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Abstract 

Melanoma is characterized by a high mutation rate, and selection of the proper reference for RT-

qPCR is a serious problem. The algorithms commonly used to select the best stable reference 

gene or pair of genes in RT-qPCR data analysis have their limitations; this affects the 

interpretation of the results and the drawing of conclusions. For reliable assessment of changes in 

B4GALT gene expression in  melanoma, and for comparison with their expression levels in 

melanocytes, we implemented our innovative GenExpA software, selecting the best reference by 

combining the NormFinder algorithm with progressive removal of the least stable gene from the 

candidate genes in a given experimental model and in the set of daughter models assigned to it. 

The reliability of references is validated based on the consistency of the statistical analyses of 

normalized target gene expression levels through all models, described by the coherence score 

(CS). The use of the CS value imparts an absolutely new quality to qPCR analysis, because it 

clarifies how low the stability value of reference must be in order for biologically correct 

conclusions to be drawn. GenExpA works in a manner independent of the experimental model 

and the normalizer. GenExpA is available at 

https://github.com/DorotaHojaLukowicz/GenExpA or https://www.sciencemarket.pl/baza-

programow-open-source#oferty. 

Keywords: B4GALT; gene stability; melanoma; NormFinder; RT-qPCR 

Introduction 

Achieving reliable results for normalization of the transcript level of a target gene requires an 

internal reference gene or pair of genes (housekeeping genes, HKGs) with stable expression 

between the analyzed samples and under different experimental conditions. Moreover, it is 

believed that the transcript levels of the reference and target genes should be expressed at 

roughly the same level [1]. However, the transcript levels of many of the HKGs typically used 

as references may change significantly under physiological or pathological conditions as well 
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as across tissue types and experimental conditions [1, 2, 3, 4, 5, 6, 7, 8]. Therefore the 

selection and validation of the normalizer are the most critical stages in qPCR data analysis. 

Typically, one or more of five algorithms (geNorm [3], NormFinder [9], BestKeeper [10], the 

comparative ΔCt method [11] and RefFinder; http://150.216.56.64/referencegene.php) are 

used to select the best stable single or combination of reference genes from a panel of 

candidate genes. The normalizer with the lowest stability value is considered the best and is 

then used for calculation of target gene expression in a group of samples. We have recently 

shown that this commonly accepted approach seems not enough for accurate and reliable 

target gene transcript normalization and that it may lead to biologically incorrect conclusions 

[12]. We demonstrated that beyond the parent model of samples of interest (experimental 

model), it is necessary to construct daughter models (auxiliary models built from the same 

samples as the experimental model but with fewer samples – combinations of samples of 

interest without repetition), followed by selection and validation of an appropriate normalizer 

for each model. Here we have shown that validation of the normalizer is done by determining 

the coherence score for target gene expression analyses performed for all given models 

(experimental and daughter models). If the statistical analysis produces inconsistent results for 

the expression level of a target gene based on a comparison of individual sets of two samples 

through all models, we have to search for new references with improved stability values via 

progressive removal of the least stable candidate reference gene in each sample, followed by 

re-selection and re-validation of new normalizers each time [12]. However, this proposed 

approach of RT-qPCR data analysis has been a very time-consuming task, requiring the use of 

several specialist software packages. This problem led us to automate these calculations by 

developing the GenExpA tool (Gene Expression Analyzer). It is a comprehensive tool based 

on a previously described workflow for quantified as well as raw qPCR data [12]. Based on 

the selected reference gene or pair of genes, GenExpA calculates the relative target gene 
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expression level, performs statistical analyses and generates results in the form of graphs and 

tables. The innovative aspect of GenExpA is that it estimates the coherence of results for each 

target gene in all designed models. It determines the robustness of normalization and works 

out the coherence score for the individual target gene. The advantage of this strategy is its 

ability to determine relative target gene expression based on the consistency of the results in 

all tested samples, regardless of the experimental model and the reference gene or pair of 

genes used. Here, based on qPCR data for B4GalT1–B4GalT7 transcripts in melanocytes and 

melanoma cells, we show how to perform the analysis step by step, and how to solve 

problems using this new methodological approach. 

Results 

A flow chart of target gene expression and statistical analysis of qPCR data using the 

GenExpA tool is shown in Fig. 1. At the beginning, we uploaded raw qPCR data for  

candidate reference (HPRT1, PGK1, RPS23, SNRPA; set 1) and target (B4GALT1–B4GALT7) 

genes (Supplementary Table S1) as well as quantified qPCR data for candidate reference 

genes (Supplementary Table S2) obtained for five human cell lines (melanocytes and 

melanoma cells) from different stages of oncogenic progression) comprising the experimental 

model. It is important to note that here “cell line” means “sample”. Since all PCR reactions 

were performed in three biological and three technical replicates, a set of nine Ct values (for 

each of the genes) and a set of nine quantified values (for each of the candidate reference 

genes) were used as inputs for a given cell line. The uploaded quantified values were 

calculated based on the calibration curve previously prepared for all candidate reference genes 

in all analyzed cell lines. Working with the GenExpA interface, the potential reference genes 

were selected from the pool of all analyzed genes presented in the ‘Available reference genes’ 

window, and a panel of 26 possible models (the experimental model and 25 daughter models 

which are combinations, without repetition, of 5 cell lines taken 2 or 3 or 4 or 5 at a time) was  
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Figure 1 

