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Abstract 20 

During the glacial periods of the Pleistocene, swathes of the Northern Hemisphere were covered by 21 

ice sheets, tundra and permafrost leaving large areas uninhabitable for temperate and boreal 22 

species.  The glacial refugia paradigm proposes that, during glaciations, species living in the Northern 23 

Hemisphere were forced southwards, forming isolated, insular populations that persisted in disjunct 24 

regions known as refugia.  According to this hypothesis, as ice sheets retreated, species recolonised 25 

the continent from these glacial refugia, and the mixing of these lineages is responsible for modern 26 

patterns of genetic diversity.  However, an alternative hypothesis is that complex genetic patterns 27 

could also arise simply from heterogenous post-glacial expansion dynamics, without separate 28 

refugia. Both mitochondrial and genomic data from the North American Yellow warbler (Setophaga 29 

petechia) shows the presence of an eastern and western clade, a pattern often ascribed to the 30 

presence of two refugia. Using a climate-informed spatial genetic modelling (CISGeM) framework, 31 

we were able to reconstruct past population sizes, range expansions, and likely recolonisation 32 

dynamics of this species, generating spatially and temporally explicit demographic reconstructions.  33 

The model captures the empirical genetic structure despite including only a single, large glacial 34 

refugium. The contemporary population structure observed in the data was generated during the 35 

expansion dynamics after the glaciation and is due to unbalanced rates of northward advance to the 36 

east and west linked to the melting of the icesheets. Thus, modern population structure in this 37 

species is consistent with expansion dynamics, and refugial isolation is not required to explain it, 38 

highlighting the importance of explicitly testing drivers of geographic structure.  39 
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Introduction 40 

It has frequently been shown that seemingly continuously distributed populations in the Northern 41 

Hemisphere harbour geographic structure in their genetic diversity.  Indeed, within North America, 42 

many widespread and migratory passerines exhibit clear differences in both migration patterns and 43 

genomic diversity between eastern and western populations e.g. (1–3).  This pattern has been 44 

interpreted as the consequence of glaciations, during which species were forced southwards, 45 

forming isolated, insular populations that persisted in disjunct regions known as refugia (4,5).  46 

According to this narrative, as ice-sheets retreated, species recolonised the continent from these 47 

glacial refugia, and the subsequent mixing of these lineages is responsible for modern patterns of 48 

genetic diversity.   49 

However, even though the cycles of expansion and contraction could have fragmented ranges, 50 

leading to multiple glacial refugia in some species, multiple glacial refugia have not been 51 

demonstrated for all species e.g. (6,7).  Indeed, it is becoming clear that glaciations in North America 52 

might not have driven range fragmentation as ubiquitously as it has previously been assumed, e.g. 53 

(8,9).   54 

What other processes might then have shaped the genetics of modern populations? Range 55 

expansions have been shown to have the potential to leave profound signatures in the genetic 56 

structure of metapopulations through repeated founder events (10). An extreme consequence of 57 

this process is gene surfing, when rare variants can become common through stochastic sampling 58 

during a founder event, and then be spread widely at high frequency during the subsequent 59 

expansion. An important role for the recolonization dynamics in shaping modern-day population 60 

structuring has been recently put forward for a trans-continentally distributed species, the painted-61 

turtle, Chrysemys picta (11).  Reid et al. (11) demonstrated that, for this species, genetic 62 

differentiation during range expansion and isolation-by-distance are more likely to have driven 63 

modern-day population diversity than isolation in allopatric refugia. 64 
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The difficulty in quantifying the role of the range change dynamics on the genetic structure of 65 

species is that the results are highly dependent on the detail of the dynamics. Whilst it is 66 

straightforward to build simple spatial models that represent a range expansion, capturing the 67 

spatial and temporal heterogeneities of the real process is challenging. A possible solution is to use 68 

climate informed spatial genetic models (CISGeMs), which use climate reconstructions to condition 69 

the local demography of individual populations within a map, and quantify the demographic 70 

parameters by Approximate Bayesian Computation comparing predicted and observed genetic 71 

quantities (see Fig. 1). This approach has been successfully used to reconstruct the dynamics of the 72 

out of Africa expansion of humans (12,13). 73 

In this paper, we use the CISGeM framework to explore the past range dynamics of the Yellow 74 

Warbler. This species is an abundant passerine species with a large continuous contemporary range 75 

and clear geographic population structuring, for which range-wide genomic data are available (14).  76 

Here we test whether today’s patterns of genetic structure in the North American Yellow Warbler 77 

