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SUMMARY  

Genome-wide CRISPR screens carried out with and without NPC1 function identify shared 

pathways that coordinately control lysosomal cholesterol and bis(monoacylglycero)phosphate. 

ER-localized SNX13 protein plays an unexpected regulatory role in modifying NPC1 function to 

regulate cellular cholesterol localization.  

 

 

ABSTRACT  

We report here two genome-wide CRISPR screens carried out to identify genes that when 

knocked out, alter levels of lysosomal cholesterol or bis(monoacylglycero)phosphate.  In 

addition, these screens were also carried out under conditions of NPC1 inhibition to identify 

modifiers of NPC1 function in lysosomal cholesterol export.  The screens confirm tight co-

regulation of cholesterol and bis(monoacylglycero)phosphate levels in cells, and reveal an 

unexpected role for the ER-localized, SNX13 protein as a negative regulator of lysosomal 

cholesterol export.  In the absence of NPC1 function, SNX13 knockout decreases lysosomal 

cholesterol, and is accompanied by triacylglycerol-rich lipid droplet accumulation and increased 

lysosomal bis(monoacylglycero)phosphate.  These experiments provide unexpected insight into 

the regulation of lysosomal lipids and modification of these processes by novel gene products. 
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INTRODUCTION 

Cellular lipid homeostasis is maintained by complex and dynamic, inter-organelle 

communication processes that coordinate uptake, biosynthesis and degradation of over 1000 

lipid species. Among all the organelles involved in lipid regulation, the lysosome plays a central 

role. Lysosomes are the final station at which endocytosed lipoprotein particles and membranes 

derived from intra-lumenal budding and autophagy undergo a series of degradative reactions to 

yield unesterified cholesterol and other lipid precursors (Gruenberg, 2019; Ballabio and 

Bonifacino, 2020). Free cholesterol is then exported out of the lysosome and either recycled for 

de novo synthesis of biological membranes and other sterol products or esterified and stored in 

lipid droplets.  

 

Loss-of-function mutations in gene products that mediate lipid turnover or lysosomal export lead 

to lethal cell toxicity, as seen in a number of inherited human diseases collectively known as 

lysosomal storage diseases (LSDs) (Ballabio and Bonifacino, 2020). One of the most studied 

LSDs is Niemann Pick type C (NPC) disease, caused by genetic defects in the lysosomal 

cholesterol transport system, Niemann Pick C1 and C2 proteins (NPC1 and NPC2). Cells from 

NPC patients accumulate cholesterol and glycosphingolipids in lysosomes, eventually leading to 

incurable neurodegeneration and premature death (Pentchev, 2004). Despite recent advances 

in the understanding of how transmembrane NPC1 and lumenal NPC2 coordinate their 

functions to export cholesterol from the interior to the outer-limiting membrane of the lysosome 

(Pfeffer, 2019), the precise molecular events that regulate this process and function 

downstream of NPC1 are still unclear (Das et al., 2014; Infante and Radhakrishnan, 2017). 

 

An important player in the metabolic regulation of cholesterol is Bis(monoacylglycero)phosphate 

(BMP, also known as LBPA), a negatively charged glycerophospholipid with unique 

physicochemical properties that is found almost exclusively in intralumenal vesicles of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.443492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443492
http://creativecommons.org/licenses/by/4.0/


4 

multivesicular endosomes (MVEs; Gruenberg, 2020). Elevation of BMP levels occurs in many 

LSDs, including NPC, and BMP plays important roles in lipid catabolism and cholesterol egress 

from lysosomes (Chevallier et al., 2008). Indeed, Storch and colleagues have shown BMP 

activation of NPC2-mediated retrieval and transfer of cholesterol to NPC1 protein (reviewed in 

McCauliff et al., 2019). Moreover, in the absence of active NPC1, cells fed phosphatidylglycerol 

increase their BMP content which decreases their lysosomal cholesterol levels by a process that 

requires NPC2 (McCauliff et al., 2019). These data support the existence of NPC1-independent, 

relatively slow cholesterol export pathways. Nevertheless, it is still not known precisely how 

BMP is synthesized or degraded in cells.  

 

Once cholesterol exits lysosomes, membrane contact sites between the lysosome surface and 

other juxtaposed compartments deliver cholesterol to the ER, a process that involves transit via 

the plasma membrane (Infante and Radhakrishnan, 2017). Because much remains to be 

learned regarding the mechanisms of cholesterol transport and its regulation, we performed 

genome-wide CRISPR screens to identify regulators of lysosomal cholesterol and BMP 

homeostasis.  We repeated these screens under conditions of NPC1 inhibition to identify 

cellular components that may function in parallel with the NPC1 pathway to accomplish 

cholesterol export; such gene products might offer pathways to benefit patients with NPC 

disease.  This strategy allowed us to confirm known components and pathways that regulate 

intracellular cholesterol transport and metabolism, and revealed many other previously 

unrecognized players. As one example, we show here that SNX13, a poorly characterized ER-

resident inter-organelle tether, regulates lysosomal cholesterol export in an NPC1-independent 

manner.  Remarkably, in the absence of NPC1 function that normally leads to massive 

lysosomal cholesterol accumulation, SNX13-depleted cells do not accumulate cholesterol in the 

lysosome and instead redistribute it to the plasma membrane and other compartments. 
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RESULTS 

Genome-wide screens to identify regulators of endolysosomal cholesterol 

We established two screening protocols to monitor changes in either cholesterol or BMP using 

fluorescently tagged Perfringolysin O* to label accessible cholesterol (Das et al., 2013) or a 

monoclonal antibody to detect BMP in K562 cells in conjunction with flow cytometry (Fig. 1A).  

Briefly, Cas9-expressing K562 cells were infected with libraries containing 10 sgRNA guides per 

gene and grown for 10 days before analysis for their content of cholesterol or BMP.  In addition, 

both screens were also carried out in parallel under conditions in which the lysosomal 

cholesterol exporter, NPC1, was inhibited by addition of U18666A, to identify modifiers of NPC1 

protein function (Lu et al., 2015).  Cells were labeled and sorted by flow cytometry and cells 

displaying the highest or lowest 10% signals for each marker were collected and sequenced 

(Fig. 1A). 

 

As shown in Fig. 1B, wild type K562 cells showed little PFO* staining unless NPC1 was 

inhibited using U18666A.  Moreover, endolysosomal cholesterol accumulation seen with 

U18666A was accompanied by increased BMP that was localized (as expected) in LAMP2-

positive structures (Fig. 1C,D).  These phenotypes were easily scored by flow cytometry (Fig. 

1E,F) where U18666A treated cells were easily resolved by their cholesterol or BMP content.   

 

Figure 2 presents the compiled results monitoring the effects of gene depletions on cholesterol, 

BMP, and both of those lipids with and without U18666A, all carried out twice.  Additional 

comparisons can be found in Supplemental Figure 1; gene hit subcellular localizations and 

associated metabolic pathways are presented in Supplemental Figures 2 and 3.  Genes in the 

upper left and right quadrants of Fig. 2 increase cholesterol upon knockout; genes in the right 

top and bottom quadrants increase BMP upon knockout.  Importantly, as expected, the 

strongest hits triggering cholesterol accumulation under control conditions were NPC1 and 
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MYLIP, a ubiquitin ligase that regulates LDL receptor levels and would be expected to increase 

cholesterol uptake upon deletion.  Similarly, knockdown of LDLR or the LDLRAP1 LDLR-

specific endocytic adaptor decreased endolysosomal cholesterol and BMP, both with and 

without U18666A treatment.  This recapitulates prior studies showing that cholesterol 

accumulation in lysosomes is accompanied by increases in antibody-detected BMP (Gruenberg, 

2020).  Knockdown of the IGF2R mannose 6-phosphate receptor had a much greater effect on 

BMP levels than cholesterol levels.  This suggests that cells may upregulate BMP synthesis to 

compensate for a defect in lysosomal enzyme delivery; alternatively, it may reflect the 

requirement for a mannose 6-phosphorylated enzyme(s) to carry out BMP degradation.  It is 

also of interest that most of the hits were located in the upper left or lower right quadrants of the 

graphs, with no hits increasing cholesterol while simultaneously decreasing BMP and 

conversely, no hits increasing BMP and decreasing cholesterol. 