Overview of the GenExpA tool workflow. (a) (A) The user uploads a table with Ct values for ‘n’ candidate 

reference genes and ‘y’ target genes measured in ‘x’ samples. The number of Ct values for a given gene in a 

given sample is equal to the quotient of the biological and technical repeats of the PCR reaction. The user 

uploads a table with calculated quantified values for ‘n’ candidate reference genes. (B) In the setting mode (not 

shown in this paper; see the GenExpA manual), the user separates ‘n’ potential reference genes from a list of all 

genes. After clicking on ‘Generate combinations’, the GenExpA tool automatically creates a set of possible ‘z’ 

models, i.e., ‘z’ models composed of samples of interest, which are combinations without repetitions (order does 

not matter) of two or more samples from the pool of ‘x’ samples. The ‘z’ models consist of the experimental 

model and its ‘z-1’ daughter models (auxiliary models); for example, if the experimental model consists of 5 

samples, the number of daughter models is 25 (10 models of 2 samples, 10 models of 3 samples, and 5 models of 

4 samples). The user unchecks the statistical model, wherein the non-parametric Mann-Whitney test or the 

ANOVA Kruskal-Wallis test with subsequent post hoc Dunn’s test are recommended for models composed of 

two unmatched samples or three or more unmatched samples, respectively, in the case of a non-normal 

distribution. Also, the user can apply only the ANOVA Kruskal-Wallis test without or with a subsequent post 

hoc Dunn’s test for two or more samples, respectively. Alternatively, the pairwise t-test with Holm adjustment is 
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recommended as a statistical model for multiple pairs of observations in the case of a normal distribution (to 

determine the significance of a difference in gene expression between two or more samples) [22). In the setting 

mode, the user determines the P value indicating the level of statistical significance (default P<0.05), and single 

measurement repetition (default 3) (not shown in this paper; see the GenExpA manual). The user starts the 

automated data analysis by clicking on ‘Run calculations’; it causes the implemented NormFinder algorithm to 

select, in each of the analyzed models, the best references between ‘n’ potential reference genes (purple line) 

according to the stability values of their expression in the experimental model and its auxiliary models. The best 

stability value is referred to the minimal combined inter- and intrasample expression variation of the gene [9). 

NormFinder works on Ct values converted to quantified values, which were calculated based on the calibration 

curve previously prepared for all candidate reference genes. Then the GenExpA tool normalizes the expression 

of target genes (RQ value) in each model in relation to selected references, conducts a statistical analysis and 

calculates the coherence score (CS) separately for each target gene (details of how GenExpA determines CS are 

shown in (b)). If the CS value is equal to 1, the target gene expression analysis is completed. In the case of 

inconsistent results (CS <1), the user can change the setting parameters by choosing 1 in the ‘Remove repetitions’ 

box and by marking the option ‘Select best remove for models’ (not shown in this paper; see the GenExpA 

manual). These new settings cause the least stable HKG in each model to be removed from the pool of ‘n’ 

candidate reference genes. The user starts the improved analysis by clicking on ‘Run calculations’. The 

GenExpA tool chooses new references based on a reduced pool of HKGs to ‘n-1’ in each model and conducts a 

reanalysis (statistic and CS calculation) of the normalized target gene(s) (red line). This approach can be 

repeated serially (number in ‘Remove repetitions’ box should be increased by 1 each time) when the CS value is 

below 1 and the pool of reference genes is not less than three (from the green line to the navy blue line). It is 

important to note that after marking the option ‛Select best remove for models’, GenExpA selects the reference 

for a given model from the level at which the stability value was the lowest. (C) If the gene removal process does 

not yield consistency of analysis, the user can upload a new input extended with data for an additional HKG or 

HKGs and perform an improved analysis based on the strategy of removing the least stable HKG until 

consistency of results is reached. (D) The user can export the results and graphs of all analyses in publication-

ready form. The results show coherence scores, the best reference gene or gene pair results, RQ data and 

statistics. (b) Flow chart of determination of the coherence score (CS) for a given normalized target gene. First, 

the GenExpA tool calculates the comparison values for a given target gene in each pair of samples in each model 

built from these samples. To do this, the software downloads the p-value attributed to a given two samples, and 

if p≥ 0.05 it assigns the value 0 to the comparison. If p<0.05 and the median of RQ for sample 1 is greater or 

lower than the median of RQ for sample 2, then comparison = 1 or -1, respectively. The order of samples is 

fixed. In the aforementioned experimental model, consisting of five samples, where the number of all generated 

models is 26 (1 experimental model and 25 daughter models), a given pair of samples is present in 8 out of 26 