(Setophaga petechia) can be best explained by recolonization from isolated glacial refugia, or if, 78 

more simply, heterogenous post-glacial expansion dynamics, without separate refugia, may have 79 

been enough to result in observed patterns today. Firstly, we describe genetic patterns that are 80 

found in the Yellow Warbler today from an empirical RAD-seq dataset.  Then, we fit a spatially 81 

explicit model of population growth and expansion that accounts for past climatic variation to the 82 

dataset.  By simulating the genetics and fitting to the observations with an Approximate Bayesian 83 

Computation framework, we investigate to what extent these recolonization dynamics could explain 84 

modern genomic patterns.  85 
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Figure 1. A schematic representation of the Climate-Informed Spatial Genetic Modelling framework 86 

implemented in this paper.  87 

Results 88 

Observed genetics: 89 

The 200 samples included in our study came from 21 sites across the modern breeding range of the 90 

North American Yellow Warbler.  Sample sizes per site ranged from 6 to 20 individuals (see Materials 91 

and Methods). Analysis of the genetic structure (15) of the Yellow Warbler population revealed a 92 

clear longitudinal divide, with distinct East and West clusters that converge in the centre of the 93 

continent.  Populations were with a mixture proportion of less than 70% for either of the two 94 

clusters (‘East’ and ‘West’) were grouped in the ‘Central’ category. This pattern is congruent with 95 

both the distribution of mitochondrial haplotypes (16) and patterns of migratory connectivity (17) in 96 

this species. 97 
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Figure 2. Genetic clustering results (K = 2) results for all 21 populations in our study. Red lines separate the 

populations longitudinally into West, Central, and East.  

 

Species Distribution Modelling for world reconstruction: 98 

CISGeM requires the reconstruction of range suitability maps through time (step 1 in Fig. 1). We built 99 

a Species Distribution Model (18) for Yellow Warblers based on modern data, and projected back in 100 

time using paleoclimate reconstructions. The raw species occurrences data to define the present-day 101 

range, downloaded from the Global Biodiversity Information facility (GBIF, our data can be found at 102 

https://doi.org/10.15468/dl.jfkwcg), totalled 1,573,147 data points. After filtering for coordinate 103 

accuracy, allowing an attributed error of 1km maximum, and filtering to only include points found 104 

within the BirdLife breeding and resident geographical ranges (BirdLife International and Handbook 105 

of the Birds of the World 2018), we were left with 177,202 data points.  As SDM works on 106 

presence/absence data and not frequencies, we retained only one presence per 0.5° grid cell, 107 

further refining this dataset down to 3,364 observations.  With these observations we selected the 108 

four most informative, uncorrelated (threshold=0.7), bioclimatic variables to base our model on: 109 

Leaf Area Index (LAI), BIO7 (Temperature Annual Range), BIO8 (Mean Temperature of Wettest 110 

Quarter), BIO14 (Precipitation of Driest Month).  Observations were further thinned based on a 111 

maximum distance between points of 70 km, leaving 1,188 presences; this procedure is used to 112 

correct for uneven sampling biases (Steen et al. 2020).  We fitted SDMs to predict the probability of 113 

occurrence in each grid cell.  We used an ensemble of four different algorithms: generalised linear 114 

models (GLM, (19)), generalized boosting method (GBM,(20)), generalised additive models (GAM, 115 

(21)), and random forest (22).  Models were run performing spatial cross validation with 80% of the 116 

data used to train the algorithm and the remaining 20% to test it.   117 

At present, the predicted potential distribution matches well the best range estimates for the 118 

species (Supplementary Fig. 1.).  Based on paleoclimate and vegetation reconstruction (see Materials 119 
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and Methods), range projections from the present day back to 50 thousand years ago suggest that 120 

the distribution of habitat suitable for the Yellow Warbler expanded and contracted, to various 121 

degrees, multiple times.  The potential range underwent a substantial contraction into the south of 122 

the continent at the peak of the Last Glacial Maximum (LGM), ~21kya, before beginning to re-123 

expand (Supplementary Fig. 2. A-B), but the range never separated into distinct eastern and western 124 

refugia. Following the LGM, the retreat of the Cordillerian Ice Sheet was asymmetric: in the west, the 125 

ice started to retreat at about 18ka (23) with the opening of a corridor that progressively expanded 126 

to the higher latitudes, whereas the eastern and central part of the Laurentide Ice Sheet began 127 

retreating much later (24). By 13kya this deglaciated terrain became habitable for Yellow Warblers 128 

according to our SDM (Supplementary Fig. 2. C).  From then on, as the ice sheets retreated further, 129 

habitat to the east of the continent and in the central area deglaciated, becoming increasingly viable 130 