 

The presence of U18666A to inhibit NPC1 should increase lysosomal cholesterol accumulation 

yet knockout of SNX13 and to a lower extent, SNX14, decreased both BMP and cholesterol in 

the K562 cells used for the screen (Fig. 2, lower panel, lower left quadrant).  Snx14 is an ER-

resident protein that accumulates within a subdomain of the ER surrounding lipid droplets in 

oleic acid-fed cells (cf. Henne et al., 2015; Datta et al., 2019, 2020; Ugrankar et al., 2109).  

Further studies on the role of SNX13 in cholesterol regulation are presented below. 

 

These screens generated an enormous amount of data and were analyzed by multiple means.  

Shown in Fig. 3 is a hierarchical classification of 195 hits that were identified in both cholesterol 

and BMP screens, displayed in terms of their phenotypes.  Comparing genes enriched in the 

10% high or 10% low groups, one would expect enrichment on one side or the other.  Similarly, 

comparison of the behavior of each gene reveals hits that respond the same way when 

cholesterol or BMP phenotypes are scored.  Two main categories of hits were revealed: hits that 
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either increase (Fig. 3A) or decrease (Fig. 3B) cholesterol or BMP upon CRISPR deletion. A 

minor, third category of hits that yielded opposite results in each category was also observed 

(see genes marked by black arrows in Fig. 3A). This analysis revealed coordinate behavior of 

RAB7 and the HOPS complex VPS11, VPS16 and VPS18 subunits, that when knocked out in 

control conditions led to increased cholesterol and BMP, but in the presence of U18666A, 

strongly decreased cholesterol. It is possible that loss of endosome fusion capacity leads to 

accumulation of cholesterol in much smaller structures.  Alternatively, loss of these proteins may 

trigger multivesicular endosome exocytosis.  Similarly, the entire GATOR1 complex, comprised 

of DEPDC5, NPRL2 and NPRL3 encoded subunits, negatively regulates mTOR signaling and 

also decreases cholesterol accumulation but only when NPC1 function is blocked. On the other 

hand, the positive mTOR regulator, folliculin (FLCN), which counteracts the activity of GATOR1, 

yields an opposite profile (see genes marked by black arrows in Fig. 3A).  Zoncu and colleagues 

(Davis et al., 2021) have shown that NPC1 loss elevates mTORC1 signaling, and inhibition of 

mTORC1 can improve lysosome proteolytic capacity without correcting cholesterol accumulation.  

Here, loss of the negative regulatory activity of the GATOR1 complex may show a worse phenotype 

because of dysregulation of hyperactive mTORC1.  

 

Autophagy-related genes dominated the group that decrease cholesterol and/or BMP 

(annotated with a yellow dot, Fig. 3B bottom right).  Auto-phagocytosed membranes, derived 

from mitophagy, ER-phagy or lipophagy for example, represent a major source of lipid 

substrates in endo-lysosomes.  Perhaps inhibition of autophagy decreases lysosomal catabolic 

burden and consequently, the amount of BMP needed for lipolytic reactions (Kolter and 

Sandhoff, 2005), as well as the levels of intra-lysosomal free cholesterol.  Alternatively, under 

conditions of decreased autophagy, endolysosomes may be smaller and be more difficult to 

detect by flow cytometry analogous to knockout of HOPS subunits.  Finally, cholesterol 

homeostasis regulators (green circles) including LDLR, LDLRAP1, and the LDLR chaperones 
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HSP90B1 and MESDC2, as well as SREBF1 and 2 are also prominent in this category, 

consistent with their known roles in cholesterol homeostasis.   

 

Comparison of four genome-wide screens for cholesterol regulators 

Several groups have recently reported genome-wide screens to identify cholesterol homeostatic 

regulators.  Gruenberg and colleagues presented an siRNA screen that detected a connection 

with Wnt signaling (Scott et al., 2016).  Trinh et al. (2020) measured surface LDLR levels; van 

den Boomen et al. (2020) employed a synthetic reporter to monitor SREBP transcriptional 

activation; and Chu et al. (2015) used amphotericin to kill cells that succeeded in plasma 

membrane cholesterol delivery.  Use of different approaches will surely yield different overall hit 

profiles.  Shown in Figure 4 is a comparison of three of these genome screens and the screens 

presented here. This comparison identified only two completely overlapping hits, LDLR and 

NPC1, highlighting the fact that  different approaches and readouts impact hit discovery. 

Nevertheless, a notable number of genes discovered here were also detected by several of the 

previous screens when compared individually. For example, our screen analysis uncovered 

roles for PTDSS1, SNX13 and SNX14 (Fig. 4; see also Fig. S2 and S3), all of which were 

ranked among the top 104 hits identified in the screens performed by Trinh et al. (2020).  

Moreover, several factors that regulate LDLR trafficking, including different subunits of the AP2, 

Arp2/3 and CCC complexes or the ubiquitin ligase MYLIP, also appear in this comparison.  

Notably, only a relatively small number of genes are shared between previous screens but not 

ours (see gene names associated with a yellow dot in Fig. 4). Altogether, this comparative 

analysis confirms the comprehensive nature of the present screens and the importance of 

independent evaluations of lipid regulatory pathways. 
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To further illustrate the coverage of our screen data, we performed a functional interaction 

analysis of all hits identified in both cholesterol and BMP screens. This analysis revealed the 

most represented intracellular pathways and processes controlling cholesterol and BMP 

homeostasis (Fig. 5), with colors used to indicate decreases (blue) or increases (red) of these 

two lipids upon knockout, and with quadrants of the individual gene nodes showing results for 

each gene ± NPC1 function. As expected, a significant proportion of high-confidence interacting 

hits are involved in LDLR trafficking, SREBP pathway regulation or early/late endosomal 

function.  Other well-represented functional gene clusters are those involved in autophagy and 

mTOR signaling, known to play critical roles in cellular lipid homeostasis (Thelen and Zoncu, 

2017).  A large number of interacting hits are involved in transcriptional regulation. Importantly, 

this analysis provides valuable information related to the coordinate function of individual 

subunits of protein complexes.  We detected identical behavior for all subunits of the PRC2 

chromatin remodeling complex and for the RISC complex (Fig. 5 bottom right and left, 

respectively).  Similarly, all peroxisomal genes behaved similarly (Fig. 5 bottom left) although it 

is not yet clear what specific role they play in cholesterol and BMP regulation. Genes involved in 

LDLR recycling are all red (Fig. 5 upper left), suggesting, paradoxically, that cholesterol 

accumulates when LDLR cannot recycle.  Perhaps this reflects trafficking of another protein(s) 

that facilitates cholesterol egress or increased receptor degradation followed by LDLR gene up-

regulation.  Unexpectedly, glycosylation genes are also mostly red (Fig. 5 top middle), possibly 

highlighting the importance of glycosylation for folding and assembly of membrane proteins that 

function in cholesterol export.  Finally, while complexes involved in late endosomal maturation, 

such as the RAB7 GEF MON/CCZ1/C18ORF8 (van den Boomen, 2020) or the recently 

described WDR91/81 complex (Casanova and Winckler, 2017), show increased cholesterol or 

BMP accumulation upon knockout, endosome fusion complexes such as HOPS and Rab7 itself 
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are mixed (Fig. 5 middle left; see Fig. S2): increasing cholesterol and BMP on knockout and 

decreasing cholesterol and BMP on knockout with U18666A.  It is possible that this phenotypic 

difference may reflect the different sized endolysosomal compartments generated under the two 

conditions, and a possible up-regulation in MVE exocytosis in the presence of U18666A 

compound (Strauss et al., 2010). 

