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Abstract
There are currently >1.3 million human –omics samples that are publicly available. This valuable
resource remains acutely underused because discovering particular samples from this
ever-growing data collection remains a significant challenge. The major impediment is that
sample attributes are routinely described using varied terminologies written in unstructured
natural language. We propose a natural-language-processing-based machine learning approach
(NLP-ML) to infer tissue and cell-type annotations for –omics samples based only on their
free-text metadata. NLP-ML works by creating numerical representations of sample descriptions
and using these representations as features in a supervised learning classifier that predicts
tissue/cell-type terms. Our approach significantly outperforms an advanced graph-based
reasoning annotation method (MetaSRA) and a baseline exact string matching method
(TAGGER). Model similarities between related tissues demonstrate that NLP-ML models
capture biologically-meaningful signals in text. Additionally, these models correctly classify
tissue-associated biological processes and diseases based on their text descriptions alone.
NLP-ML models are nearly as accurate as models based on gene-expression profiles in
predicting sample tissue annotations but have the distinct capability to classify samples
irrespective of the –omics experiment type based on their text metadata. Python NLP-ML
prediction code and trained tissue models are available at
https://github.com/krishnanlab/txt2onto.
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Introduction
Currently, there are >1.3 million human –omics samples and >26,000 –omics datasets that are
publicly available in repositories like the EBI ArrayExpress (Kolesnikov et al. 2015) and NCBI
Gene Expression Omnibus (GEO) (Barrett et al. 2013). These samples capture cellular
responses of diverse human tissues/cell-types under thousands of conditions, making these
published data invaluable for other researchers to reuse for various tasks: i) reanalyze them to
answer new questions, ii) check reproducibility of original findings, iii) perform
integrative-/meta-analysis across multiple studies, iv) review earlier studies for support of new
data/findings, and v) generate large-scale data-driven hypotheses for experimental follow-up.
However, these data remain acutely underused because discovering all the samples relevant to
one’s interest, quickly and thoroughly, from this ocean of data is still a major challenge. This is
because samples are routinely described using non-standard, varied terminologies written in
unstructured natural language even though guidelines for describing data submitted to public
repositories were established as early as 2001 (Brazma et al. 2001).

To address this issue, considerable effort has been invested in creating sample metadata hubs
like Biosamples (Courtot et al. 2019) where human curators use semi-automated workflows
(“ZOOMA” n.d.) to manually annotate samples by assigning them with terms in controlled
vocabularies or ontologies (Jupp et al. 2015) such as the Uber-anatomy ontology (Uberon)
(Mungall et al. 2012). Others have developed similar web platforms for manual sample
annotation (Quiñones et al. 2020) and explored crowdsourcing to curate sample annotations (Z.
Wang et al. 2016; Hadley et al. 2017). The latter efforts are usually case studies and rely on an
interested and available population of individuals to spread out the burden of manual curation.
While they often provide high-quality annotations, automated high-throughput methods are
needed to keep up with the scale of available samples, which already totals to more than a
million and continues to grow exponentially.

To meet this challenge, a number of methods have recently been developed that use natural
language processing to computationally infer standardized sample annotations from their text
descriptions (Z. Wang, Lachmann, and Ma’ayan 2019). Most of these methods are based on
biological ‘named entity recognition’ (NER), the task of automatically recognizing words or
phrases in plain text that correspond to known biological entities such as tissues, phenotypes,
and species, uniquely identified using terms in various ontologies. NER has been applied by
searching for common phrases in experiment descriptions followed by finding matches to terms
in a controlled vocabulary (Dudley and Butte 2008) or by generating all possible n-grams from
experiment descriptions before finding term matches (Shah et al. 2009). These approaches
heavily rely on exact text matching and are not robust to misspellings and acronyms or
abbreviations. Tools such as Metamap (Aronson and Lang 2010) and ConceptMapper
(Tanenblatt, Coden, and Sominsky, n.d.) help deal with spelling variants,
abbreviations/acronyms, and synonyms, and have been applied to annotate ChIP-seq data
(Galeota and Pelizzola 2017). Others have used NER-based heuristic searches, including the
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use of regular expressions, to achieve similar outcomes (Z. Wang et al. 2016; Giles et al. 2017).
However, without an additional step of manual curation, NER-based methods suffer from
several false positives due to the presence of varied and conflicting pieces of information in
sample descriptions. For instance, tissue annotation methods need to deal with information
about other aspects of the sample and experiment, including mentions of more than one
tissue/cell-type.