(Supplementary Fig. 2. D-F). 131 

Climate Informed Spatial Genetic Model 132 

The reconstructed range suitability maps over time were used as an input for CISGeM.  In this 133 

framework, the genetics of multiple populations can be modelled within a spatially explicit 134 

reconstruction of the world where the suitability of each deme changes through time according to 135 

the SDM back-cast suitability scores (Fig. 1). Using an Approximate Bayesian Computation 136 

framework, we fitted basic demographic parameters such as population growth rate and migration, 137 

as well as the link between SDM suitability scores and local population sizes.  The mean pairwise 138 

genetic differentiation (π) between populations in each of the three clades (East, Central and West) 139 

were used as summary statistics that had to be matched by the model. We performed a Monte-140 

Carlo sweep of the input parameters (Table 1.), generating a total of 61,504 simulations.  141 

Visual inspection of the values of pairwise differentiation among the clades revealed that the model 142 

was able to recapitulate the observations in a realistic fashion (see Supplementary Fig. 3. A for a PCA 143 

plot of the values predicted by the model vs the observations, and Supplementary Fig. 4. for all 144 
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individual summary statistics).  We then formally tested model fit with ‘gfit’ from the ‘abc’ package 145 

(25) in R (see Materials and Methods for details). This test verifies that the distance between the 146 

observed and the simulated data is not significantly larger than the distance of a random simulation 147 

to other simulations (and thus that the model is able to capture the patterns seen in the data): our 148 

model recovered a p value of 0.379 which implies a good fit (Supplementary Fig. 3. B).  149 

We used a random forest algorithm (ABC-RF) (26) to generate posterior probabilities of the input 150 

demographic parameters given the observed levels of pairwise population differentiation 151 

(Supplementary Fig. 5.). The metapopulation dynamics was characterised by an expansion dynamics 152 

with moderate to strong bottlenecks (as determined by a relatively low directed expansion 153 

coefficient, �� , which defines the proportion of individuals that move into an unoccupied area, 154 

Supplementary Fig. 5. C), followed by limited subsequent migration (low values in the undirected 155 

expansion coefficient rates ��, Supplementary Fig. 5. E, in accordance with observations that this 156 

species tends to be philopatric in its breeding range). Such signals suggest an expansion 157 

characterised by sequential founder events that would have set up a pattern of isolation by distance 158 

along the colonisation routes that was preserved by the limited migration afterwards.  159 

From the top 2.5% best fitting simulations (n=1055 runs), we reconstructed the demography of the 160 

species through space and time. The average demographic profile, calculated as a weighted mean of 161 

population size across these simulations, shows that the Yellow Warbler was forced to contract its 162 

range at the peak of the Last Glacial Maximum (~21kya) as the ice sheets grew across the north of 163 

the continent (Fig. 3. A&B). At this point, the population existed in a restricted but broadly 164 

continuous range in the south of the continent.  As the climate ameliorated, northward range 165 

expansion became possible. However, the pattern of recolonization was uneven. By 13kya, our 166 

model reconstructs an expansion mostly following the corridor that opened between the Laurentide 167 

and Cordilleran icesheets on the west of the continent, whilst expansion on the eastern side was 168 

limited (Fig. 3. C). The western spread continued at a pace with the melting of the Cordilleran ice 169 

sheet (Fig. 3. D), but the eastern expansion lagged behind due to the slower melting of the 170 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.10.443405doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Laurentide icesheet (Fig. 3. E). The central and eastern part of the continent were fully colonised by 171 

5kya, when the ice sheets were fully melted (Fig. 3. F). 172 

 

 

 Figure 3. Weighted mean population size (per deme) of Yellow Warbler at A) 45kya, B) 21kya, C) 13kya, D) 11, 

E) 9kya, F) 5kya, from 1055 simulations retained during the parameter estimation. Dark grey regions are areas 

uninhabitable for yellow warblers at the given point in time. 
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The importance of this asymmetric expansion in setting up the patterns of genetic diversity across 173 

the range of Yellow warblers can be seen by mapping geolocation of common ancestor (CA) events 174 

that occurred between populations. These events allow us to reconstruct gene flow through time, as 175 

shaped by colonisations and subsequent connectivity, revealing how the patterns of diversity have 176 

emerged. Using two populations from two regions each time, we plotted locations of the CA events 177 

between the East and West, Central and East, and Central and West regions (Fig. 4. A). When we 178 

considered populations from the East and West (Fig. 4. B), we can see that common ancestor events 179 

between these two clusters show a “v” shape that matches closely the shape of the ice sheets at 180 