 

We also classified our hits according to specific lipid metabolic pathways (Fig. S3). In general, 

the majority of hits that catalyze the biosynthesis of multiple lipid species appear to increase 

either cholesterol or BMP or both, underscoring the complex interplay between these metabolic 

pathways.  Our approach recovered key enzymes required for de novo cholesterol biosynthesis 

such as HMGCR, MSMO1, FDFT1, SQLE, and CYP51A1, and also identified the SREBP 

pathway almost in its entirety (Fig. S3 bottom right), including the recently described SREBP 

pathway regulator, C12ORF49 (Loregger et al., 2020; Bayraktar et al., 2020; Aregger et al., 

2020). Moreover, identification of additional factors such as UBE2G2, which controls sterol-

stimulated ubiquitylation and turnover of the rate-limiting enzyme HMGCR (Tan et al., 2019), or 

ZFP36L2 (Fig. S3 bottom right), a RNA-binding protein that promotes LDLR mRNA degradation 

(Adachi et al., 2014), further highlights the level of biological detail revealed by our screens. In 

most cases, their corresponding phenotypes were consistent with their respective biological 

functions in the context of cholesterol homeostatic regulation. Accordingly, while deletion of 

HMGCR resulted in elevated cellular cholesterol levels, UBE2G2 knockout cells showed the 

opposite phenotype; both genes appeared as hits only when NPC1 was pharmacologically 

blocked.  Interestingly, a considerable number of transcription factors that control expression of 

lipid metabolism and lysosomal genes were also efficiently detected as hits in addition to 

SREBFs (see Figs. 5, S2 and S3), including liver X receptor member NR1H2 (Wang and 
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Tontonoz, 2018), BRD4 (Sakamaki et al., 2017), SPI1 (Solomon et al., 2017), USF2 (Yamanaka 

et al., 2016) and the multi-subunit transcriptional co-activator, Mediator (Youn et al., 2016), once 

again validating the robustness of this approach. 

 

ER-localized SNX13 links to endolysosomes and lipid droplet domains 

The goal of this screen was to identify modifiers of the NPC1 deletion phenotype, and SNX13 

revealed itself as a gene that decreased PFO*-detected, accessible cholesterol and antibody 

detected-BMP in the presence of U18666A.  Thus we carried out a cell biological 

characterization of the role of SNX13 in cholesterol regulation.  Like SNX14, SNX13 is related to 

the single yeast MDM1 protein that mediates endoplasmic reticulum (ER) links to the yeast 

vacuole (Henne et al., 2015).  SNX13 is a multi-domain containing protein comprised of PXA, 

RGS, PX and C-nexin domains (Fig. S4 F).  In U2OS cells, we detected good co-localization of 

SNX13 with the ER localized VAP-A protein (Fig. S4 A).  When NPC1 was inhibited, the protein 

remained in the ER and close apposition to lysosomes was detected (Fig. S4 B, RPE cell 

shown).  Upon addition of oleic acid to induce lipid droplet formation, SNX13 redistributed to ER 

domains in contact with nascent lipid droplets (Fig S4 C), as shown recently for SNX14 (Datta et 

al., 2019 and Fig. S4 D).  Detailed confocal microscopy (Fig. S4 E) showed intimate 

connections between SNX13 (green), BMP compartments (red) and lipid droplets (blue) under 

these conditions.  SNX13 truncation analysis showed that the C-terminus is required for 

redistribution of SNX13 to lipid droplet forming domains (Fig. S4 F-J), analogous to SNX14 

(Datta et al., 2019). 

 

Immunofluorescence microscopy of U18666A-treated U2OS cells treated with SNX13 siRNA 

showed decreased cholesterol accumulation determined by PFO* staining compared with 

control siRNA or SNX14 siRNA-treated cells (Fig. 6 A-D).  Specifically, SNX13-siRNA treated 
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cells showed fewer PFO*-positive vesicles and vesicles were smaller in size (Fig. 6 E, F).  

Similar results were obtained using U18666A treated HeLa cells (Fig. 6 G-K).   

 

In addition to decreasing lysosomal cholesterol, SNX13 depleted, U18666A-treated U2OS cells 

(Fig. 7A-D) and HeLa cells (Fig. S5 A-C) showed clear, NPC1-independent redistribution of 

cholesterol from endolysosomal compartments to the cell surface of non-permeabilized cells 

that was not seen in control siRNA and U18666A-treated cells (Fig. 7 A and  Fig. S5 A) or 

SNX14 depleted cells (Fig. 6 C, I).  This was again unexpected, as NPC1 is thought to be 

required upstream of cholesterol delivery to the cell surface.  One possibility is that loss of 

SNX13 enhances formation of an endosomal-plasma membrane and/or ER-plasma membrane 

contact site that can bypass NPC1 (as seen by Höglinger et al., 2019).   Importantly, depletion 

of SNX13 from NPC1 knockout HeLa cells yielded the same phenotype (Fig. S5 D), showing 

that this reflects a block in NPC1 function rather than an off target effect of U18666A.   

 

Zoncu and colleagues have shown that blocking NPC1 function hyperactivates mTORC1 and 

leads to accumulation of accessible cholesterol on the outer leaflet of lysosomes, highlighting a 

cholesterol transfer pathway from the ER to the lysosome outer leaflet (Lim et al., 2019; Davis et 

al., 2021).  Somehow, loss of SNX13 enables cholesterol transfer to the plasma membrane 

despite the absence of NPC1 function.  This phenotype suggests a role for SNX13 as a 

negative regulator of cholesterol transport from lysosomes to the cell surface, in coordination 

with NPC1. 

 

SNX13 depletion, even in the absence of oleic acid supplementation, also increased the number 

of lipid droplets per cell, as monitored by LipidTOX staining (Fig. 8 A,B).  This increase was 

seen whether or not cells were treated with the SANDOZ ACAT1 inhibitor, suggesting that these 

lipid droplets contain primarily triglycerides rather than cholesterol esters.  Total lipids were 
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analyzed by thin layer chromatography, which revealed elevated levels of both total 

triacylglycerol and free fatty acids, consistent with the increased, NPC1-independent, 

lipid droplet accumulation observed (Fig. 8 C,D).   

 

The initial flow cytometry screen indicated that SNX13 knockout had the strongest 

phenotype when NPC1 function was inhibited, and that knockout concomitantly 

decreased BMP staining (Fig. 2, Fig. S1).  Yet immunofluorescence microscopy showed 

accumulation of antibody-detected BMP in NPC wild type, SNX13 siRNA-depleted cells 

(Fig. 9). This difference may be due to the fact that the screen relied on CRISPR 

deletion whereas our validation relies on siRNA; alternatively, it could reflect differences 

between K562 cells used in the screen and U2OS cells used in validation.  Many 

studies have now shown that cells subject to CRISPR modification adapt in diverse 

ways (Cerikan et al., 2016; Diofano et al., 2020; Salanga and Salanga, 2021).  

Nevertheless, SNX13 still bypassed NPC1 deficiency and this could have been due to 

the unexpected increased BMP that may be sufficient to facilitate cholesterol export 

from lysosomes.   

 

To verify this SNX13 knockout dependent BMP increase, mass spectrometry was also 

carried out to quantify BMP isoforms for cells with and without SNX13, ±U18666A.  di-

22:6 BMP was the predominant form in this cell type but all forms detected showed a 

striking increase in SNX13 siRNA treated cells.  Moreover, similar (but slightly 

decreased)  levels of total BMP were seen in samples treated with U18666A, 

suggesting that any changes detected by microscopy reflect an antibody-accessible 

pool that accumulates when NPC1 function is blocked during the 16h U18666A 
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incubation time frame.  Control experiments confirmed increased antibody-detected, 

endolysosomal BMP levels in U18666A-treated U2OS cells (Fig. S5 E, F).  Altogether, 

these data demonstrate that SNX13 function is tightly connected to regulation of BMP 

levels in U2OS cells. 

 

DISCUSSION 

We have presented here parallel screens to investigate the pathways that regulate 

cholesterol and BMP in cells.  Our findings complement other previous screens related 

to cholesterol trafficking and highlight the strong, coordinate regulation of cholesterol 

and BMP.  Despite the importance of BMP in cholesterol transport and other lipid 

degradative processes, little is known about how this lipid is synthesized or degraded.  

Strikingly, no single, specific metabolic enzyme revealed itself as a strong candidate for 

BMP biosynthesis.  Rather, knockout of the mannose 6-phosphate receptor yielded the 

strongest phenotype.  The simplest explanation is that BMP is upregulated in response 

to a severe defect in lysosomal enzyme delivery.  Alternatively, BMP degradation is 

blocked. 