Newer studies have helped overcome some of these challenges, improving on NER by
incorporating some structured information available in sample metadata entries in the form of
key-value pairs. For example, checking specific metadata entries against predefined rules about
word/phrase context has been shown to be helpful in inferring technology platform, sample type,
organism, molecule type, and labeling compound (Panahiazar, Dumontier, and Gevaert 2017).
A method called MetaSRA also significantly improves upon NER by examining key-value pairs
using graph-based reasoning over the structure of existing ontologies. The annotation scheme
in MetaSRA is robust to misspellings and acronyms or abbreviations. Additionally, it can check
for logical consistencies in the knowledge graph, which ensures high quality annotations.
However, MetaSRA software is currently written in Python 2, which is no longer officially
supported. Further, we observe that this complex method has long runtimes and still incurs a
number of false positives (see Results). Finally, some attributes about a sample might be
missing in the input text but would be identifiable by association (e.g., mentioning ‘cerebral
palsy’ while omitting source tissue ‘muscle’). Some recent studies are finding that creating
numerical representations of parts of sample text descriptions can help with this problem.
Specifically, NER using representations created by a recurrent neural network trained on
key-value pair metadata has been shown to result in models that can predict if short segments
of study titles correspond to any one of 11 sample attributes (Klie et al. 2021). Here, tissues and
cell-types are among the attributes that are hard to recognize. Previously, term-frequency-based
vectors and topic modeling have been shown to be useful in creating such representations to
inform general metadata prediction (Posch et al. 2016), which does not include standardized
annotations of tissues and cell types.

We have developed a new scalable approach, NLP-ML, that combines natural language
processing (NLP) and machine learning (ML) to annotate samples to their tissue-of-origin solely
based on their unstructured text descriptions. In the following sections, we first describe the
details of NLP-ML and then demonstrate that NLP-ML outperforms exact string matching and
MetaSRA (that uses graph-based reasoning) in inferring tissue annotations from sample
metadata. We then explore the benefits and limitations of supplementing predictions based on
sample descriptions with those based on the description of the entire dataset. We observe that
NLP-ML models of anatomically-related tissues have similar model coefficients. By applying
these models to classify the descriptions of biological processes and diseases, we demonstrate
that NLP-ML models capture general, biologically-meaningful text signals. The final sections
highlight how NLP-ML models are as accurate as models trained on the sample’s expression
profile in classifying transcriptome samples and can, additionally, classify samples from many
other experiment types using the common currency of text descriptions.
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Methods

Preparation of tissue/cell-type gold standard

Converting labels from BTO to UBERON-CL
We obtained tissue and cell-type annotations of human gene-expression samples from Lee et.
al., 2013 (Lee et al. 2013). In these annotations, the tissues/cell-types were identified using
terms in Brenda Tissue Ontology (BTO). We mapped these annotations to terms in the
UBERON ontology (Mungall et al. 2012) that is also extended to contain terms in the Cell
Ontology (CL) (Bard, Rhee, and Ashburner 2005). We chose UBERON and CL because they
are more comprehensive ontologies, agnostic to any specific organism, and updated
continuously. The extended UBERON-CL ontology was obtained from https://uberon.github.io/.
To map BTO terms to UBERON-CL terms, we first matched as many terms as possible based
on exact string matches. The remaining terms were compared using the difflib Python library to
find the closest match in UBERON to the given BTO term using approximate string matching.
We then manually reviewed these matches for correctness. In the cases where there were
either no quality approximate string matches or no matches at all, BTO terms were searched on
the ontology lookup service (https://www.ebi.ac.uk/ols/index) for UBERON synonyms.

Assigning positive and negative samples for each tissue
Next, we used the annotations of samples to UBERON-CL terms and the structure of the
UBERON-CL ontology to construct a gold-standard for as many tissues and cell-types following
the procedure in Lee et. al (Lee et al. 2013). For a particular tissue or cell-type term, any sample
annotated directly to that term of any of its descendents in the ontology is labeled as a positive
example. Any sample directly annotated to any of the term’s ancestors in the ontology is
ignored (removed from the training and testing sets) because of the ambiguity associated with
whether or not that sample should be positive or negative. All other samples are labeled as
negatives.