models, so eight comparison values are generated. Next, the software analyzes the obtained comparison values to 

determine the partial CS value for a given target gene in a given two samples. If the eight comparison values are 

composed of 1 and -1, then the partial CS=0; in other cases (1 and 1; -1 and -1; 0 and 0; 1 and 0; -1 and 0) the 

partial CS=1. Finally, the software calculates the CS value for a given target gene as the arithmetic mean of the 

partial CSs across all pairs of samples (in the aforementioned 26 models there are 10 different pairs of two 

samples). The resulting CS takes a value between 0 to 1. 
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automatically designed using the ‘Generate combinations’ option. Because of the non-normal 

data distribution, the Mann-Withney/Kruskal-Wallis with subsequent post hoc Dunn’s test 

was chosen from the ‘Statistical model’ bar. Finally, 0 was set in the ‘Remove repetitions’ 

box and the ‘Single sample repetition’ and ‘Confidence’ boxes were set by default at 3 (three 

independent technical measurement replicates) and 0.05, respectively. The ‘Select best 

remove for model’ option was left unselected. After clicking on ‘Run calculation’, the 

GenExpA tool started the analysis. First, the implemented NormFinder algorithm determined 

the most stable reference gene or pair of genes from four candidate reference genes in each of 

the 26 models (Table 1, part A; remove repetition level 0). The stability value for the selected 

reference gene pair RPS23/SNRPA in the experimental model (model No. 26) was 0.349847, 

and the reference stability values for auxiliary models ranged from 0.069619 for reference 

gene pair HPRT1/RPS23 in model No. 7 to 0.494109 for reference gene pair RPS23/SNARPA 

in model No. 16 (Table 1, part A). Then the relative expression levels of target genes 

B4GALT1–B4GALT7 were determined as relative quantification (RQ) values in each of the 26 

models via normalization to the reference gene/genes assigned for these models. After 

clicking on ‘Export results’, the GenExpA software generated tables summarizing the 

calculated reference genes’ stability values, the obtained RQ values and the statistical test 

results, as well as attributed coherence values (Supplementary Table S3). By choosing the 

‘Export graph’ option, box-plots representing the medians of the obtained RQ values with 

statistical significance bars were generated as .png files, each representing a set of target 

genes in one of the analyzed models (graphs for all models are compiled in Supplementary 

Fig. S1). In this analysis, GenExpA calculated the average coherence score at level 0.94. This 

value resulted from unreliable/uncertain normalization of four target genes (B4GALT3, 

B4GALT5, B4GALT6, B4GALT7), which reached coherence scores below 1  
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Table 1.                                                                                                                                                                         

Reference genes and their stability values in a panel of the experimental model and daughter models 

selected by NormFinder software on the base of 4 (part A) and 5 (part B) potential reference genes 

before (0) and after removing one (1) or two (2) the least stable genes from a given set of 4 and 5 

reference genes.   