 

Our complementary screens generated an enormous dataset that not only recapitulates 

many known trafficking, metabolic and transcriptional pathways and proteins that 

regulate intracellular cholesterol physiology, but importantly, it also revealed previously 

unrecognized roles for many genes and protein complexes that deserve further 

validation and characterization, opening new avenues for future investigation. One 

example is the identification of the PRC2 complex, whose subunits reduced cholesterol 
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levels upon knockout only when NPC1 function was blocked (Fig. 5). Another example 

is the discovery of RP11-512M8.5, which encodes a protein of unknown function that 

shows high homology (>90%) to VPS33A, a HOPS/CORVET subunit. Consistently, 

RP11-512M8.5 behaved exactly the same as other uncovered HOPS/CORVET core 

subunits did: increasing or decreasing cholesterol in control or U18666A conditions, 

respectively (Fig. 3, Fig. S2). 

 

In addition, our results also revealed unexpected consequences of deleting well-

characterized players.  For example, why does deletion of any of the ESCRT subunits 

consistently increase cholesterol under NPC1 inhibition conditions (Fig. 5, Fig. S2)? 

Depletion of ESCRT complexes has been shown to decrease, but not abolish, the 

number of intralumenal vesicles in multi-vesicular endosomes (Stuffers et al., 2009). In 

other work, depletion of the ESCRT-0 subunit, HRS but not other ESCRT subunits 

caused an NPC-like phenotype (Du et al., 2012). It is possible that this phenotype is 

only seen upon full knockout of ESCRTs carried out here.  In the absence of ESCRT 

function, the alternative, ceramide-dependent intralumenal vesicle biogenesis pathway 

may be up-regulated (Stuffers et al., 2009; Trajkovic et al, 2008), perhaps generating 

intralumenal vesicles with higher cholesterol content.  Further work is needed to resolve 

this question. 

 

SNX13 was an especially interesting hit that when knocked out, could rescue lysosomal 

cholesterol accumulation in cells lacking NPC1 function, triggered either via NPC1 
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knockout or U18666A inhibition.  Moreover, under these conditions, accessible 

cholesterol was detected at the cell surface compared with control cells, despite lack of 

NPC1 function.  How might NPC1 function be bypassed?  NPC1 bypass can be 

achieved by treatment of cells with cyclodextrin (Abi-Mosleh et al., 2009; Rosenbaum et 

al., 2010); in this case, it is likely that endocytosed cyclodextrin enables hydrophobic 

cholesterol to permeate the glycocalyx and gain access to the limiting lysosome 

membrane for eventual transport to the ER.  Cyclodextrin may also trigger 

multivesicular endosome fusion with the cell surface, triggering cholesterol release. 

 

Another example of NPC1 bypass was recently reported by Spiegel and colleagues 

(Newton et al., 2020).  Remarkably, activation of sphingosine kinase was sufficient to 

drive cholesterol export from NPC1-deficient lysosomes.  Sphingolipids are normally 

degraded by lysosomal sphingomyelinase, yielding sphingosine that is transported into 

the cytoplasm.  There, phosphorylation by sphingosine kinase pulls overall sphingosine 

export by creating a substrate for a cytoplasmic degradative lyase; alternatively, 

sphingosine can be reutilized for ceramide synthesis in the ER.  There are several 

possible explanations for this NPC1 bypass.  First, increased sphingosine kinase could 

increase membrane contact sites (Höglinger et al., 2019; Meneses-Salas et al., 2020), 

thereby providing access of accumulated lysosomal cholesterol to an alternative 

cholesterol export route.  It is also possible that NPC2 could deliver cholesterol directly 

to lumenal membranes that contain a less dense glycocalyx such as those of late 

endosomes (Cheruku et al., 2006; McCauliff et al., 2019) where LAMP proteins that 

contribute to the glycocalyx are less abundant (Li et al., 2016).  In this case, enhanced 
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sphingosine kinase could somehow enhance late endosome-lysosome fusion to permit 

such egress.  Alternatively, sphingosine kinase activation could enhance multi-vesicular 

endosome exocytosis (Kajimoto et al., 2013), releasing accumulated cholesterol into the 

extracellular space. 

 

In relation to our findings, SNX13 appears to be a negative regulator of cholesterol 

export from lysosomes such that export is enhanced in its absence.  As an organelle 

tether (Henne et al., 2015), SNX13 may coordinate the association of membrane bound 

compartments to maintain appropriate and tightly regulated cholesterol levels in distinct 

cellular compartments, particularly in the ER.   Further work will be needed to parse the 

differences in phenotypes observed for the related but distinct SNX13 and SNX14 

proteins that both influence cholesterol and neutral lipid accumulation (Bryant et al., 

2018; Datta et al., 2019, 2020). 

 

Recently, Trinh et al. discovered a surprising role for PTDSS1, a phosphatidylserine 

(PS) synthase, in transport of cholesterol from the plasma membrane to the ER.  

PTDSS1 was also detected in our screens.  In addition, the ER-localized scramblases, 

TMEM41B and VMP1, were reported to regulate normal distribution of cholesterol and 

phosphatidylserine (Li et al., 2021). These two genes were also identified as hits in our 

cholesterol screens, both increasing cholesterol only under NPC1-inhibition conditions, 

similar to PTDSS1 (Fig. S2, S3).   Knockout of either scramblase resulted in cholesterol 

plasma membrane re-distribution, a phenotype reminiscent of that observed upon 

PTDSS1 knockout (Trinh et al., 2020).  In our screens, SNX13 was uncovered as a 
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cholesterol-decreasing hit (Fig. 2, Fig. 3); this is probably because SNX13 plays a 

broader role in the homeostatic regulation of lipids, controlling for example the levels of 

BMP and fatty acids in the cell (Figs. 8, 9).  Note that SNX13 depletion enables 

cholesterol to reach the plasma membrane despite loss of NPC1 function; this likely 

differs from plasma membrane accumulation seen upon knockout of PTDSS1 and the 

scramblases, as levels did not appear to represent accumulation. 

 

Importantly, PS is likely important for the formation of ER-plasma membrane junctions 

by ER-associated GRAMD1/Aster proteins that bind anionic lipids and transfer 

cholesterol via membrane proximal START or START like domains (Naito et al., 2019; 

Sandhu et al., 2018).  Like GRAMD/Aster proteins, SNX13 is an ER-anchored 

membrane protein with lipid binding motifs and organelle tethering potential; its 

Drosophila Snz homolog binds phosphoinositides as well as phosphatidylserine 

(Ugrankar et al., 2019).  However, unlike GRAMD/Aster proteins, SNX13 does not 

contain an obvious sterol binding domain. It is possible that SNX13 links the ER to both 

late endosomes and the plasma membrane, and future experiments will explore the 

possibility that PS binding is important for its cholesterol regulation activities.  Finally, 

paradoxically, NPC loss has been reported to increase membrane contact sites (Lim et 

al., 2019), yet certain of these can rescue the cholesterol accumulation phenotype 

(Höglinger et al., 2019; see also Meneses-Salas et al., 2020).  Thus, not all membrane 

contact sites are created equal and their regulation and specificity will be important to 

address in future work. 
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Materials and Methods 

Cell culture, antibodies and other reagents-- U2OS, HeLa and RPE cells were obtained from 

ATCC and grown in Dulbecco's modified Eagle's media (DMEM) containing 10% fetal bovine 

serum, 2 mM L-glutamine, and penicillin (100 U/ml)/ streptomycin (100 μg/ml). Cas9-expressing 

K562 cells (Lu et al., 2018) were grown in RPMI 1640 Medium supplemented with 10% fetal 

bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and penicillin (100 U/ml)/streptomycin 

(100 μg/ml). All cell lines were cultured at 37°C with 5% CO2. The NPC1 CRISPR knockout 

HeLa cell line was previously generated (Saha et al., 2020). Primary antibodies diluted in PBS-

1%BSA (for immunofluorescence) or 5% skim milk (for immunoblotting) were monoclonal Anti-

LBPA (BMP) clone 6C4 1:1000 (Millipore, Cat# MABT837), rabbit polyclonal anti-LAMP2 1:500 

(Invitrogen, Cat# PA1-655), mouse monoclonal anti-GST 1:1000 (Cell Signaling, Cat# 2624S), 

rabbit polyclonal anti-SNX13 1:1000 (Abcepta, Cat# AP12244b), mouse monoclonal anti-

Tubulin 1:10000 (Sigma-Aldrich, Cat# T5168), rabbit monoclonal anti-HA Tag (Cell Signaling, 

Cat# 3724S). U18666A (Sigma-aldrich; Cat# U3633) was used at 1µM for 16h. Oleic acid 

(Sigma-Aldrich; Cat# O1008,) was conjugated with fatty-acid free BSA (Sigma-Aldrich; A8806) 

at a 6:1 molar ratio and used at 0.5 mM for 16h. The ACAT pharmacological inhibitor Sandoz 

58-035 (Sigma-Aldrich; S9318) was used at 20 µg/mL for 16h. 