We used the sample-level gold standard to then construct a dataset-level gold standard. For
each tissue/cell-type term, if the majority of the samples in a dataset were positives for that
term, then the entire dataset is labeled as positive. If the majority of samples in the dataset were
ignored for that term, the entire dataset is also ignored and thus removed from the training and
testing sets. If neither case is true, the dataset is labeled as a negative.

Assigning tissue and cell-type terms to high-level anatomical systems
We manually selected a set of high-level terms from the UBERON ontology to categorize all the
terms we are building models for into anatomical groups: endocrine system, reproductive
system, respiratory system, digestive system, renal system, nervous system, sensory system,
gustatory system, hematopoietic system, musculoskeletal system, exocrine system, immune
system, integumental system, genitourinary system, cardiovascular system. Then, we mapped
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each tissue in the ontology to each systems-level term that was its ancestor in the ontology.
Terms that do not map to any systems-level terms were assigned to the category of “NA.” Once
this mapping was complete, we applied a threshold to each system-level term and only kept
terms which contained more than 8 models. We determined this cutoff by varying it until 75% of
the models were assigned to at least one systems-level term. The remaining models were
redesignated as “NA.” Thus, the “NA” category comprises models that either do not map to a
system-level term, or map to a system-level term that is not prevalent enough in the data. This
thresholding is done for simplicity of presenting the results.

Selecting terms for training and evaluation
Finally, to ensure robust model training and evaluation, we selected the subset of
tissue/cell-type terms that have positively labeled samples from at least three datasets, each
with associated metadata from ArrayExpress (see below). As detailed in Model evaluation,
during evaluation using cross-validation (CV), samples from the same dataset are kept together
in training or testing folds to measure the performance of models on their ability to predict
annotations of samples from unseen datasets. This entire curation and selection procedure
resulted in a gold-standard containing 11,618 human gene-expression samples from the human
whole-genome Affymetrix platform from 321 datasets annotated to 153 tissue/cell-type terms
(more details in Table 1).

Downloading and preprocessing sample and dataset metadata
We extracted sample and dataset metadata from the sample and data relationship files (SDRF)
from ArrayExpress as raw text using the curl command line tool. All metadata were downloaded
from ArrayExpress on 29 May, 2019.

We put together the metadata for each sample by processing the tabularized elements of an
SDRF. If a sample appeared in multiple dataset SDRFs, the sample was randomly designated
to a single dataset for the entirety of the analysis. A continuous string of metadata text was
created for each sample excluding the tabularized headings in an SDRF. This text, with some
preprocessing (see below), was used as input for TAGGER and NLP-ML. For MetaSRA, each
sample’s metadata input JSON file was created by gathering key-value pairs from tabularized
elements. Table headers were used for the keys and the respective entries for the sample were
used as the values. No additional processing was done with sample JSON files, consistent with
the original study.

For dataset-level metadata, we downloaded the investigation description file (IDF) for each
dataset in our gold standard and used the entry in the “Experiment Description” field. The IDF
and SDRF files were compared to ensure that all samples with metadata also had a
corresponding dataset-level metadata. Various attributes of the sample and dataset metadata
are presented in Table 1.

5

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.10.443525doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.10.443525
http://creativecommons.org/licenses/by/4.0/


Table 1. Summary of tissue/cell-type gold-standard size and attributes of the associated sample and
dataset metadata.

NLP-ML: Natural language processing and machine learning
The NLP-ML approach described here contains four steps: text preprocessing, creating
text-based sample embeddings, training sample tissue classifiers, and predicting tissue
annotations for unlabeled samples.

Text preprocessing
The entirety of the metadata associated with samples and datasets contains several extraneous
pieces of information that need to be preprocessed before being used as input to annotation
methods. Hence, we first processed the continuous string of metadata for a sample by removing
non-UTF-8 encodable characters and all punctuations. Then, all whitespaces were converted to
spaces and the metadata string was split into a list of words on spaces. For each word in the list
of words for a sample, if the word contained numerical characters, characters indicative of a
URL (e.g., “https,” “://”, “www”), or was fewer than 3 characters in length, it was removed from
the list. All remaining words were changed to lowercase, lemmatized using the
WordNetLemmatizer available in the NLTK Python package (“Natural Language Toolkit — NLTK
3.6.2 Documentation” n.d.), and used as the bag of words associated with each sample. For
datasets, each sentence in the dataset metadata was processed using the same method.