13kya, when the postglacial expansion occurred. Importantly, the same pattern was also found 181 

when we considered only West and Central populations (Fig. 4. C), albeit with a greater intensity of 182 

events in the corridor between the two populations.  Even though we did not have any population 183 

from the East, common ancestors event reveal that central populations are linked to that area, thus 184 

representing a mix of the western and eastern arms of the expansion. The same is true when we 185 

considered only Central and East populations Fig. 4. D).  Together with the reconstructed 186 

demography in Fig. 3., this pattern shows the importance of the early expansion up the west coast, 187 

followed by subsequent expansion up the east coast, in setting up an initial divergence of the clades, 188 

which then mixed in the central region comparatively recently.  The signature left by the relatively 189 

strong founder events that occurred during the expansion have not yet been eroded by the 190 

relatively low levels of migration, explaining the current patterns of genetic diversity and structure in 191 

this species. 192 
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Figure 4.  The location of common ancestor (CA) events are plotted across a map of North America.  A) is an 

elevation map of the region with all six sampling locations labelled.  In B-D colour density represents 

proportion of total CA events on the map that occur in each deme.  B) is an analysis based on two populations 

each from West (blue) and Central (purple) regions, C) is based on Central and East (red) regions, and finally D) 

the West and East regions.  
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Discussion  193 

In this study, we examined the relative roles of different forces that may have driven modern day 194 

genetic structuring in a widespread species.  We used a set of complementary datasets to explore 195 

structure in the North American Yellow Warbler (Setophaga petechia), a common passerine species.  196 

By integrating genetic data and climatic and environmental variables through time into a spatially-197 

explicit modelling framework (CISGeM), we were able to build a detailed reconstruction of the 198 

population dynamics for this species, stretching back through the last fifty thousand years.  Our 199 

model was able to reconstruct population size changes, track potential range expansions, and 200 

simulate recolonisation dynamics, whilst capturing the genetic structure found in the modern 201 

population.  With this information, we were able to explore the extent to which expansion dynamics 202 

could explain modern genomic patterns of the Yellow Warbler.   203 

East-west population structure, as found in the Yellow Warbler, is not an uncommon pattern in 204 

North America.  These genetic differences, as well as variation in other traits such as migratory 205 

behaviour, are often considered to support the existence of isolated refugia during glaciations (e.g. 206 

(16,27)).  However, recent work on refugia has shown that the patterns of diversity found in the 207 

Northern Hemisphere only fit the expectations from cyclic expansion-contraction fragmenting 208 

ranges and driving genetic variation at a coarse level (8,9,28).   209 

By explicitly modelling the recolonization dynamics, we have demonstrated a plausible explanation 210 

for the formation of genetic structure over time, without the need of multiple glacial refugia.  The 211 

dynamics of the modelled Yellow Warbler recolonization show that, to a large extent, this passerine 212 

species tracked the uneven (asynchronous) retreat of the Laurentide Ice Sheet, with a longitudinally 213 

unequal progression northward (Fig. 3.).  Despite the species exhibiting a single large glacial 214 

refugium, the asymmetrical pattern of re-expansion generates the genetic structure of east, west, 215 

and central population clusters found in the empirical genetic data.  This implies a key role for post-216 

glacial re-expansion in shaping modern-day populations.   217 
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The important role of re-expansion dynamics has recently been highlighted in a range of different 218 

species e.g. (8,11,28), though it would be naïve to assume that the complex patterns of diversity 219 

found in real populations could be easily explained by a single mechanistic process (29).  Our work 220 

highlights that, at the very least, modern population diversity and structure may have originated 221 

from a combination of different processes, each of which needs to be carefully considered.   222 

We acknowledge that, within this framework, we were unable to consider the possible influence of 223 

biotic interactions which may have impacted the pattern of recolonization (30).  Our model also 224 

works with demes that are discrete spatial units of a fixed size, allowing for a step change in the 225 

likelihood of common ancestor events occurring within the deme and outside it.  Moving away from 226 

the discretisation of space could help further ‘naturalise’ our model, and indeed models that 227 

incorporate continuous space are rapidly advancing (31).  However, there are still major 228 

computational challenges to overcome before these tools would be suitable for an area on the scale 229 

of this study.  230 

Whilst theories that describe broad patterns have been crucial to increasing our understanding of 231 

the likely impacts environmental changes have had on populations, we now realise that North 232 

