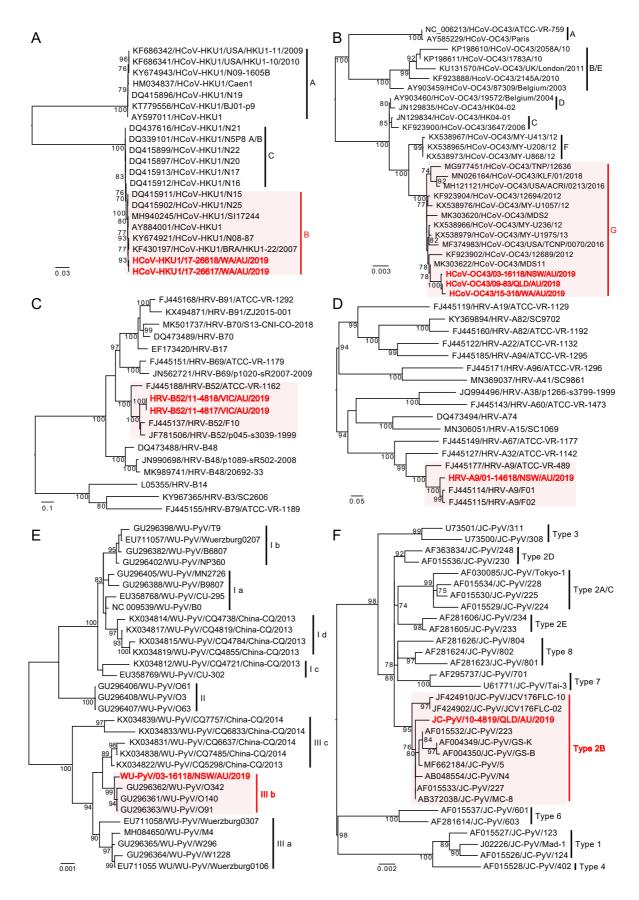

539	Fig. 4. Analysis of the novel picobirnavirus. (A) Phylogenetic relationships of the RNA-
540	dependent RNA polymerase (RdRp) proteins of the novel human picobirnavirus identified
541	from this study and representative picobirnaviruses. (B) Genome organization of the novel
542	human picobirnavirus from one stool sample. Segment 1 encodes two hypothetical proteins
543	(ORF1 and ORF2), with arrows standing for directions of uncomplete ORFs. Segment 2
544	encodes the viral RNA-dependent RNA polymerase (RdRp). The ribosome binding sites
545	(RBS) and the ExxRxNxxxE amino acid (aa) motifs are marked.

546

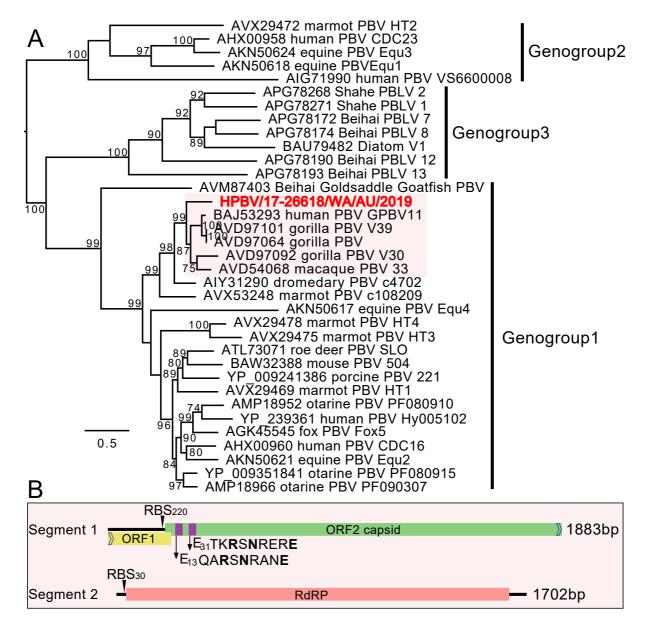
547 Fig. 5. Detailed analysis of the bacteria identified in this study. (A) Bacterial taxa identified using mNGS. Each dot represents a taxonomic entity. From the inner to outer 548 549 circles, the taxonomic levels range from kingdom to species. Different colored dots indicate different taxonomic levels according to the color key shown. Numbers in parentheses indicate 550 the total number of unique taxonomies detected at each level. (B) Profiling the relative 551 552 abundance of the bacteria identified here. Cladogram representing the predominant family and top 16 bacterial species present in these cases. Circle size depicts microbial abundance. 553 554 Abundance levels (reads per million total reads) were estimated using MetaPhlAn2. The taxonomic tree was visualized using GraPhlAn. 555

557 Fig. 6. Heatmap of the abundance level for the bacteria identified in each case studied

- 558 here. The abundance level of microbial reads was normalized to RPM, and the estimation
- 559 was performed at the species level.