Creating text-based sample embeddings
The second step in NLP-ML entails creating a numerical representation called an embedding for
each sample based on its text description by combining the embeddings of the words in the
sample’s preprocessed metadata. Word embeddings were created using the Flair Python library
(Akbik et al. 2019). We chose Flair because of the availability of multiple neural network models
that could be stacked to create word embeddings using combinations of methods. For NLP-ML,
we created a stacked model in Flair using ELMo (Peters et al. 2018) trained on PubMed text
and the large uncased version of BERT (Devlin et al. 2019). Then, we created an embedding for
each sample by combining the embeddings of the individual words in the sample’s metadata
using element-wise weighted averaging.
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As potential word weights, we calculated the inverse document frequencies (IDF) for words by
processing all PubMed entries (approximately 18 million abstracts and 27 million titles) obtained
from https://www.nlm.nih.gov/databases/download/pubmed_medline.html. A ‘document’ was
defined as a paper’s title and abstract. If an entry lacked one or the other, then a document was
considered to be the available text for the entry. For each document in PubMed, we extracted all
unique words and incremented their document count by 1. We then calculated the IDF of each
word t as

,𝐼𝐷𝐹(𝑡, 𝐷) =  log 𝑁
{𝑑 ∈𝐷:𝑡 ∈𝑑}

where N is the number of documents in PubMed, d is the number of documents in PubMed –
among the total number of documents D – that contain the word t. We also explored another
weighting scheme based on TFIDF (short for term frequency–inverse document frequency),
calculated per tissue/cell-type term by multiplying each word’s IDF by the frequency of that word
in descriptions of the samples annotated to that term in the gold standard. Finally, the
unweighted case is when all weights are set to 1. In all cases, if a word did not have a weight,
oftentimes caused by misspelling of words or concatenations of many words (due to metadata
entry errors), the word was assigned a weight equal to the mean weight of all words in the
description with a weight. Note that an embedding can still be created for these words because
Flair creates embeddings using character-level information.

In the case of datasets, for tackling large, multi-sentence descriptions, we created an
embedding for each sentence in a dataset’s description based on the procedure outlined above,
represented the entire dataset as a matrix with the number of rows equal to the number of
sentences and the number of columns equal to the dimensionality of the word embedding.

Training sample tissue classifiers
The third step in NLP-ML is to use the text-based embeddings as features in a supervised
machine learning model built per tissue/cell-type term, trained based on the positively- and
negatively-labeled samples in the curated gold standard. After comparisons of multiple
classifiers, we chose the L1-regularized logistic regression classifier owing to its good
performance, model sparsity, and ability to directly provide prediction probabilities. We trained
logistic regression classifiers using the implementation in scikit learn version 0.20.3 (C=1,
penalty='l1', solver='liblinear').

Predicting tissue annotations for unlabeled samples, datasets, text snippets
The final part of NLP-ML is to use the trained sample tissue classifiers to classify unlabeled
samples based on their metadata. The metadata for these new samples are processed and
converted to sample embeddings using the same procedures outlined above (steps 2 and 3).
For each tissue/cell-type term, the corresponding trained model provides a prediction score for a
particular sample corresponding to a probability (between 0 and 1).

We made predictions for datasets based on dataset-level metadata by first splitting the full block
of dataset text into individual sentences. The sentences are then processed, embedded, and
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supplied to trained NLP-ML models for predictions. For each tissue/cell-type term, the prediction
score for a particular dataset corresponds to the maximum predicted probability across all
sentences.

We obtained the dataset-and-sample-based predictions for each sample by simply adding the
predicted probabilities based on its own (sample) metadata with the probability for its parent
dataset. We compared this addition with taking the maximum of the two (see Fig. S4, S5) and
observed no significant difference.