American avifauna is probably a composite of species with different histories (32).  Species have 233 

responded individually to the rapid climate changes faced in the Pleistocene and therefore we would 234 

not wish to claim our findings refute the existence and effect of North American glacial refugia for 235 

birds.  However, now the resources and techniques exist to study the idiosyncratic responses of 236 

different species, and it will be possible to assess the importance of isolated refugia in shaping the 237 

genetic structure of species. Furthermore, an increased understanding on the different population 238 

dynamics that underlined species responses to the large climatic changes that occurred over the last 239 

glacial cycle might provide an important tool to refine our ability to predict the responses of species 240 

to anthropogenic change in the future. 241 
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Materials and Methods 242 

Study species 243 

The North American Yellow Warbler (Setophaga petechia) is a small, riparian, migratory passerine. 244 

Today, this common species is widely distributed across the continent.  However, despite its large 245 

and well-connected contemporary range, the Yellow Warbler exhibits spatial structure across its 246 

range, including multiple mitochondrial clades (16) and clear isolation by distance (33). Although not 247 

a species of concern, the Yellow Warbler has recorded a declining population trend in the North 248 

American Breeding Bird Survey between 1966-2015, triggering several studies looking into the 249 

species ability to cope in the face of a rapidly changing climate (33,34). One such study by Bay et al. 250 

(33) built RAD-seq data from individuals sampled across the species’ range in order to explore 251 

potential population trends in response to future climate scenarios.  Such data was made available 252 

on GenBank and forms the basis of our empirical dataset here. 253 

Raw genetic data 254 

RAD sequence data for North American Yellow Warblers (Setophaga petechia) from 21 populations 255 

(33) were downloaded from the NCBI Sequence Read Archive (SRA). From the 269 accessions 256 

associated with the Bay et al. paper we chose to focus on only the individuals included in the original 257 

analysis (n = 223), individuals for which full information about their breeding population was 258 

available. A further 22 samples were dropped as the file sizes were under 75MB and, therefore, 259 

were likely to have low coverage. One final exclusion was made, GenBank accession number 260 

SRR6366039, as the sample was found to be an outlier with a measure of diversity higher than the 261 

range of all other samples, despite comparable levels of coverage and number of sites. This left 200 262 

samples for further analysis. These individuals were sampled from across the modern population 263 

range, providing a good overview of the population genetics of this species, see Fig 2. for sampling 264 

locations.  265 

Clustering analysis  266 
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RAD-seq methods are known to create specific biases in estimated allele frequencies, potentially 267 

affecting downstream analysis of the data (35). Using allele frequencies derived directly from the 268 

sequence data in a genotype-free method has been shown to account for RAD-seq specific issues, 269 

improving population genetic inferences (35). Therefore, we used Analyses of Next-Generation 270 

Sequencing Data (ANGSD) (36,37) to infer genotype likelihoods directly from aligned BAM files.  271 

Filters were set to only include SNPs with a p value of < 2 x10
-6

 and only keep sites with at least 100 272 

informative individuals.  These ANGSD genotype likelihood values were then used as input for 273 

NGSadmix to calculate population admixture, setting a K (presumed cluster number) value of 2 and 274 

keeping minimum informative individuals at 100. 275 

Observed genetics for CISGeM 276 

In order to calculate pairwise π (the average number of differences between two sequences, 277 

normalised by the number of available positions), we first calculated genotype likelihoods in ANGSD.  278 

Input files were aligned BAM files, we used the samtools genotype likelihood method and inferred 279 

the major and minor allele from these likelihoods, with the command below:   280 

angsd -GL 1 -out genolike -doGlf 1 -doMajorMinor 1 -bam bam.filelist 281 

We then computed pairwise π from the ANGSD output; since our population genetic simulations 282 

(see below) modelled haploid samples (as it is the case of most genetic simulators, e.g. msprime 283 

(38)), we used the below formula:  284 

����� · 0.5 	 ����� 	 ����� · 0.5 	 ����� · 0.5

��
��  

In order to make the modelling computationally feasible, we then investigated how many samples 285 

were needed to get a reliable estimate of π for each population (Supplementary Fig. 6.). This analysis 286 

showed that five diploid individuals, or ten chromosomes, provided a reasonable compromise for 287 

noise.  All estimates of pairwise π were therefore re-computed with only five individuals per 288 

population.  As estimates were consistent with the values from the full dataset (Supplementary Fig. 289 
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7.), for computation efficiency of the model, all future analyses were based on this subset of the 290 

data. 291 

 