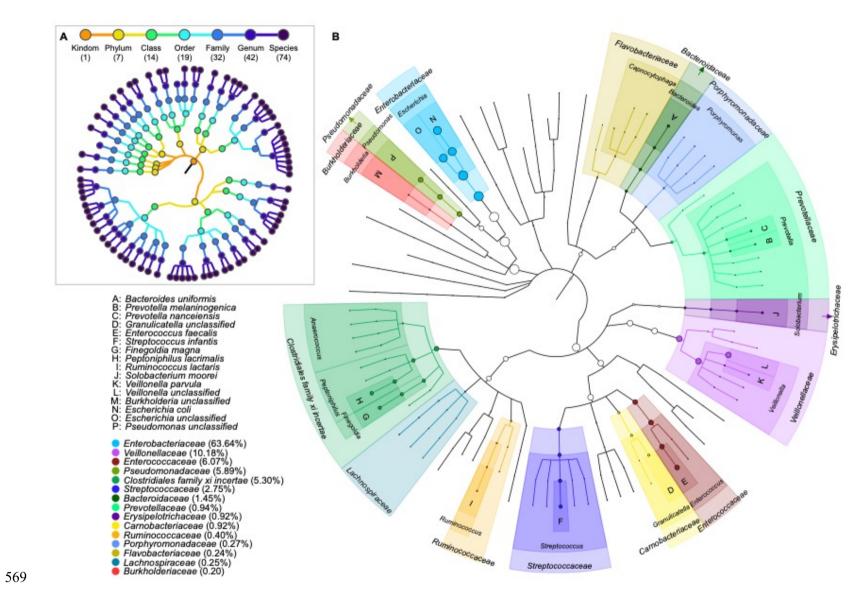

561 Figure 1

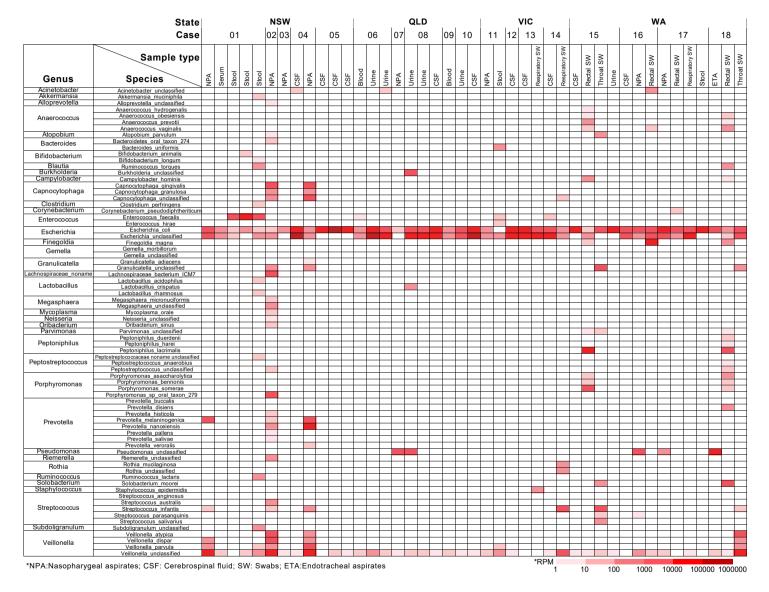
		A Number of Samples 1 1		F ssR	RNA viru NA	S	dsRNA	DNA dsDl	virus NA
*RPM		⁴ 10⁵ 10 ⁶ 0 l	-						
State	Cases	Sample type	HCoV-OC43	HCoV-HKU1	HRVA9	HRVB52	HPBV	JCPyV	WUPyV
	01	NPA Serum Stool Stool Stool							
NSW	02	NPA							
	03	NPA							
	04	CSF							
		NPA							
	05	CSF CSF CSF							
	06	Blood Urine Urine							
	07	NPA							
QLD	08	Urine Urine							
	09	CSF							
	10	Blood Urine CSF							
	11	NPA Stool							
1/10	12	CSF							
VIC	13	CSF Respiratory SW							
	14	CSF							
		Respiratory SW							
	15	CSF Rectal SW Throat SW Urine							
10/0	16	CSF NPA Rectal SW							
WA	17	NPA Rectal SW Respiratory SW Stool							
	18	ETA Rectal SW Throat SW							


562

*NPA:Nasopharygeal aspirates; CSF: Cerebrospinal fluid; SW: Swabs; ETA:Endotracheal aspirates

563 Figure 2





568 Figure 4

Figure 5

572 Figure 6

Supporting Information Captions

Fig S1. Summary of taxonomy and abundance from meta-transcriptomic sequencing of the libraries from each patient. The bar chart shows the proportion of assigned taxa according to the keys provided. The panel shows the proportion of reads that were assigned as quality controlled (QC), human and non-human in each library.