To make predictions on text that was not sample or dataset metadata, e.g., descriptions of
biological processes or diseases,

Other text-based methods for inferring sample tissue annotation

TAGGER
We downloaded the full TAGGER dictionary from http://download.jensenlab.org/. We added
additional terms to this dictionary based on UBERON and CL terms in the extended Uberon
Ontology, including all synonyms present in each term’s metadata. Using the Python 2 module
for TAGGER, we identified UBERON and CL matches in the sample metadata available from
ArrayExpress. For each tissue/cell-type term, we set the TAGGER prediction score for a
particular sample as 1 if that term appears in the list of terms identified by TAGGER. If not, the
sample’s score is set to 0.

MetaSRA
We downloaded the source code for the MetaSRA pipeline from
https://github.com/deweylab/MetaSRA-pipeline on 16 May, 2019. A modification to the source
code was made to save the many constructed graph objects as a pickle file to reduce
computation time. The OBO files used in MetaSRA were downloaded between 16 May, 2019
and 31 May, 2019. MetaSRA takes unprocessed sample metadata in the form of key-value pairs
as input and outputs a list of ontology terms. For each tissue/cell-type term, we set the
MetaSRA prediction score for a particular sample as 1 if that term appears in the list of terms
identified by MetaSRA. If not, the sample’s score is set to 0.

Expression-based sample tissue classification
We used GEOmetadb (Zhu et al. 2008) to get the list of available human Affymetrix
whole-genome gene-expression samples in GEO. We queried and downloaded all CEL files
corresponding to these samples on 29 July, 2019. These data were background corrected,
normalized, and summarized using the frma (McCall, Bolstad, and Irizarry 2010) and affy
(Gautier et al. 2004) R packages and gene names converted to Entrez IDs using the
hgu133afrmavecs, hgu133plus2frmavecs, hgu133plus2hsentrezgcdf, and hgu133ahsentrezgcdf
R packages(Dai et al. 2005). Then, we trained expression-based sample tissue classifiers using
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L1-regularized logistic regression (identical to the models used in NLP-ML) with these
expression profiles as features and based on labeled samples in the curated gold standard.

Combining predictions from different methods
When combining predictions between any set of methods among NLP-ML, MetaSRA, and
Expression, we first calculated an F1 score (the harmonic mean of precision and recall) for each
method for a particular tissue or cell-type. These F1 scores were then used as weights to
calculate a weighted average of the predicted probabilities for a particular sample.

Model evaluation
We evaluated all methods using dataset-level k-fold cross validation (CV). Dataset-level CV
means that all the samples within the same dataset are never split across folds, i.e., kept
together in the training or the testing folds. We do this to prevent the models from learning any
dataset-specific characteristics and evaluate the ability of the models to predict annotations of
samples in unseen datasets. As our gold standard contains several tissues/cell-type terms with
as low as three positively-labeled datasets, we picked 3–5 CV folds for each term’s model
based on data availability: 3-fold CV for terms with just three positive datasets, 4-fold CV for
terms with four datasets, and 5-fold CV for terms with five or more datasets. Results reported in
this work are based on model performance calculated using area under the precision-recall
curve (auPRC) and averaged over the 3-, 4-, or 5-folds depending on the term.

For all evaluations, predictions on samples and datasets were made by models trained on folds
that did not include any sample from the corresponding datasets. Predictions on descriptions of
ontology terms and metadata of samples from different technologies were made by models
trained on the full gold standard.

Creating embeddings for ontology terms
To test the ability of the trained NLP-ML models to generally classify text to various tissues, we
supplied the descriptions of biological processes and diseases (associated with various tissues)
as input to NLP-ML. We obtained these descriptions by parsing the OBO files for the Gene
Ontology (Biological Process branch; GOBP) and the Disease Ontology (DOID) and extracting
the plain-text name and definition for each ontology term. For each ontology term, we
concatenated the name and definition to a single string, and then preprocessed and embedded
each string following the same methodology outlined for sample descriptions to generate
ontology term embeddings.