Species Distribution Modelling for world reconstruction 292 

The range and population size of a species changes in time and space according to fluctuations in 293 

resources and environmental conditions. In order to build a spatially explicit model it is first 294 

necessary to use Species Distribution Modelling (SDM) to reconstruct how population ranges and 295 

demographics may have changed through time. For this study an SDM analysis was undertaken using 296 

an R (39) pipeline. 297 

Climate reconstructions:  298 

Climate data for North America were drawn from a 0.5° resolution dataset for 19 bioclimatic 299 

variables; Net Primary productivity (NPP), Leaf Area Index (LAI) and all the BioClim variables (40) 300 

with the exclusion of BIO2 and BIO3; covering the last 50,000 years in 1,000 year time steps from the 301 

present to 22kya and in 2,000years time steps before that date (41). This dataset was originally 302 

constructed from a combination of HadCM3 climate simulations of the last 120,000 years (42), high-303 

resolution HadAM3H simulations of the last 21,000 years (43), and empirical present-day data. The 304 

data had been downscaled and bias-corrected using the Delta Method (44).  Bioclimatic variables 305 

through time were then used as input data to inform the SDM.  306 

SDM data preparation:  307 

Species occurrences data for the present day were initially downloaded from the GBIF database 308 

(https://www.gbif.org), the original downloads are available at the following DOI: S. petechia 309 

10.15468/dl.jfkwcg (GBIF.org). These data were then filtered based on the attributed accuracy of the 310 

coordinates (maximum error: 1 km) and additionally, only points that were within Birdlife breeding 311 

and resident geographical ranges (45) were retained.  Remaining occurrences were then matched to 312 
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the 0.5° resolution grid used for the palaeoclimatic reconstructions and, as the method works on 313 

presence/absence data and not frequency, only one presence per grid cell was kept.  314 

This cleaned observation dataset was then used to define a set of informative bioclimatic variables 315 

with the most influence on the species distribution for use in the Species Distribution Model (SDM), 316 

through visual check of how much the distribution of the variable values differed between the 317 

observation points and the whole area.  We selected the variables with highest differences between 318 

the two curves, which are most likely to be relevant for the species, and then, in order to avoid using 319 

highly correlated variables, which may increase noise in the data, we constructed a correlation 320 

matrix between the variables associated with each of the retained observations.  Where two values 321 

were highly correlated, the variable with the lowest overall correlation across the matrix was kept, 322 

allowing us to select a set of uncorrelated variables (threshold = 0.7) leaving us with the following 323 

ones to be used for SDM modelling: LAI (leaf area index), BIO7 (Temperature Annual Range), BIO8 324 

(Mean Temperature of Wettest Quarter), BIO14 (Precipitation of Driest Month). 325 

Geographic biases in sampling effort are common when observation data are collected 326 

opportunistically, such as the data in the GBIF database.  In order to reduce this bias, we thinned our 327 

dataset using the R package spThin (46) enforcing a minimum distance of 70 km between 328 

observations.  Given the random nature of removing nearest-neighbour data points, we repeated 329 

this step 100 times (‘rep’ = 100) retaining for further analysis the result with the maximum number 330 

of observations after thinning. 331 

SDM modelling:  332 

The SDM was built with the R package biomod2 (47) following the same procedure used in Miller et 333 

al. (48).  The thinned observation dataset was used as presences whilst the landmass of North 334 

America was considered as background.  The same number of pseudo-absences as presences were 335 

then drawn five separate times, at random, from outside the BirdLife resident and breeding masks: 336 

creating five independent datasets for analysis. For each data set, following Bagchi et al. (49), 337 
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models were then run independently using four different algorithms: generalised linear models 338 

(GLM), generalized boosting method (GBM), generalised additive models (GAM), and random forest.  339 

 340 

Spatial cross-validation was used to evaluate the model; 80% of the data were used to train the 341 

algorithm and the remaining 20% to test it. Initially, both the presences and the five pseudoabsences 342 

datasets were subdivided in 14 latitudinal bands using the R package BlockCV (50). Each band was 343 

given a ‘band ID number’, looping sequentially through numbers 1-5 until all bands were labelled.  344 

Then the bands were assembled into five working data splits grouped by their band ID (numbers 1-345 