Fig S2. Logic model to determine potential the pathogenicity of the viruses, bacteria and fungi identified here. #mNGS = metagenomic next-generation sequencing. *Sterile sites included blood, serum, and CSF; non-sterile sites included nasopharyngeal aspirates, endotracheal samples, throat and nasal swabs, as well as stool and rectal swabs. Infectious and immune-mediated syndromes were defined by the advanced clinical expert panel. ^Abundance was determined to be high if sequence reads were above 10000 RPM, or low if below 1000 RPM. In the event of detection in multiple samples sterile samples taken priority.

Table S1. Summary of laboratory tests performed on the encephalitis cases.

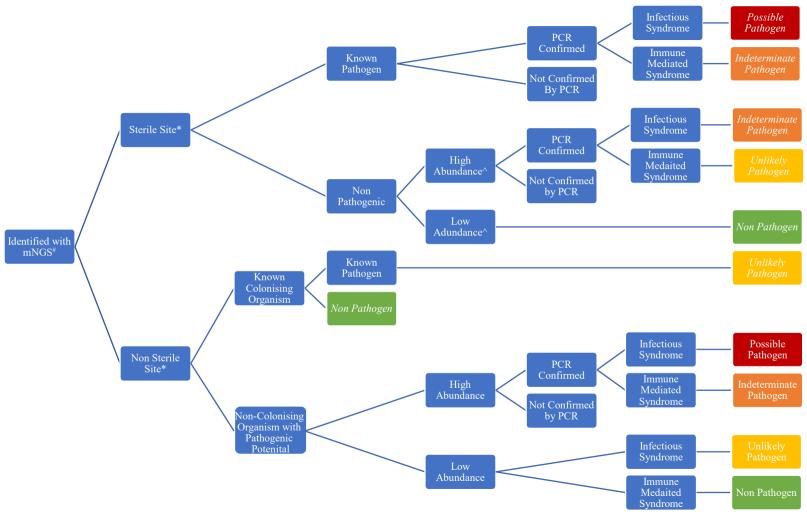

Table S2. Information on the RNA sequencing libraries generated in this study.

Table S3. Identity of viruses identified in this study with the most closely related sequence

 available on public sequence databases.

	100%-																												Q)C		H	lum	an		N	Non	-hu	mar	ו
	90% -																																							
	80% -		н				L														L	L	L	L	L															
sbr	70% -		н				L														L	L	L		L															
^c Rea	60% -		н																		L	L	L		L									I						
Percentage of Reads	50% -																																							
ntaç	40% -		L			L														l	Ł	L	L											I				I		
erce	30% -		L			L		L			I									I	L	I	L		L									I	l	I		I		
<u>م</u>	20% –		L	Ш		L		L	U		I									I	L	L	L	L	L	L								L	l		l		l	
	10% –		L	Ш		L	L	L	H		I	L								I	L	L	L	L	L	L			L			L		L	l	l	l	l	l	
	0% –		4										4																											
Sample	tvpe	NPA Serum	Stool	Stool	NPA	NPA	CSF	NPA	5 2	CSF	Blood	Urine	Urine	APA -	Urine	OTTINE CSF	Blood	S E	Urine	NPA	Stool	CSF	CSF	Respiratory SW	CSF	Respiratory SW	CSF	Rectal SW	Ihroat SW	Urine	CSF	Rectal SW	NPA	NPA	Rectal SW	Respiratory SW	Stool	ETA	Rectal SW	Throat SW
	-71	ۍ ۲										_				-		1	_					oirato		lirator		Recta	hroa			Recta			Recta	irato			Recta	Throa
																								Resp		Kesp	_	F								Resp				-
	Case		01		02	03	04	4	0	5		06		07	0	8	09)	10		11	12	1	3	14	F		15				16			1	7			18	
	State				NS	W								Ç	<u>)</u> LD							١	VIC										W	A						