Cross-platform annotations
To explore the ability of NLP-ML models (trained on descriptions of gene-expression samples)
to annotate –omics samples from different technologies, we chose five of our top performing
NLP-ML models from our cross-validation results: colon (UBERON:0001155), brain
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(UBERON:0000955), muscle tissue (UBERON:0002385), neural tube (UBERON:0001049), and
adipose tissue (UBERON:0001013). Then, we chose five experiment types in ArrayExpress with
the maximum number of available human samples: RNA-seq of coding RNA, ChIP-seq,
comparative genomic hybridization by array, methylation profiling by array, and transcription
profiling by array. We downloaded and preprocessed all available sample metadata from all
SDRFs across the samples from these experiment types and randomly selected 10,000
samples from each experiment type. We constructed a sample embedding for all 50,000
samples and ran them through the five fully-trained NLP-ML models (top five in performance) to
make a prediction for each of these five tissues/cell-types. Then, for each of our five models, we
selected the top 10 predicted samples from each experiment type and pulled the corresponding
processed metadata from our input files. We then manually examined the metadata from these
50 samples in a random order for each tissue/cell-type model to evaluate the models’
predictions. Correct and incorrect predictions were declared as true positives and false
positives. Additionally, in the case where a sample’s metadata was too ambiguous to decide
whether the annotation was correct or not, or if the metadata lacked any usable information,
these cases were also declared as false positives.

Results

Overview of NLP-ML for sample tissue annotation
The central idea behind NLP-ML is that unstructured sample descriptions can be represented as
numerical embeddings that can serve as input to supervised machine learning classifiers to
accurately predict the tissue-of-origin of samples (Fig. 1).

The input to our method is unstructured sample descriptions where each description is a
bag-of-words consisting of values in all metadata fields for that sample. Considering metadata
as a bag-of-words allows our approach to handle the immense variability between the types of
experiments and the quality and completeness of researcher-submitted metadata. For instance,
one cannot guarantee that the same metadata fields will be available for hundreds of thousands
of samples. We then preprocess each of these sample descriptions to remove punctuation,
remove words that contain numeric characters, lemmatize to cast words to their root forms, and
finally turn all words to lowercase.

Using the pre-processed words associated with each sample description, we then create a
numerical representation for that sample description using pre-trained embedding models from
the flair library (Akbik et al. 2019), trained on a general English and a biomedical text corpus.
Flair creates word embeddings by examining character-level information. This makes the
associated representations robust to misspellings and allows us to create word embeddings for
words that did not appear in the corpus the original neural network models were trained on. The
embedding for the whole sample description is calculated by averaging the embeddings of the
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constituent words, weighted by the inverse document frequency of each word estimated based
on the PubMed text corpus (see Methods). Though this weighting did not show impact on
performance (Fig. S1), we decided to use weighted averaging based on the hypothesis that
sample embeddings influenced by infrequent words could lead to more interpretable models.

Figure 1. Overview of NLP-ML. The NLP-ML approach contains four steps: i) Text preprocessing:
Unstructured metadata of samples are preprocessed to remove text elements extraneous to sample
classification and reduce words to their roots; ii) Creating text-based sample embeddings: A neural
network model trained on large text corpora is used to create numerical embeddings of individual words.
An embedding of a sample is created by averaging the embeddings of the words in that sample’s
metadata; iii) Training sample tissue classifiers: Supervised machine learning models – one per
tissue/cell-type – are trained using sample text embeddings as features and manually-curated sample to
tissue/cell-type annotations as labels; and iv) Classifying new samples: Descriptions of unlabelled
samples are preprocessed and turned into numerical embeddings. Each trained model takes these
embeddings as input and provides the probability that the sample is from that tissue/cell-type.

These description-based sample embeddings can serve as features in supervised machine
learning models that are trained to predict the sample’s tissue-of-origin. To train such models,
we constructed a gold-standard containing tissue labels for about 11,600 human
gene-expression samples based on annotations from a previous study (Lee et al. 2013) that we
mapped to and propagated based on the UBERON-CL tissue and cell ontology (see Methods;
Table 1). In total, our gold standard contains annotations for 81 unique tissues and cell-types
from over 300 datasets. After expanding these annotations and filtering for high-information
content terms (see Methods), we were able to train models for 153 tissues and cell-types. The
median number of ‘positive’ samples for each tissue/cell-type model was approximately 50.
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Negative samples were chosen in a way consistent with the term relationships in UBERON-CL
(see Methods).