5). This was performed to maximise the probability of having at least some presences in all five data 346 

splits as a data split cannot be used for evaluation if it contains only absences. Each of the four 347 

models (GLM, GBM, GAM, and random forest) were then run five times (once for each 348 

pseudoabsence run), using in turn four of the five defined data splits to calibrate and one to evaluate 349 

based on TSS (threshold = 0.7). 350 

Finally, a full ensemble combining all algorithms and pseudoabsences runs (51) was created, using 351 

only models with TSS > 0.7, averaged using four different statistics: mean, median, committee 352 

average and weighted mean. The statistic showing the highest TSS, the mean, was then used to 353 

predict the probability of occurrence in each grid cell.  This was then projected for all available time 354 

slices from the present to 50 thousand years ago.  355 

CISGeM Demography: 356 

CISGeM’s demographic module consists of a spatial model that simulates long-term and global 357 

growth and migration dynamics of Yellow Warblers. These processes depend on a number of 358 

parameters (see Table 1.), which we later estimate statistically based on empirical genetic data. 359 
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� Allometric scaling factor for population size 

� Allometric scaling exponent for population size 


� Temporal origin of the population 

� Intrinsic growth rate 

�� Non-directed (random) mobility parameter 

��  Directed mobility parameter 

Table 1. Details of parameters used in CISGeM.  360 

The model operates on a global hexagonal grid of 40962 cells that represent the whole world (the 361 

distance between the centre of two hexagonal cells is 241 ±15 km); 2422 grid cells make up North 362 

America. Each time step represents 1 year, the generation time of Yellow Warblers. Each time step 363 

of a simulation begins with the computation of the carrying capacity of each grid cell, i.e. the 364 

maximum number of YWs theoretically able to live in the cell for the environmental resources at the 365 

given point in time. Here, we estimate the carrying capacity in a grid cell � at a time 
 as 366 

���, 
� � �� � ���, 
�� , if � is on land at time 
0, else ' 

where ���, 
� denotes the probability of a species inhabiting cell � at time 
 (see section ‘Species 367 

Distribution Modelling’). The particular function used here was chosen based on analysis of SDM 368 

projections and census data of Holarctic birds (R. Green, pers. comm.).  369 

The estimated carrying capacities are used to simulate spatial population dynamics as follows. We 370 

begin a simulation by initialising a population of yellow warblers in a grid cell �� (represents the 371 

spatial origin of yellow warbler in our model) at a point in time 
� with ���� , 
�� individuals.  372 

At each subsequent time step between 
�and the present, CISGeM simulates two processes: the 373 

local growth of populations within grid cells, and the spatial migration of individuals across cells. We 374 

used the logistic function to model local population growth, estimating the net number of individuals 375 

by which the population of size (��, 
� in the a � at time 
 increases within the time step as 376 
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� � (��, 
� � )1 + ��	,��


�	,��
,, 377 

where � denotes the intrinsic growth rate. Thus, growth is approximately exponential at low 378 

population sizes, before decelerating, and eventually levelling off at the local carrying capacity. 379 

Across-cell migration is modelled as two separate processes, representing a non-directed, spatially 380 

uniform movement into all neighbouring grid cells on the one hand, and a directed movement along 381 

a resource availability gradient on the other hand. Under the first movement type, the number of 382 

individuals migrating from a cell � into any one of the up to six neighbouring cells is estimated as 383 

�� � (��, 
�, 384 

where �� is a mobility parameter. This mechanism is equivalent to a spatially uniform diffusion 385 

process, which has previously been used to model random movement in other species (52). Under 386 

the second movement type, an additional number of individuals moving from a grid cell �� to a 387 

neighbouring cell �� is estimated as 388 

�� � (���, 
� � �-� .0, ����, 
� + (���, 
�
���� , 
� + ����, 
� + (���, 
�

���� , 
� / 

The number 

�	,�����	,��


�	,��
 represents the relative availability of unused resources in the cell � at time 389 


, equalling 1 if all natural resources in � are potentially available for yellow warblers ((��, 
� 0 0), 390 

and 0 if all resources are used ((��, 
� 0 ���, 
�).  Thus, individuals migrate in the direction of 391 

increasing relative resource availability, and the number of migrants is proportional to the steepness 392 

of the gradient. The distinction between directed and non-directed movement allows us to examine 393 

to which extent migration patterns can be explained by random motion alone or requires us to 394 

account for more complex responses to available resources. 395 

For some values of the mobility parameters ��  and �� , it is possible for the calculated number of 396 

migrants from a cell to exceed the number of individuals in that cell.  In this scenario, the number of 397 
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migrants into neighbouring cells are rescaled proportionally such that the total number of migrants 398 

from the cell is equal to the number of individuals present. 399 

Similarly, it is in principle possible that the number of individuals present in a cell after all migrations 400 

are accounted for (i.e., the sum of local non-migrating individuals, minus outgoing migrants, plus 401 