 

Plasmids and transfections-- Plasmids encoding SNX13-GFP and SNX14-GFP were a gift from 

Mike Henne (UT Sothwestern). The CFP-VAPA construct was a gift from Clare Futter 

(University College London). The WT-SNX13-2XHA plasmid was prepared as follows: First, the 

BioID2 insert from a target MCS-BioID2-HA plasmid (Addgene, Cat# 74224) was removed by 

restriction digestion at BspEI and HindIII sites and replaced with a 2XHA oligo sequence flanked 

by the same restriction sites. Next, the WT-SNX13 ORF sequence from the SNX13-GFP 

plasmid was shuttled into the NheI and BspEI restriction sites of the previously modified MCS-

BioID2-HA. The SNX13 truncated constructs were cloned by Gibson assembly using WT-

SNX13-2XHA as template (see primers in Supplementary Table 1). Transfections of U2OS cells 

plated on coverslips were carried out using GenJet Plus Reagent (SigmaGen Laboratories; 

Cat# SL10050) according to the manufacturer. For siRNA-mediated knockdown experiments, 

cells were transfected with siRNAs targeting human SNX13 (5’-

CAGAAAGGCUCAACAGAAAUU-3’) or SNX14 (5’-GGAUGAAAGUAUUGACAAAUU-3’) using 
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Lipofectamine RNAiMax (Invitrogen, Cat#13778-075) according to the manufacturer. Studies 

were conducted 48-72 h after siRNA transfection. A Scrambled siRNA was used as negative 

control (Ambion, Cat# AM4635). 

 

Quantitative real‐time PCR-- Total RNA from SNX14 siRNA- or control siRNA-treated cells was 

extracted using QIAzol (Qiagen, Cat# 79306) as per the manufacturer. 1 μg isolated RNA was 

reverse-transcribed using High Capacity cDNA Reverse Transcription Kit (Applied Bioscience, 

Cat# 4368814). qRT-PCR was performed using SYBRGreen-based technology GoTaq® qPCR 

master-mix (Promega, Cat# A600A). Specific SNX14 primers, and HPRT1 primers (reference 

gene) were used (see Table 1). PCRs were run in a LightCycler 96® Real-time PCR system 

(Roche). Transcript levels relative to HPRT1 were calculated using the ∆Ct method. 

  

Flow cytometry analysis of Cholesterol and BMP-- K562 cells were treated ± 1µM U18666A. 

After 16h cells were harvested and washed before fixation in 2% paraformaldehyde, then 

permeabilized in 0.1% Saponin and stained with PFO*-Alexa647 or anti-BMP and Alexa Fluor 

647 goat anti–mouse antibodies (Invitrogen). Quantification of cholesterol and BMP total 

fluorescence was performed using a BD Accuri C6 flow cytometer and data were analyzed 

using Flowjo software (Tree Star). 

  

PFO* purification-- Recombinant PFO* was purified as previously described (Li, Lee and Pfeffer, 

2017). Briefly, expression was induced in Rosetta 2 cells with 1 mM isopropyl β-p-thio- 

galactopyranside for 4 h at 37 °C. Cells were resuspended in buffer A [PBS, 10% (vol/vol) 

glycerol, protease inhibitors] and lysed using an Emulsiflex C-5 homogenizer (Avestin). Clarified 

lysate was incubated with Ni-NTA agarose (Qiagen, Cat# 30210) for 1 h at 4 °C and after 

washing with buffer A + 50 mM imidazole, bound protein was eluted with buffer A + 300 mM 

imidazole. The eluate was concentrated with an Amicon Ultra 10-kDa cutoff centrifugal filter 

(Millipore, Cat# UFC901024) and then exchanged into buffer A + 1 mm EDTA. PFO* was 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.443492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443492
http://creativecommons.org/licenses/by/4.0/


21 

directly conjugated to NHS ester Alexa Fluor 647 dye as per the manufacturer (Life 

Technologies). For immunofluorescence analysis of cholesterol, GST-PFO* was used 

(Meneses-Salas et al. 2020). 

  

CRISPR/Cas9-bEXOmiR screens in K562 cells--The Genome-wide K562 CRISPR knockout 

library line was generated as previously described (Morgens et al., 2017). Briefly, a whole-

genome library of exon-targeting sgRNAs (10 sgRNA per gene; Morgens et al., 2017) was 

synthesized and cloned into a lentivirus vector (Addgene, Cat# 89359) which together with third-

generation lentiviral packaging plasmids (pVSVG, pRSV and pMDL) were transfected into 

HEK293T cells to generate lentiviral particles. Then ~300 million Cas9-expressing K562 cells 

were infected at low MOI (<1). Transduced cells were selected and expanded in puromycin-

supplemented media over 5–7 days before conducting experiments 10 days post-infection. All 

screens were performed as independent replicates. Two independent screens were performed 

for each lipid (cholesterol and BMP) and condition (±U18666A). For each screen, 600 million 

cells were stained. 16h before staining, cells were treated with 1µM U18666A or vehicle 

(control). Next day, cells were first pelleted and washed twice in cold PBS followed by fixation in 

2% paraformaldehyde-PBS for 30 min at 4°C. Cells were then washed twice in PBS and 

permeabilized/blocked in 0.1%Saponin-1%BSA-PBS for 10 min. Cells were then incubated with 

10 µg/ml Alexa-647 labeled Perfringolysin O* (Li et al., 2017) for 45 min in the cold. 

Alternatively, for BMP screens, staining was performed with mouse anti-BMP antibody for 1 h at 

4°C, followed by 1 h incubation with Alexa 647-conjugated secondary antibody (Life 

Technologies) used at 1:2,000. Finally, cells were washed once in cold PBS and then kept in 15 

mL PBS-0.5%BSA at 4°C for 16h before sorting. Next day, cells were separated into 10% high 

or 10% low PFO/BMP fluorescence populations by sorting on a BD FACSAriaTMII. Around 20 

million cells were recovered from each gated population. Sorted cells were then sedimented by 

centrifugation, and the cell pellet was frozen at -80°C before genomic DNA isolation. 

Approximately 200 million unsorted cells (1000x coverage per library element) were saved for 

screen data normalization. Genomic DNA was extracted using Qiagen Blood Midi or Maxi kits 

(Qiagen, Cat# 51183; 51194) for sorted or unsorted cells respectively, as per the manufacturer. 

To prepare sequencing libraries, the sgRNAs sequences were PCR-amplified from genomic 

DNA and the number of PCR reactions was scaled to use 40-60 µg isolated genomic DNA. 
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Each of these 1st PCR reactions contained: 10 µg of genomic DNA, 2 µL Herculase II Fusion 

DNA polymerase (Agilent Technologies, Cat# 600677), 20 µL 5X Herculase buffer, 1 µL 100 

mM dNTPs, 1 µL 100 µM oMCB_1562 (forward primer), 1 µL 100 µM oMCB 1563 (reverse 

primer) and water to adjust the volume to 100 µL. PCR amplification was conducted as follows: 

1x 98°C/2 min, 18x 98°C/30 s, 59.1°C/30 s, 72°C/45 s, 1x 72°C/3 min. 1st PCR reactions from 

each sample were pooled and then 2nd PCR reactions were set up for each sample as follows: 

5 µL from 1st PCR pooled amplicons, 2 µL Herculase II Fusion DNA polymerase, 20 µL 5X 

Herculase buffer, 2 µL of 100 mM dNTPs, 0.8 µL 100 µM oMCB_1439 (forward primer), 0.8 µL 

100 µM of barcoded CRISPR KO reverse primer, and 69.4 µL H2O. PCR protocol for this 2nd 

PCR reaction was: 1x 98°C/2 min, 20x 98°C/30 s, 59.1°C/30 s, 72°C/45 s, 1x 72°C/3 min. 