No. model 

4 potential reference genes - 

part A 
5 potential reference genes -                        

part B 

remove repetition level remove repetition level 
0 1 0 1 2 

1 HEMa-LP Mel202 HPRT1     
0,181854 

HPRT1 

SNRPA   

0,069925 

HPRT1      

0,051156 

GUSB 
SNRPA    

0,053992 

HPRT1 SNRPA  
0,069925 

2 HEMa-LP WM35 HPRT1      
0,223074 

HPRT1 

SNRPA   

0,147267 

HPRT1     

0,103310 

HPRT1 
RPS23    

0,178910 

GUSB HPRT1   
0,219325 

3 HEMa-LP WM793 HPRT1      
0,279936 

HPRT1 

SNRPA   

0,069024 

GUSB          
0,091107 

GUSB 

SNRPA    

0,038623 

HPRT1          
0,079924 

4 HEMa-LP WM266-4 PGK1 RPS23       

0,223052 
HPRT1 PGK1   

0,340317 
PGK1 RPS23   

0,116316 

HPRT1 

PGK1   

0,073448 

HPRT1 SNRPA   

0,346148 

5 Mel202 WM35 HPRT1       
0,104826 

HPRT1 

SNRPA   

0,064185 

GUSB RPS23  
0,076568 

HPRT1             
0,104826 

HPRT1 

SNRPA   

0,064185 

6 Mel202 WM793 HPRT1 RPS23     
0,100804 

HPRT1 

SNRPA    

0,052623 

HPRT1 

SNRPA  

0,030737 

GUSB 
SNRPA     

0,066292 

HPRT1 SNRPA   
0,052623 

7 Mel202 WM266-4 HPRT1 RPS23     

0,069619 
HPRT1 RPS23   

0,162321 
HPRT1 RPS23  

0,085300 
GUSB                     

0,161247 
RPS23           

0,012949 

8 WM35 WM793 SNRPA                 

0,169211 

HPRT1 

SNRPA    

0,099923 

GUSB RPS23   

0,071640 
SNRPA             

0,169211 
HPRT1 SNRPA   

0,099923 

9 WM35 WM266-4 HPRT1 PGK1       
0,115685 

HPRT1 RPS23    

0,101104 
RPS23        

0,095511 

HPRT1 
PGK1   

0,115685 

HPRT1 RPS23   
0,101104 

10 WM793 WM266-4 HPRT1 RPS23     
0,131313 

HPRT1 PGK1   

0,113854 
PGK1 SNRPA  

0,125481 

HPRT1 
PGK1       

0,082377 

GUSB         

0,053399 

11 HEMa-LP Mel202 WM35 HPRT1              
0,188414 

HPRT1 

SNRPA  

0,113901 

HPRT1      

0,098380 

GUSB 
HPRT1         

0,249224 

HPRT1 RPS23    
0,318021 

12 HEMa-LP Mel202 WM793 HPRT1          

0,317389 

HPRT1 

SNRPA   

0,065166 

HPRT1        

0,238320 

GUSB 

SNRPA    

0,053718 

HPRT1 SNRPA    

0,065166 

13 HEMa-LP Mel202 WM266-4 RPS23 SNRPA    

0,240609 
HPRT1 SNRPA   

0,337367 
RPS23 SNRPA  

0,113205 

GUSB 

SNRPA    

0,070667 

GUSB PGK1    
0,331792 

14 HEMa-LP WM35 WM793 HPRT1             
0,335229 

HPRT1 

SNRPA    

0,113813 

HPRT1        
0,212917 

HPRT1                  
0,172137 

HPRT1 

SNRPA    

0,113813 

15 HEMa-LP WM35 WM266-4 HPRT1 PGK1     

0,243675 
HPRT1 SNRPA   

0,344720 
PGK1 RPS23   

0,147183 

GUSB 
HPRT1   

0,220384 

GUSB HPRT1    
0,248189 
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16 HEMa-LP WM793 WM266-4 RPS23 SNRPA     
0,494109 

HPRT1 PGK1   

0,275998 
GUSB         

0,318394 

GUSB 

SNRPA    

0,070868 

GUSB SNRPA    
0,252192 

17 Mel202 WM35 WM793 HPRT1 RPS23     

0,171610 

HPRT1 

SNRPA   

0,089572 

HPRT1 

SNRPA  

0,068022 

HPRT1 
RPS23    

0,171610 

HPRT1 SNRPA   

0,089572 

18 Mel202 WM35 WM266-4 HPRT1 PGK1      

0,119949 
HPRT1 RPS23       

0,177300 
PGK1 SNRPA   

0,190394 

HPRT1 

PGK1    

0,119950 

HPRT1 RPS23    
0,177300 

19 Mel202 WM793 WM266-4 HPRT1 RPS23     

0,108840 
HPRT1 PGK1   

0,218254 
PGK1 SNRPA   

0,172465 

GUSB 

SNRPA     

0,078611 

GUSB SNRPA    
0,20656 

20 WM35 WM793 WM266-4 HPRT1 RPS23    

0,168051 
HPRT1 PGK1   

0,183833 
PGK1 SNRPA   

0,214693 

HPRT1 
PGK1     

0,265683 

HPRT1 PGK1    

0,183833 

21 HEMa-LP Mel202 WM35 WM793 HPRT1           

0,316281 

HPRT1 

SNRPA   

0,099055 

HPRT1            

0,196310 
HPRT1                

0,196654 

HPRT1 

SNRPA    

0,099055 

22 HEMa-LP Mel202 WM35 WM266-4 RPS23 SNRPA    

0,216306 
HPRT1 SNRPA    

0,294408 
RPS23 SNRPA  

0,200264 

GUSB 
HPRT1      

0,246682 

HPRT1 RPS23    
0,311142 

23 HEMa-LP Mel202 WM793 WM266-4 RPS23 SNRPA   
0,392232 

HPRT1 

SNRPA   

0,275124 

HPRT1            
0,343380 

GUSB 

SNRPA     

0,070951 

GUSB PGK1    
0,271811 

24 HEMa-LP WM35 WM793 WM266-4 RPS23 SNRPA    
0,422874 

HPRT1 

SNRPA   

0,281318 

HPRT1          
0,355958 

HPRT1 

PGK1        

0,227386 

HPRT1 SNRPA   
0,281318 

25 Mel202 WM35 WM793 WM266-4 HPRT1 RPS23     

0,143972 
HPRT1 PGK1   

0,220866 
PGK1 SNRPA   

0,210985 

HPRT1 
PGK1     

0,226756 

HPRT1 PGK1   

0,220866 

26 HEMa-LP Mel202 WM35 WM793 WM266-4 RPS23 SNRPA    
0,349847 

HPRT1 

SNRPA   

0,247033 

HPRT1          
0,297367 

GUSB 

SNRPA     

0,196718 

HPRT1 SNRPA    
0,247033 

The differences in the choice of the normalizer or obtained stability values are written in bold. 