*NPA:Nasopharygeal aspirates; CSF: Cerebrospinal fluid; SW: Swabs; ETA:Endotracheal aspirates

	Infectious Disease																					
	CSF Culture CSF PCR									Serolo		Gast	ro-Inte	stinal		Immune Mediated						
Case No.	Bacterial	Fungal	Mycoplasma	ASH	EV	HPeV	ΛZΛ	EBV	CMV	HHV	N. Meningitidis	M. pneumoniae	Acute EBV	M. pnuemoniae IgM	Sputum PCR	Rotavirus	Adenovirus	Enterovirus	Bacterial Culture	CSF NDMA IgG	Serum VGKC IgG	Oligoclonal Banding
1	Ν			Ν	Ν										P*				Ν			Ν
2				Ν	Ν						Ν				Ν							
3	Ν			Ν	Ν					Ν			Ν		P#				Ν			Ν
4	Ν			Ν	Ν										Ν			Ν				
5	Ν			Ν	Ν								Ν	Ν		Ν			Ν			Ν
6	Ν	Ν	Ν	Ν	Ν								Ν	Ν	Ν					Ν		Ν
7	Ν	Ν	Ν	Ν	Ν	Ν		Ν			Ν	Ν	Ν	Ν								Е
8	Ν	Ν	Ν	Ν	Ν		Ν	Ν	Ν				Ν	Ν	Ν					Ν		Р
9	Ν	Ν	Ν	Ν	Ν										Ν							
10	Ν		Ν	Ν	Ν							Ν			Ν					Ν		Ν
11	Ν			Ν	Ν		Ν		Ν	Ν		Ν			Ν	Ν	Ν	Ν	Ν			
12	Ν			Ν	Ν							Ν	Ν									Ν
13	Ν			Ν	Ν	Ν	Ν	Ν		Ν		Ν	Ν		Ν	Р			Ν	Ν	Ν	Ν
14	Ν			Ν	Ν		Ν					Ν			Ν							Ν
15	Ν			Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν					Ν				
16	Ν			Ν	Ν	Ν	Ν		Ν	Ν	Ν		Ν					Ν				
17														Ν	Ν	Ν	Ν					
18				Ν	Ν		Ν				N	Ν	Ν	Ν	V – Human I					Ν		

 Table S1. Summary of laboratory tests performed on the encephalitis cases.

N = Negative, P = Positive, E = Equivocal, Blank = Untested. HSV = Herpes Simplex Virus, EV = Enterovirus, HPeV = Human Parechovirus, VZV = Varicella Zoster Virus, EBV = Epstein-Barr Virus, CMV = Cytomegalovirus, HHV = Human Herpesvirus. Negative for acute EBV = No EBV IgM, and/or pos EBV NA IgG. * Rhinovirus, # Coronavirus, ** Stool tested >day 7 of admission, no diarrhoea. Oligoclonal banding is positive if present only in CSF or is higher in CSF than in serum.