Finally, 50 µL of 2nd PCR reaction was separated by running on a 2% TBE-agarose gel. The 

PCR products were excised and purified using a QIAquick Gel Extraction Kit (Qiagen, Cat# 

28704) according to the manufacturer’s instructions. The sgRNA libraries were analyzed by 

deep sequencing on an Illumina NextSeq 500 using a custom sequencing primer (oMCB_1672), 

with ~40 million reads per condition (~200x coverage per library element). Computational 

analysis and comparison of sgRNA composition of sorted versus unsorted cells were performed 

using casTLE v.1.0 (https://bitbucket.org/dmorgens/castle) as previously described (Lu et al., 

2018; Morgens et al., 2016). Briefly, sgRNA distribution was compared between the sorted and 

unsorted cell samples and sgRNA enrichments were calculated as log ratios between sorted 

and unsorted cells. A maximum likelihood estimator was used to estimate the phenotypic effect 

size for each gene and the log-likelihood ratio (confidence score) by comparing the distribution 

of the 10 different sgRNAs targeting each gene to the distribution of negative control sgRNAs. P 

values were determined by permuting the gene-targeting sgRNAs in the screen and comparing 

to the distribution of negative controls using casTLE. For genome-wide cholesterol screens, we 

used a threshold of 5% FDR (calculated using the Benjamini-Hochberg procedure) to define 

hits. For the BMP screens, the top 100 ranked genes in the analysis were considered as hits. 

Because cholesterol is functionally linked to BMP (Chevallier et al 2008), despite lower 

statistical significance for some of the BMP screen hits, we found that a significant number of 

genes that passed this cutoff overlapped with those identified as hits in the cholesterol screens. 

See Supplementary Table 1 for complete genome-wide screen datasets. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.443492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443492
http://creativecommons.org/licenses/by/4.0/


23 

Immunofluorescence--To visualize endolysosomes in suspension K562 cells (Figure 1B-D), 

cells were attached to glass coverslips using a cytospin (Shandon) at 800 rpm for 5 min. Cells 

were fixed with 3.7% (v/v) paraformaldehyde for 15 min, washed and permeabilized/blocked 

with 0.1% saponin/1% BSA-PBS except for cells labeled with GST-PFO*, which were 

permeabilized for 3 min in 0.1% Triton X-100 and blocked with 1% BSA in PBS. Primary 

antibodies were diluted in PBS-1%BSA and incubated for 1h at RT. Highly cross-adsorbed H+L 

secondary antibodies (Life Technologies) conjugated to Alexa Fluor 488, 568, or 647 were used 

at 1:2,000 in PBS-1%BSA and incubated at RT for 45 min. Nuclei were stained using 0.1μg/ml 

DAPI (Sigma-Aldrich,Cat# D9542) and coverslips were mounted on glass slides with Mowiol. 

Microscopy images were acquired using a Zeiss LSM880 laser scanning spectral confocal 

microscope (Carl Zeiss, Germany) equipped with an Axio Observer 7 inverted microscope, blue 

diode (405nm), Argon (488nm), diode pumped solid state (561nm) and HeNe (633nm) lasers 

and a Plan Apochromat 63x numerical aperture (NA) 1.4 oil-immersion objective lens was used. 

DAPI, Alexa 488, Alexa Fluor 555 and Alexa Fluor 647 images were acquired sequentially using 

405, 488, 561and 633 laser lines, AOBS (Acoustic Optical Beam Splitter) as beam splitter and 

emission detection ranges 415- 480, 500-550 nm, 571-625 nm and 643-680nm respectively. 

Confocal pinhole was set at 1 Airy units. All images were acquired in a 1024 x 1024 pixel 

format. In some experiments (Figure 1B-D, Supp. Figure 4B), images were obtained using 

Metamorph software with a spinning disk confocal microscope (Yokogawa) with an electron 

multiplying charge-coupled device (EMCCD) camera (Andor) and a 100x 1.4 NA oil-immersion 

objective. Typical exposure times of 100–300 ms were used. 3D-rendered images 

(Supplementary Figure 4E) were generated using IMARIS software (Bitplane AG). All image 

quantifications were performed using CellProfiler (Carpenter et al., 2006). 

 

Immunoblotting-- Cells were lysed in lysis buffer (50 mM HEPES, 150 mM KCl, 1% Triton X-

100, 5 mM MgCl2, pH 7.4) supplemented with a protease/phosphatase inhibitor cocktail (1mM 

Na3VO4, 10 mM NaF, 1 mM PMSF, 10 μg/ml leupeptin and 10 μg/ml aprotinin). Lysates were 

boiled in 1x sample buffer, resolved on SDS-PAGE and transferred onto nitrocellulose 

membranes (Bio-Rad, Cat# 1620115) using a Bio-Rad Trans-blot system. Membranes were 

blocked with 5% skim milk in Tris-buffered saline with Tween-20 for 60 min at RT. Primary 

antibodies were diluted in blocking buffer and incubated either 1 h at RT or overnight at 4°C. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2021. ; https://doi.org/10.1101/2021.05.10.443492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443492
http://creativecommons.org/licenses/by/4.0/


24 

HRP-conjugated secondary antibodies (Bio-Rad or Abcam) diluted in blocking buffer at 1:5,000 

were incubated for 60 min at RT and developed using enhanced chemiluminescence EZ-ECL 

(Biological Industries). Blots were imaged using an ImageQuant LAS 4000 system (GE 

Healthcare) and quantified using ImageJ software. 

 

Thin Layer chromatography-- Total Lipids were extracted from control or SNX13-depleted cells 

as follows. Briefly, cells were washed with PBS and resuspended in 1 volume of 

Methanol:Chloroform (1:2). Next 1/2 volume chloroform and 1/2 volume of H2O were added and 

tubes were centrifuged at 5000 RPM for 5 min. The organic phase was collected, dried, 

resuspended with chloroform and spotted on on TLC silica gel 60 plates (Millipore, Cat# 

1055530001), and dried for several minutes. Plates were run in a solvent system of 

hexane/diethyl ether/acetic acid (70:30:1) until 3/4 of the total length of the plate was reached.  

Lipids were stained using a phosphomolybdic acid (ACROS organics, Cat#  206385000)-ethanol 

solution. 

 

Bis(monoacylglycero)phosphate (BMP) lipidomics-- Targeted high resolution UPLC-MS/MS was 

used to accurately quantitate the three geometrical isoforms (2,2’-, 2,3’-, and 3,3’-) of di-22:6-

BMP and di-18:1-BMP in control or SNX13 siRNA-treated cells ±U18666A. Lipidomics analyses 

were conducted by Nextcea, Inc. (Woburn, MA) as previously described (Liu et al., 2014) using 

a SCIEX TripleTOF 6600 mass spectrometer equipped with an IonDrive Turbo V source 

(SCIEXm Framingham, MA). Standard curves were prepared using authentic BMP reference 

standards. 

 

Functional Network analysis-- Top hits from both cholesterol and BMP screens were collectively 

queried in STRING (http://string-db.org/) to search for experimentally-confirmed interactions with 

a high confidence score (0.7). The resulting STRING graphics file reporting interactions was 

then manually curated using Adobe Illustrator software (Adobe) to create a visually 

comprehensive functional interactome. Interactions were represented as edges whose 

thickness was proportional to a calculated score derived from STRING analysis. Additional 

relevant interactions not reported by STRING but confirmed by the BioGRID database 

(http://thebiogrid.org/) were also displayed as green edges. The final interactome map was 
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further manually curated to include additional screen hits (nodes) that despite not being reported 

to interact, could still be clustered in a common functional category revealed by the screens 

performed. 

 

Statistics-- Results are expressed as mean ± SEM unless otherwise specified. Means were 

compared using Student’s t test where two experimental conditions were compared. When three 

or more experimental conditions were compared statistical significance was assessed via 

multiple t test by Holm-Sidak method with α = 0.05 or two-way ANOVA with Tukey’s post hoc 

test using Graph Pad Prism 9. Two-tailed P values < 0.05 were considered statistically 

significant (Lord et al., 2020). 