 

(Supplementary Fig. S2). Next, to improve the estimation of the expression of these target genes, 

the least stable reference gene in each model was removed by setting 1 in the ‘Remove 

repetitions’ box. Also, marking ‘Select best remove for models’ caused GenExpA to choose the 

reference from the level of removal for which the stability value was lower in a given model. 

This approach raised the average coherence score of the analyses of all B4GALT target genes  

from 0.94 to 0.99 and gave lower stability values of the normalizers in 17 of the 26 models. Now 

these stability values ranged between 0.052623 for HPRT1/SNRPA in model No. 6 and 0.281318 

for HPRT1/SNRPA in model No. 24 (Table 1, part A; remove repetition level 1). The stability 

value of the normalizer (HPRT1/SNRPA) for the experimental model (model No. 26) also was 
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improved: 0.247033. The coherence scores for B4GALT1, B4GALT2 and B4GALT4 were kept at 

1, and for genes B4GALT3, B4GALT5 and B4GALT7 reached the value 1, confirming the 

consistency of the analysis of the expression levels of these genes. At this point of the analysis, 

the coherence score for gene B4GALT6 was below 1 (Supplementary Fig. S3), suggesting that 

the selected references are not suitable for accurate and reliable normalization of the B4GALT6 

transcript level (Supplementary Table S4 contains the tables and Supplementary Fig. S4 the box-

plots generated in this analysis). Executed removal of the least stable gene reduced the pool of 

potential reference genes to three, that is, the minimum number of genes required for 

NormFinder selection [9], thus ending the possibility of removing the next-weakest reference 

gene. To continue the analysis, we enlarged the pool of candidate reference genes by adding a 

new HKG, GUSB (inputs with Ct and quantified qPCR data are presented in Supplementary 

Tables S5 and S6). Then the best reference gene or pair of genes from five candidate HKGs was 

selected (digit 0 entered in the ‘Remove repetitions’ box and without choosing ‘Select best 

remove for models’ box). The selected references possessed stability values ranging from 

0.030737 for HPRT1/SNRPA (auxiliary model No. 6) to 0.355958 for HPRT1 (auxiliary 

model No. 24), and 0.297367 in the experimental model (model No. 26) (Table 1, part B; 

remove repetition level 0). Validation of the selected references confirmed the consistency of 

expression analysis for genes B4GALT1–B4GALT5 and B4GALT7 but did not improve the CS 

value for B4GALT6 (Supplementary Fig. S5, Supplementary Table S7, Supplementary Fig. S6). 

Removing the least stable gene from five candidate reference genes (digit 1 entered in ‘Remove 

repetitions’ box and choosing ‘Select best remove for models’ box) (Table 1, part B; remove 

repetition level 1; Supplementary Fig. S7) generated inconsistent results for B4GALT4 and 

B4GALT6 (Supplementary Table S8; Supplementary Fig. S8). Sequential removal of the two 

least stable potential reference genes (digit 2 entered in ‘Remove repetitions’ box and 

choosing ‘Select best remove for models’ box) allowed us to assign better stability values to 
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16 of the 26 models (Table 1, part B; remove repetition level 2) and to complete the analysis 

with the expected coherence score value of 1 for B4GALT4 and B4GALT6 (Supplementary 

Fig. S9). Supplementary Table S9 contains the tables and Supplementary Fig. S10 the box-plots 

corresponding to this analysis. At this point of the analysis, however, the coherence score 

dropped to 0.9 for gene B4GALT5. 

 Having the Ct values for five potential reference genes, we conducted similar 

selections of references from four other possible combinations of 4 candidate reference genes: 

RPS23, SNRPA, HPRT1 and GUSB (set 2); SNRPA, HPRT1, GUSB and PGK1 (set 3); 

HPRT1, GUSB, PGK1 and RPS23 (set 4); and GUSB, PGK1, RPS23 and SNRPA (set 5), 

before and after rejection of the weakest reference genes. The results obtained from 

normalization of target gene expression in the 26 models were exported from the GenExpA 

tool as Supplementary Tables S10–S17 and corresponding Supplementary Fig. S11–S18. A 

summary of all target gene expression analyses in the experimental model of interest, based 

on the selection of references from four (sets 1–5) and five candidate reference genes, is 

presented in Supplementary Fig. S19. Based on it, we concluded that if, at different levels of 

rejection of the weakest reference gene from sets of four or five candidate reference genes, the 

analysis of the expression of a given target gene ended with CS = 1, the obtained results do 

not contradict each other (for example, compare the expression levels of B4GALT1 in sets 1–5 

and the set of five candidate reference genes – box-plots 1–13 in Supplementary Fig. S19). 