Case No.	Libraries	Sample types	Paired reads (150bp)	Data	QC	Total human	Total non- human
	14618NPA	NPA	68,331,435	20.64 Gb	20.95%	38.68%	40.37%
	1469	Serum	62,439,715	18.86 Gb	32.38%	65.91%	1.71%
01	14617	Stool	72,597,211	21.92 Gb	45.14%	0.42%	54.43%
01	14619	Stool	76,093,344	22.98 Gb	35.56%	0.37%	64.07%
	14618S	Stool	81,029,503	24.47 Gb	45.94%	3.32%	50.74%
02	14918	NPA	69,918,956	21.12 Gb	32.94%	7.13%	59.93%
03	16118	NPA	64,014,451	19.33 Gb	37.97%	9.36%	52.67%
	1972	CSF	55,650,564	16.81 Gb	16.53%	41.33%	42.14%
04	19718	NPA	61,763,723	18.65 Gb	30.09%	49.55%	20.36%
	2051	CSF	12,207,214	3.69 Gb	26.55%	13.48%	59.98%
05	2052	CSF	65,679,279	19.84 Gb	17.69%	40.40%	41.91%
	2053	CSF	45,372,654	13.70 Gb	33.33%	5.92%	60.75%
	4	Blood	80,788,125	24.40 Gb	37.62%	61.03%	1.35%
06	419	Urine	65,728,328	19.85 Gb	19.32%	11.88%	68.80%
	420	Urine	59,130,993	17.86 Gb	15.69%	9.48%	74.84%
07	1419	NPA	70,769,034	21.37 Gb	51.54%	0.41%	48.05%
01	6019	Urine	63,645,388	19.22 Gb	14.21%	5.60%	80.19%
08	6020	Urine	66,076,819	19.96 Gb	14.36%	6.46%	79.18%
00	631	CSF	64,218,139	19.39 Gb	24.16%	12.35%	63.49%
09	83	Blood	76,472,229	23.09 Gb	33.29%	65.60%	1.10%
	4819	Urine	69,409,747	20.96 Gb	22.08%	6.58%	71.34%
10	481	CSF	63,814,144	19.27 Gb	20.83%	28.25%	50.91%
	4818	NPA	70,749,343	21.37 Gb	39.21%	17.34%	43.45%
11	4817	Stool	69,714,937	21.05 Gb	41.82%	0.62%	57.56%
12	561	CSF	61,044,714	18.44 Gb	24.18%	11.16%	64.66%
	951	CSF	30,481,591	9.21 Gb	25.17%	9.84%	64.99%
13	9518	Respiratory Swab	62,643,416	18.92 Gb	17.66%	52.71%	29.64%
	1031	CSF	60,509,053	18.27 Gb	31.36%	19.83%	48.81%
14	10318	Respiratory Swab	71,156,865	21.49 Gb	27.28%	2.80%	69.92%
	31	CSF	59,215,458	17.88 Gb	29.78%	26.16%	44.05%
	317	Rectal Swab	74,947,448	22.63 Gb	30.98%	0.31%	68.70%
15	318	Throat Swab	72,626,978	21.93 Gb	29.09%	2.49%	68.41%
	003X	Urine	56,431,288	17.04 Gb	16.60%	11.15%	72.25%
	881	CSF	52,399,272	15.82 Gb	27.15%	21.51%	51.34%
16	8818	NPA	62,379,902	13.82 Gb	31.18%	6.98%	61.84%
10	8817	Rectal Swab	71,705,712	21.66 Gb	21.80%	38.09%	40.11%
	26619	NPA	66,107,489	19.96 Gb	17.72%	56.84%	25.45%
	26617	Rectal Swab	79,261,749	23.94 Gb	37.49%	9.57%	52.94%
17	26618R	Respiratory Swab	69,315,594	20.94 Gb	24.91%	10.32%	52.94% 64.77%
	26618S	Stool	61,180,294	20.93 Gb 18.48 Gb	24.91%	6.52%	64.92%
	65419	ETA	66,718,955	20.15 Gb	28.30% 16.71%	68.52%	14.77%
10							
18	65417 65418	Rectal Swab	69,257,149 67,246,028	20.92 Gb	26.66%	0.68%	72.66%
Total	65418	Throat Swab	67,246,928 2,770,245,130	20.31 Gb 836.61 Gb	24.50%	3.82%	71.69%

Table S2. Information on the RNA sequencing libraries generated in this study.

Virus	Closest relative	Identity	Genes or genome alignments used in the phylogenetic analysis						
V 11 U.S		Identity	Domain	Alignment length (bp)					
HCoV-OC43/03-16118/NSW/AU/2019	MK303622/HCoV-OC43/MDS11	99.73%	Spike protein	4433					
HCoV-OC43/09-83/QLD/AU/2019	MK303622/HCoV-OC43/MDS11	99.73%	Spike protein	4433					
HCoV-OC43/15-318/WA/AU/2019	MK303622/HCoV-OC43/MDS11	99.65%	Spike protein	4433					
HCoV-HKU1/17-26618/WA/AU/2019	MH940245/HCoV-HKU1/SI17244	99.75%	Partial Spike protein	2446					
HCoV-HKU1/17-26617/WA/AU/2019	MH940245/HCoV-HKU1/SI17244	99.75%	Partial Spike protein	2446					
HRV-A9/01-14618/NSW/AU/2019	FJ445114/HRV-A9/F01	96.48%	Near complete genome	6808					
HRV-B52/11-4818/VIC/AU/2019	FJ445137/HRV-B52/F10	92.82%	Near complete genome	6513					
HRV-B52/11-4817/VIC/AU/2019	FJ445137/HRV-B52/F10	92.82%	Near complete genome	6513					
HPBV/17-26618/WA/AU/2019	AVD54068/Macaque PBV 33	72.44%(aa)	RdRp	524 amino acids					
JC-PyV/10-4819/QLD/AU/2019	AF015533/JC-PyV/227	99.79%	Partial genome	2378					
WU-PyV/03-16118/NSW/AU/2019	GU296361/WU-PyV/O140	99.82%	Near complete genome	5230					

Table S3. Identity of viruses identified in this study with the most closely related sequence available on public sequence databases.