 

 

Supplemental material 

The supplemental material includes 5 figures and one Excel file providing all of the data 
derived from the screens described herein.   

Supplemental Figure 1.  Bivariate analyses comparing hits in relation to changes in cholesterol 
and BMP. 

Supplemental Figure 2. Subcellular localization of screen hits and their phenotypes.  

Supplemental Figure 3.  Lipid metabolic pathways revealed in these screens.  

Supplemental Figure 4. SNX13 is an ER resident protein that associates with lipid droplets via 
its C-terminus.   

Supplemental Figure 5.  SNX13 depletion redistributes cholesterol to the cell surface of HeLa 
cells in the absence of NPC1 function.   

Supplemental Table 1. Oligonucleotide sequences used in this study and all screen results as 
an Excel file. 
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Figure Legends 

 

Figure 1. Flow cytometry based screen to identify cholesterol and BMP homeostatic 

regulators. (A) A Genome-wide CRISPR sgRNA lentiviral library (10 sgRNAs/gene) was used 

to infect Cas9-expressing human K562 cells such that after infection and selection, each cell 

expresses only a single sgRNA. CRISPR/Cas9-edited cells were then stained with either anti-

BMP antibodies or fluorescently-conjugated, cholesterol binding Perfringolysin O* (PFO). 

Cholesterol and BMP (shown in red) accumulate in intra-lumenal vesicles (represented in red 

circles) of multivesicular endosomes and lysosomes (LE/Lys) upon treatment with the NPC1 

inhibitor, U18666A. Cholesterol/BMP-stained cells were then sorted by flow cytometry and those 

showing the lowest 10% or highest 10% fluorescence  (as indicated) were collected and 

compared with unsorted cells. Finally, sgRNAs were quantified by deep sequencing of sorted 

populations and compared to sgRNA counts in unsorted cells. (B)  Immunofluorescence of K562 

cells labeled with fluorescent PFO* ± U18666A for 16 hr.  Cell boundaries (yellow) are shown 

and were determined by mCherry expression due to lentiviral transduction.  (C)  K562 cells 

stained with anti-BMP antibodies and circled as in (B).  (D) K562 cells with anti-LAMP2 (green) 

and anti-BMP antibodies (red) as indicated.  (E and F) Flow cytometry of cells labeled with 

either fluorescent PFO* or anti-BMP as in panels B and C, ±U18666A. 

 

Figure 2.  Bivariate analyses comparing hits in relation to changes in cholesterol and 

BMP.  Indicated genes are presented in relation to their phenotypes determined by PFO* and 

BMP detection and flow cytometry, presented as signed confidence scores.  Genes that 

appeared in both analyses are shown in goldenrod; those seen only in the cholesterol or BMP 

screens are shown in pink or green, respectively.  Note the absence of hits in the upper left and 

lower right quadrants.  The panels represent hits discovered in the top 10% versus bottom 10% 

comparisons, ± U18666A (upper versus lower graphs) as indicated. 
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Figure 3.  Hierarchical clustering analysis comparing 10% low and 10% high populations.  

Two main categories of genes, those increasing (A) or decreasing (B) cholesterol (Chol) and/or 

BMP are shown. For each category, the enrichment for cholesterol or BMP is shown as a heat 

map value.  Responses under control (Ctrl) and U18666A (U18) conditions are also shown. The 

three types of screen data analysis performed (10% High vs Unsorted, 10% Low vs Unsorted 

and 10% High vs 10% Low) are indicated at the top. Only genes that were detected in both 

cholesterol and BMP screens are shown.  Color intensity is presented using a log scale heat 

map proportional to the signed P value, as indicated.  Individual hits in the high 10% pool are 

generally enriched in that population but may also be detected in the low 10% pool, explaining 

why red hits appear more populated on the 10% High vs Uns (unsorted) columns in (A) and 

blue hits on the 10% vs Unsorted columns in (B).  In general the behavior is consistent.  Black 

arrows indicate hits that upon deletion yielded opposite phenotypes in control versus U18666A 

conditions.  Individual gene functions are shown using colored circles as indicated. 

 

Figure 4.  Comparison of hits from four independent studies analyzing cholesterol 

homeostasis.  The central Venn diagram displays overlaps in hits from the indicated, 

referenced screens.  Numbers in the non-intersecting areas indicate the number of hits 

identified in each study, whereas numbers in the intersecting areas correspond to overlapping 

hits between the different referenced screens.   Specific gene hits from this screen are shown in 

adjacent boxes with colored circles according to an increase (red) or decrease (blue) in 

cholesterol or BMP.  Genes that were identified here but only under one or another conditions 

are shown with a gray circle; those not detected at all are highlighted with a yellow circle. 

 

Figure 5.  Functional network analysis of hits that interact according to STRING analysis.  

Genes are annotated using colored circles that show increases (red) or decreases (blue) in 
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cholesterol (upper left quadrant), BMP (lower left quadrant), cholesterol +U18666A (upper right 

quadrant), or BMP + U18666A (lower right quadrant) as indicated. Clusters of functional 

categories are highlighted in light blue. Lipid metabolism-related hits are highlighted in green. 

Individual clusters highlighted in tan are known interacting protein complexes. Green edges are 

manually curated, reported interactions. MCS= Membrane contact sites, EE= Early endosome, 

LE= Late endosome, PP2= Protein phosphatase 2.  

 

Figure 6.  SNX13 depletion redistributes cellular cholesterol in the absence of NPC1 

function.  (A-C)  Immunofluorescence microscopy of U2OS cells treated with U18666A for 16h 

and labeled with GST-PFO* detected using anti-GST primary antibodies, 72 hours after 

transfection with the indicated siRNAs.  Scale bar, 10µm. Insets show enlargements of the 

boxed areas; scale bars, 2µm.  (D)  Immunoblot analysis (at the top) of SNX13 siRNA treated 

cells as in (A) and (B); 50µg cell extract was analyzed.  Molecular weight markers are indicated 

at left in kD.  Plot at the bottom shows relative SNX14 mRNA levels measured by qPCR using 

RNA isolated from control and SNX14 siRNA-treated U2OS cells from two independent 

experiments; error bar represents standard deviation.  (E and F)  Quantitation of PFO*-positive 

vesicles and area of vesicles determined by CellProfiler.  Colored dots reflect means from 

independent experiments; >860 cells analyzed in each condition; significance was determined 

by unpaired t test; *, P < 0.05, **, P < 0.01. G-K, Analysis of HeLa cells as described for (A-F); 

>950 cells analyzed in each condition.  Actual P values: (E: Ctrl siRNA vs SNX13 siRNA= 

0.0079; Ctrl siRNA vs SNX14 siRNA= 0.16); (F: Ctrl siRNA+U18 vs SNX13 siRNA+U18= 0.016; 

Ctrl siRNA+U18 vs SNX14 siRNA+U18= 0.072); (J: Ctrl siRNA+U18 vs SNX13 siRNA+U18= 

0.00035; Ctrl siRNA+U18 vs SNX14 siRNA+U18= 0.31); (K: Ctrl siRNA+U18 vs SNX13 

siRNA+U18= 0.0019; Ctrl siRNA+U18 vs SNX14 siRNA+U18= 0.091). 
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Figure 7.  SNX13 depletion redistributes cholesterol to the cell surface in the absence of 

NPC1 function.  (A and B) Immunofluorescence microscopy of U2OS cells treated with 

U18666A for 16 hours (A) or left untreated (B), and labeled in the absence of detergent 

permeabilization with GST-PFO* detected using anti-GST primary antibodies, 72 hours after 

transfection with the indicated siRNAs.  (C and D) Quantitation of PFO* staining as a function of 

plasma membrane cell area in U18666A-treated (C) and untreated (D) cells, determined using 

CellProfiler.  Colored dots reflect means from independent experiments; >630 cells analyzed in 

each condition; significance was determined by unpaired t test; **, P < 0.01. Scale bars, 20µm.  

Actual P values: (C: Ctrl siRNA+U18 vs SNX13 siRNA+U18= 0.0015); (D: Ctrl siRNA vs SNX13 

siRNA= 0.209). 