However, starting the analysis with a higher number of potential reference genes creates an 

opportunity to select the reference gene with a lower stability value in the experimental model 

as well as auxiliary models, and therefore gives a more robust analysis of target gene 

expression. For example, the use of a set of five candidate reference genes (PGK1, RPS23, 

SNRPA, HPRT1, GUSB) with sequential removal of the two least stable potential reference 

genes gave the lowest stability value of the selected reference gene for the experimental 
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model (0.196718) and auxiliary models (0.012949–0.227386). On the other hand, we noticed 

that box-plots 13 and 91 show exactly the same results as, respectively, box-plots 4, 5, 6, 10, 

12 and 82, 84, 85, 88, 90 (compare the medians of relative quantity (RQ) and statistical 

significance between samples in Supplementary Fig. S19). It means that in the case of 

B4GALT1 and B4GALT7 gene expression analysis, the use of four HKGs from sets 2 or 5 

with rejection of the most unstable HKG, or from set 3, is sufficient. The same is true for 

genes B4GALT2 and B4GALT3 and sets 3 or 5 after rejection of the most unstable HKG 

(compare box-plots 26 and 39 with 18, 19, 23, 25 and 31, 32, 36, 38, respectively, in 

Supplementary Fig. S19). Therefore, adding a fifth housekeeping gene is mandatory to 

confirm the robustness of an analysis conducted with the above-mentioned sets of four 

candidate reference genes. Interestingly, the lower the HKG stability value, the better the CS 

value, that is, the more robust the analysis, potentially much more correct biologically. 

 In the case of gene B4GALT6, none of the sets of four potential reference genes was 

designed well enough to conduct a reliable analysis. Only the application of five potential 

reference genes with double rejection of the weakest gene allowed us to determine a reliable 

normalizer in each model and to obtain a coherent analysis (box-plot 78 in Supplementary 

Fig. S19). On the other hand, selection of the normalizer based on five potential reference 

genes and with ‘Remove repetition’ set at 2 led to an inconsistent analysis for the relative 

expression of gene B4GALT5 (box-plot 65 in Supplementary Fig. S19), although the same 

box-plots were generated with ‘Remove repetition’ set at 1 as well as in the case of set 3 with 

‘Remove repetition’ set at 0 or 1 (compare box-plots 57, 58, 64 and 65 in Supplementary Fig. 

S19), and the  reference stability values for the experimental model remained the same 

(0.196718). It means that if a more robust analysis is needed, to improve its consistency 

another HKG/s should be introduced into the pool of candidate reference genes. Another 

approach may be to complete the analysis with ‘Remove repetition’ set at 1 (box-plot 64 in 
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Supplementary Fig. S19) or 2 (box-plot 65 in Supplementary Fig. S19), with indication of the 

CS values and stability parameters for the reference genes selected in the experimental and 

auxiliary models. 

 We want to emphasize that simple application of the NormFinder algorithm (‘Remove 

repetition’ 0) may lead to a biological misinterpretation of the obtained results, as it strongly 

depends on the choice of a set of potential reference genes. For example, sets 1 and 5 showed 

significantly higher relative expression of gene B4GALT6 in WM793 cells than in WM266-4 

cells. In turn, set 2 and the set of five HKGs showed, in these two cell lines, an inverse 

relationship between the B4GALT6 gene expression that was also statistically significant 

(compare box-plots 66 and 74 with box-plots 68 and 76 in Supplementary Fig. S19). 

Moreover, the relative expression level of B4GALT6 was significantly lower in cell line 

WM35 than in cell line WM266-4, as shown in sets 1 and 5 (box-plots 66 and 74 in 

Supplementary Fig. S19), or significantly higher as shown in set 4 (box-plot 72 in 

Supplementary Fig. S19). 

 Confusing results are also observed for gene B4GALT3: in sets 1 (box-plot 27 in 

Supplementary Fig. S19) and 5 (box-plot 35 in Supplementary Fig. S19) its relative 

expression level was significantly lower in cell line WM35 than in cell line WM793, but in set 

4 the relationship was the reverse (box-plot 33 in Supplementary Fig. S19). In addition, a 

larger pool of candidate reference genes does not always lead to selecting the better 

normalizer in simple application of the NormFinder algorithm (compare the reference stability 

values for the experimental model and auxiliary models in set 3 and the set of five candidate 

reference genes; ‘Remove repetition’ 0). In contrast, our method based on gradual removal of 

the gene with the highest variability of expression leads to selection of a normalizer with a 

lower stability value (compare the reference stability values for the experimental model and 
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auxiliary models in sets 1–5 with ‘Remove repetition’ 1 and the set of five candidate reference 

genes with ‘Remove repetition’ 2). 

 Figure 2 shows the results of GenExpA analysis for the expression levels of target genes 

B4GALT1–B4GALT7 in the analyzed experimental model. We obtained consistent and complete 

analyses for all target genes under the given stability values for the experimental and auxiliary 

models. These presented results demonstrate that in melanoma cells, in particular metastatic 

melanoma cell line WM266-4, the expression of all B4GALT genes decreases relative to that of  

melanocytes. An exception is melanoma cell line WM793, in which only the expression of 

B4GALT6 decreases markedly; the expression levels of the remaining B4GALT genes show no 

significant differences as compared to those for melanocytes. 