incoming migrants from neighbouring cells) exceeds the local carrying capacity.  In this case, 402 

incoming migrants are rescaled proportionally so that the final number of individuals in the cell is 403 

equal to the local carrying capacity.  In other words, some incoming migrants perish before 404 

establishing themselves in the destination cell, and these unsuccessful migrants are not included in 405 

the model’s output of migration fluxes between grid cells.  In contrast, non-migrating local residents 406 

remain unaffected in this step.  They are assumed to benefit from a residential advantage (53), and 407 

capable of outcompeting incoming migrants. 408 

CISGeM’s demographic module outputs the number of individuals in each grid cell, and the number 409 

of migrants between neighbouring grid cells, across all time steps of a simulation.  These quantities 410 

are the used to reconstruct genetic lineages. 411 

CISGeM predicted genetics  412 

Once a global population demography has been constructed, gene trees are simulated. This process 413 

is dependent on the population dynamics recorded in the demography stage and assumes local 414 

random mating according to the Wright-Fisher dynamic.  From the present, ancestral lines of 415 

sampled individuals are tracked back through the generations, recording which cell each line belongs 416 

to. Every generation, the lines are randomly assigned to a gamete from the individuals within its 417 

present cell. If the assigned individual is a migrant or coloniser, the line moves to the cell of origin for 418 

that individual before ’reproduction’.  Whenever two lines are assigned to the same parental 419 

gamete, this is recorded as a coalescent event, and the two lines merge into a single line 420 

representing their common ancestor. This process is repeated until all the lineages have met, 421 

reaching the common ancestor of the whole sample. If multiple lineages are still present when the 422 
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model reaches the generation and deme from which the demography was initialised, the lines enter 423 

a single ancestral population (K0) until sufficient additional coalescent events have occurred for the 424 

gene tree to close. 425 

ABC parameter estimation  426 

Parameter space was explored with a Monte Carlo sweep in which demographic parameters were 427 

randomly sampled from flat prior ranges: directed expansion coefficient [0.0,0.14], undirected 428 

expansion coefficient [0.0,0.04], intrinsic growth rate [0.02,0.15], allometric scaling exponent [0.1,1], 429 

and allometric scaling factor [20,5000] on a log10 scale.  A fixed mutation rate of 2.3x10-9 μ/Site/Year 430 

was used (54).  431 

Model fit was initially calculated within an Approximate Bayesian Computation (abc) framework 432 

using the results of the Monte Carlo sweep. To compute summary statistics, populations were 433 

clustered into three groups representing the West, Central, and East regions of the North American 434 

continent, based on the NGSadmix outputs.  The mean pairwise π for populations was then 435 

computed within each group and between each pair of groups, giving us a total of 6 summary 436 

statistics.  437 

We performed parameter estimation with the R package ‘abc’ (25) using a local linear abc algorithm, 438 

setting the tolerance to 0.025.  For each of the simulations retained by the abc analysis, 439 

demographic simulations were then recorded and combined to create an average, representative, 440 

profile of the population’s demographic history. 441 

ABC model fitting: gfit & gfitpca 442 

We also confirmed the quality of the model fit using formal hypothesis testing approaches from the 443 

R package ‘abc’ (25).  Firstly we used the ‘gfit’ function (55) to confirm that our model outperformed 444 

a series on null models.  In this function the goodness of fit test statistic, or D-statistic, is the median 445 

Euclidean distance between the observed summary statistics and the nearest (accepted) summary 446 

statistics.  For comparison, a null distribution of D is then generated from summary statistics of 1000 447 
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pseudo-observed datasets.  A goodness of fit p-value can then be calculated as the proportion of D 448 

based on pseudo-observed data sets that are larger than the empirical value of D.  Consequently, a 449 

non-significant p-value signifies that the distance between the observed and accepted summary 450 

statistics is not larger than the expectation, confirming that the model fits the observed data well.   451 

We then further performed an a priori goodness of fit test using the ‘gfitpca’ function which 452 

captures and plots the two first components obtained with a principle component analysis.  We used 453 

a ‘cprob’ value of 0.1, 0.15, and 0.2, leaving a different proportion of points from the model outside 454 

the displayed envelope. The observed summary statistics is then marked to check that it is contained 455 

within these envelopes, indicating a good fit. 456 

ABC model fitting: abcrf 457 

We further evaluated model fit and posterior distributions with an abc random forest (RF) approach 458 

implemented via the R package ‘abcrf’ (26,56). Forests of 1,000 trees were used.  459 

460 
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