 

Figure 8.  SNX13 depletion increases lipid droplet abundance in the absence of NPC1 

function.  (A)  Immunofluorescence microscopy of U2OS cells treated with U18666A for 16h 

and labeled with GST-PFO* detected using anti-GST primary antibodies, 72 hours after 

transfection with the indicated siRNAs, without oleic acid addition.  Cells were also stained with 

LipidTOX to highlight lipid droplets.  One set of cells was also treated with the ACAT1 inhibitor 

Sandoz 53-035 as indicated.  Scale bar, 10µm.  (B)  Number of lipid droplets (LDs) and their 

area determined by Cellprofiler for cells as in (A). Colored dots reflect means from independent 

experiments; >650 cells analyzed in each condition; significance was determined by multiple t 

test, Holm-Sidak method with α = 0.05.  (C)  Thin layer chromatography of lipid levels from cells 

treated as in (A).  At left is shown the mobility of specific marker lipids.  (D)  Quantitation of 

triacylglycerol (TAG) and free fatty acid (FFA) levels determined by thin layer chromatography 

as indicated.  P values were determined by multiple t test corrected by the Holm-Sidak method; 

*, P < 0.05, **, P < 0.01.  Actual P values: (B, top: Ctrl siRNA+U18 vs SNX13 siRNA+U18= 

0.0052; Ctrl siRNA+U18 vs SNX13 siRNA+U18+Sandoz= 0.0039; SNX13 siRNA vs SNX13 

siRNA+Sandoz= 0.85); (B, bottom: Ctrl siRNA vs SNX13 siRNA= 0.0451; Ctrl siRNA vs SNX13 
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siRNA+Sandoz= 0.0144; SNX13 siRNA vs SNX13 siRNA+Sandoz= 0.382; (D, left: Ctrl siRNA 

vs SNX13 siRNA= 0.00683; Ctrl siRNA+U18 vs SNX13 siRNA+U18= 0.312); (D, right: Ctrl 

siRNA vs SNX13 siRNA= 0.0198; Ctrl siRNA+U18 vs SNX13 siRNA+U18= 0.351). 

 

Figure 9.  SNX13 depletion in NPC1 wild type, U2OS cells increases BMP levels.   (A) 

Immunofluorescence microscopy of U2OS cells labeled with anti-BMP antibodies, 72h after 

transfection with the indicated siRNAs.  Cells were also labeled with anti-LAMP2 antibodies as 

indicated.  Scale bar, 20µm; in enlarged insets, 5 µm.  (B)  Quantitation of BMP-positive vesicle 

area and total BMP intensity per cell determined using Cellprofiler. Colored dots represent 

means from independent experiments; >480 cells analyzed in each condition; significance was 

determined by unpaired t test; *, P < 0.05,***, P < 0.001.  (C)  Mass spectrometric determination 

of BMP isoforms normalized to protein content from cells treated with the indicated siRNAs.  

Inset, western blot confirming SNX13 depletion from three independent experiments.  

Significance was determined by two-way ANOVA with Tukey’s post hoc test; *, P < 0.05, **, P < 

0.01,***, P < 0.001.  (D)  Immunoblot analysis of SNX13 siRNA treated cells from the 

experiments in C; 50µg cell extract was analyzed.  Molecular weight markers are indicated at 

left in kD.  Actual P values: (B, top: Ctrl siRNA vs SNX13 siRNA= 0.0171); (B, bottom: Ctrl 

siRNA vs SNX13 siRNA= 0.000305); (C, left: di-22:6-BMP= 0.0024; 2,2’ di-22:6-BMP= 0.0018; 

2,3’ di-22:6-BMP= 0.0025; 3,3’ di-22:6-BMP= 0.0812); (C, right: di-18:1-BMP= 0.247; 2,2’ di-

18:1-BMP= 0.517; 2,3’ di-18:1-BMP= 0.098; 3,3’ di-18:1-BMP= 0.0005). 

 

Supplemental Figure 1.  Bivariate analyses comparing hits in relation to changes in 

cholesterol and BMP.  Indicated genes are presented in relation to their phenotypes 

determined by PFO* and BMP detection and flow cytometry, presented as signed confidence 

scores.  Genes that appeared in both analyses are shown in goldenrod; those seen only in the 

cholesterol or BMP screens are shown in pink or green, respectively.  The panels represent hits 
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discovered in (A), 10% low versus unsorted; (B), 10% high versus unsorted; (C and D) same as 

in (A and B) but in the presence of U18666A.    

 

Supplemental Figure 2. Subcellular localization of screen hits and their phenotypes.  

Selected top hits are annotated in colored circles that show increases (red) or decreases (blue) 

in cholesterol upper left, BMP, lower left, cholesterol +U18666A (upper right) or BMP + 

U18666A (lower right) as indicated. Black arrows indicate trafficking routes. Green arrows 

indicate activation; inhibition signs are also displayed in green.  ER= Endoplasmic reticulum, 

LD= Lipid droplet, EE= Early endosome, MVE= Multivesicular endosome. 

 

Supplemental Figure 3.  Lipid metabolic pathways revealed in these screens. Genes are 

annotated in colored circles that show increases (red) or decreases (blue) in cholesterol upper 

left, BMP, lower left, cholesterol +U18666A (upper right) or BMP + U18666A (lower right) as 

indicated. Black arrows indicate trafficking, metabolic routes and enzymatic reactions. Green 

dotted arrows indicate activation of gene expression of the indicated gene/s. Inhibition signs are 

displayed in green. ER= Endoplasmic reticulum, Per= Peroxisome, PM= Plasma membrane, 

LD= Lipid droplet, Lys= Lysosome. 

 

Supplemental Figure 4. SNX13 is an ER resident protein that associates with lipid droplets 

via its C-terminus.  (A)  Immunofluorescence microscopy of U2OS cells expressing SNX13-HA 

and VAP-A-CFP.  Proteins were detected with anti-HA antibodies or CFP fluorescence as 

indicated; scale bar, 10µm.  (B)  RPE cell expressing SNX13-GFP, treated with U18666A for 16 

hours.  LAMP1 and BMP were detected using specific antibodies.  Scale bar, 10µm.  (C, D)  

U2OS cells as in A, treated with oleic acid overnight.  Lipid droplets (LDs) were detected using 

LipidTOX; cholesterol was detected using filipin.  VAP-A-CFP and SNX14-GFP were detected 

using their intrinsic fluorescence.  Shown in small boxes are enlargements of the boxed areas 
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shown at left; scale bars, 10µm.  (E)  Cells as in (A) were visualized by confocal microscopy; 

green, SNX13; red, BMP; blue, LDs.  Scale bar, 10µm except for enlarged inset and 3D 

rendering, 2µm.  (F)  Schematic analysis of SNX13 constructs.  Colored regions indicate domain 

organization as indicated.  LD localization is summarized.  (G-J), localizations of constructs 

indicated in (F)  Cells were labeled as in (E) with the indicated markers.  Scale bars, 10µm. 

 

Supplemental Figure 5.  SNX13 depletion redistributes cholesterol to the cell surface of 

HeLa cells in the absence of NPC1 function.  (A and B) Immunofluorescence microscopy of 

HeLa cells treated with U18666A for 16 hours (A) or left untreated (B), and labeled in the 

absence of detergent permeabilization with with GST-PFO* detected using anti-GST primary 

antibodies, 72 hours after transfection with the indicated siRNAs.  (C and D) Quantitation of 

PFO* staining as a function of plasma membrane cell area in U18666A-treated (C) and 

untreated (D) cells, determined using CellProfiler.  Colored dots reflect means from independent 

experiments; >830 cells analyzed in each condition, significance was determined by unpaired t 

test; **, P < 0.01. (D) Immunofluorescence microscopy of NPC1-knockout HeLa cells stained in 

the absence of detergent permeabilization with GST-PFO detected by anti-GST primary 

antibodies. (E and F) U2OS cells treated with U18666A for 16 hours (E) or left untreated (F), 

labeled with anti-BMP antibodies and imaged by confocal microscopy. Scale bars, 20µm. Actual 

P values: (C, top: Ctrl siRNA+U18 vs SNX13 siRNA+U18= 0.0017); (C, bottom: Ctrl siRNA vs 

SNX13 siRNA= 0.377). 
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