 

 

Figure 2 

Medians of relative quantity (RQ) for target genes B4GALT1–B4GALT7 in the experimental model normalized 

to a reference gene or pair of reference genes with the best stability values resulting from GenExpA analysis 

based on a set of five candidate reference genes and remove repetition level 2 (a) or remove repetition level 1 (b) 

(see Table 1, part B). The statistical analyses used the Mann-Whitney test for models composed of two cell lines, 
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or the Kruskal-Wallis test (ANOVA for models built of three or more cell lines) with post-hoc test. Red line 

represents statistical significance, P<0.05. 

 

Discussion 

Obtaining reliable results from the PCR reaction is the outcome of many factors related to 

handling of the material, beginning with the step of RNA/DNA isolation and ending in analysis 

of the results. That is why the MIQE guidelines were proposed for transparent reporting of 

experimental details in all publication prepared with the use of qPCR technique [13]. The 

reaction needs to be standardized in molecular analyses of all kinds of biological materials [14, 

15, 16, 17]. Over the past decade the MIQE guidelines have not come into common use. Dijkstra 

et al. (2014) made a critical analysis of qPCR result normalization in 179 publications regarding 

colorectal cancer. They showed that only 3% of these studies applied qPCR methodology based 

on the use and validation of multiple reference genes. Several statistical are used to select the 

best stable single gene or combination of reference genes from a panel of candidate genes. It 

should be stressed that each of these algorithms has its limitations which affect the ranking of 

candidate reference genes and finally the selection of the best normalizer [18, 19]. Recent studies 

have proposed the use of at least three different methods, but the problem of how to interpret 

conflicting results obtained from the use of different statistical methods still puzzles researchers. 

They try to integrate a few algorithms to average the stability ranks; for example, the 

RefFinder algorithm calculates the geometric mean of ranking values obtained by four other 

algorithms [18]. But these statistical methods differ from each other; averaging the ranks can 

lead to a suboptimal assessment of stable reference genes [19]. It is commonly accepted that 

the lower the stability value of the reference, the greater the certainty of correct determination of 

the relative expression of the target gene. Yet it has not been clarified how low the stability value 

must be. In this paper we showed that the procedure for choosing a suitable reference involves 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 3, 2021. ; https://doi.org/10.1101/2021.05.10.443386doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443386
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

two steps: applying an algorithm for best reference gene selection (here, NormFinder), and 

checking whether the stability level of the selected reference is low enough to lead to a correct 

biological interpretation of relative target gene expression (here, determination of CS for the 

analysis). Through the application of these two steps, our method validates the chosen reference 

based on determination of the coherence score for the normalized target gene. In our method we 

used the model-dependent NormFinder algorithm, and by simulating the removal of the least 

stable gene from a set of candidate genes in the experimental as well as daughter models we 

were able to obtain more stable normalizers for each model. Previously, this approach helped us 

to exclude incorrect normalizations and biological misinterpretations concerning the alteration of 

ERAP1 gene expression during melanoma progression [12]. We chose the NormFinder 

algorithm because it calculates the stability of a reference gene or pair of genes by analysing the 

variation of its expression within and between samples. However, genes with high overall 

variation influence the stability ranking of candidate reference genes. Herein we have 

demonstrated that simple application of NormFinder (‘Remove repetition’ 0) may lead to 

biological misinterpretation of the results, because it depends on the HKG set used to select the 

reference. Our method eliminates the influence of the most variable gene or genes on the stability 

rankings of all other candidate reference genes. In addition, breaking down the experimental 

model into daughter models (auxiliary models) allows us to check whether a uniform trend of 

target gene expression among particular cell lines is maintained. This trend decides the 

consistency of the analysis and is described by coherence score CS=1. Obtaining full consistency 

of the analysis is tantamount to its completion. As we suggest here, based on our B4GALT gene 

expression analysis, the lower the stability value, the better the coherence of the obtained results, 

which, we propose, is related to their biological correctness. If, despite the application of our 

strategy, a uniform trend of target gene expression among particular cell lines has not been 

achieved, introducing a successive HKG/s, along with repeated rejection of the weakest gene, 
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can lead to selection of the better reference and, in turn, biologically correct conclusions. It is 

important to note that once selected, a reference for a given model will not necessarily be 

selected once again in an experiment repeated for this model after some time, even if the pool of 

candidate reference genes used is exactly the same. This is because the gene expression pattern at 

the time point of sample collection depends on the current rate of cell mass growth and on 

microenvironmental conditions [20, 21]. 

Conclusions 

Here we have presented an expanded version of our already published method for RT-qPCR data 

analysis implemented in the GeneExpA tool – software for reference gene validation and 

automatic calculation of target gene expression. GenExpA will assign a CS value ranging from 0 

to 1 to each analysis; a fully coherent analysis is described by a CS value of 1. We suggest 

starting the analysis with a set of at least four potential HKGs. If the results are not satisfactory – 

if the CS value is below 1 – introducing another candidate HKG/s to the set of candidate 

reference genes may improve them. However, even if CS is equal to 1 for a given target gene, 

enlarging the pool of candidate reference genes can lead to an analysis that is more robust in 

terms of between-sample statistical significance in the experimental model. Interestingly, our 

workflow, including full target gene analysis in order to validate normalizer, shows that the 

lower stability value of the selected reference gene or pair of genes is related to the biological 

correctness of the results. Moreover, our workflow is the first one that allows the user to define 

the required stability value needed to draw biologically correct conclusions. For clarity of the 

biological conclusions drawn, the description of the results should give stability values assigned 

to the experimental model and auxiliary models; this may help other researchers to compare their 

results and understand any differences between their outcomes and yours. GenExpA software 

can carry out an analysis of many genes independently at the same time.  

Materials and methods 
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Cell culture 

Human epidermal melanocytes (adult, HEMa-LP) were obtained from Gibco (Life 

Technologies). Human melanoma cell lines Mel202 (uveal primary), WM793 (cutaneous 

primary, vertical growth phase) and WM266-4 (skin metastasis) were from the ESTDAB 

Melanoma Cell Bank (Tübingen, Germany). Human melanoma cell line WM35 (cutaneous 

primary, radial/vertical growth phase) was kindly donated by Prof. A. Mackiewicz of the 

Department of Cancer Immunology, University School of Medical Sciences, Greater Poland 

Cancer Center, Poznań, Poland. Cell lines were cultured as described previously [12]. All 

cultures were verified mycoplasma-free using the MycoAlert mycoplasma detection kit 

(Lonza). 

Reverse transcription qPCR  

Total RNA extraction, the reverse-transcription reaction and real-time qPCR reactions were 

performed as previously described [12]. RNA and cDNA concentrations as well as their 

quality were assessed with a NanoDrop 2000 spectrophotometer (Supplementary Data). 

Housekeeping (GUSB, HPRT1, PGK1, RPS23, SNRPA) and target (B4GALT1–7) gene-

specific mRNAs were amplified with the use of TaqMan Gene Expression Assays, as listed in 

Table 2. All reactions were performed in three biological and three technical replicates. The 

reaction results were analyzed with StepOne Software ver. 2.0. Raw Ct values were calculated 

using StepOne ver. 2.0, applying automatic threshold and baseline settings. 

RT-qPCR data analysis 

The GenExpA tool was used for fully automated qPCR data analysis. The gene or 

combination of two HKGs with the lowest stability value were selected as the best reference 

by combining the model-based variance estimation with progressive removal of the least 

stable reference gene. For statistical analysis, the non-parametric Mann-Whitney or the 
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ANOVA Kruskal-Wallis test with subsequent post hoc Dunn’s test were used for models 

comprised of two unmatched samples or three or more unmatched samples, respectively. P 

values less than 0.05 were taken to indicate statistical significance (P<0.05). 

Table 2. Summary of candidate reference and target genes 

Symbol 

Gene name 

(Assay ID, TaqMan probes;  

Amplicon size bp) 

Location 

(GeneCards) 
Description 

Candidate reference genes 

GUSB  Glucuronidase Beta (Hs00939627_m1; 

96 bp) 

7q11.21 Glycosaminoglycan metabolism 

HPRT1 Hypoxanthine Phosphoribosyltransferase 

1 (Hs99999909_m1; 100 bp) 

Xq26.2-

q26.3 

Generation of purine nucleotides 

PGK1 Phosphoglycerate Kinase 1 

(Hs00943178_g1; 73 bp) 

Xq21.1  Metabolic pathway of glycolysis 

RPS23 Ribosomal Protein S23 (Hs01922548_s1; 

90 bp) 

5q14.2 poly(A) RNA binding and 

structural constituent of ribosome 

SNRPA Small Nuclear Ribonucleoprotein 

Polypeptide A (Hs00190231_m1; 123 bp) 

19q13.2 Splicing of cellular pre-mRNAs 

Target genes 

B4GALT1 Beta-1,4-Galactosyltransferase 1 

(Hs00155245_m1; 70 bp) 

9p21.1  

 

 

 

 

Biosynthesis of different 

glycoconjugates and saccharide 

structures 

B4GALT2 Beta-1,4-Galactosyltransferase 2 

(Hs00243566_m1; 57 bp) 

1p34.1 

B4GALT3 Beta-1,4-Galactosyltransferase 3 

(Hs00937515_g1; 68 bp) 

1q23.3 

B4GALT4 Beta-1,4-Galactosyltransferase 4  

(Hs00186850_m1; 70 bp) 

3q13.32 

B4GALT5 Beta-1,4-Galactosyltransferase 5 

(Hs00941041_m1; 66 bp) 

20q13.13 

B4GALT6 Beta-1,4-Galactosyltransferase 6 

(Hs00999574_m1; 69 bp) 

18q11.1 

B4GALT7 Beta-1,4-Galactosyltransferase 7 5q35.3 
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(Hs01011260_g1; 74 bp) 

 

Data availability 

The data used to support the findings of this study are included within the article. 
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