Then, using this gold-standard, we trained a series of one-vs-rest L1-regularized logistic
regression models – one model per tissue term – using the sample embeddings as features to
separate samples from a particular tissue from samples from other unrelated tissues. We tested
multiple classifiers and observed that support vector machines and logistic regression
performed the best (Fig. S2). We picked L1-regularized logistic regression because it results in
sparse models that are more likely to be generalizable to new text, and naturally return
probabilities at the prediction stage. Finally, tissue predictions can be made for new sample
descriptions – or, in fact, any snippet of text of interest – by preprocessing the text, creating an
embedding using a weighted average of word embeddings for tokens in the text, and then
running the text embeddings through each of our pre-trained tissue models to get a predicted
probability that the given piece of text can be annotated for each one of the tissues or cell-types.

Comparison of text-based methods for sample annotation
NLP-ML relies solely on free-text (i.e., unstructured) metadata. To evaluate its effectiveness, we
compared it to two other methods that similarly associate text with tissue and cell-type labels.
These two methods are representative of the two most common approaches in the literature.
TAGGER (Pafilis and Jensen 2016) is a named-entity recognition (NER) method that looks for
exact string matches of words/phrases in a dictionary in the input text. MetaSRA (Bernstein,
Doan, and Dewey 2017) uses sophisticated graph-based reasoning and prior knowledge in the
form of ontologies to do an NER-like task. Figure 2 shows the area under the precision-recall
curve (auPRC) values for NLP-ML models along with those of TAGGER and MetaSRA based
on cross-validation (CV). In these CV runs, samples from the same dataset were kept together
(i.e., never split across training and testing) to avoid overestimation of prediction performance
due to experiment/batch effects (see Methods).
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Figure 2. NLP-ML outperforms other text-based methods for sample tissue classification.
Distribution of the area under the precision-recall curve (auPRC) scores across 153 tissues for each of
the three individual text-based methods for sample classification: TAGGER, MetaSRA, and NLP-ML. Also
shown is the distribution of auPRC scores for combining the predictions of NLP-ML and MetaSRA. Each
point in the boxplot is the performance for a single tissue model averaged across cross validation folds.

First, we observe that our NLP-ML models significantly outperforms the other two text-based
methods (higher auPRC for 74% of terms, Wilcoxon p-value = 2.01e-5 against MetaSRA; higher
auPRC for 86% of terms, p-value = 2.27e-27 against TAGGER, Fig. S3). NLP-ML has a median
auPRC of 0.74, which means that, out of the top 100 predicted samples for a given tissue, on
average, 74 of them are correct. Not surprisingly, TAGGER consistently performs the worst due
to incurring a large number of false negatives by only looking for exact string matches in order
to make an annotation. MetaSRA, with its careful processing of key and value data in the
description based on ontologies, achieves a median auPRC of 0.48 and significantly
outperformas TAGGER (higher auPRC for 69% of terms, Wilcoxon p-value = 1.12e-13).

While the median performance of NLP-ML is substantially higher than that of MetaSRA, the
boxplots also indicate that there are a number of tissues for which MetaSRA performs better. To
better understand the differences in relative performance of NLP-ML and MetaSRA, we first
summarized method performance for tissues within each of 13 anatomical systems (Fig. S4).
The overall trend is consistent: NLP-ML outperforms MetaSRA in tissues from 10 anatomical
systems. The methods perform similarly in nervous system tissues and NLP-ML is worse than
MetaSRA for tissues in the respiratory and reproductive systems (Fig. S4). Next, we compared
the two methods within four equal-sized groups of tissues where each group of tissues had a
similar number of positive training examples. As expected, when more samples are available for
training (the last two groups with ≥154 samples per tissue in training), the performance of
NLP-ML is high (median auPRC > 0.8) and better than MetaSRA (Fig. S5C-D, S6C-D). In
tissues with a moderate number (≥64 and <154) of training samples, NLP-ML and MetaSRA
perform quite similarly with a median auPRC of about 0.6 (Fig. S5B, S6B). It is worth noting that
MetaSRA achieves an auPRC of close to 1 for a number of tissues in this group. Finally, in the
group with the smallest amount of training data, the performance of both methods drop to
auPRC < 0.5 with NLP-ML performing better than MetaSRA (Fig. S5A, S6A). These patterns
indicate that while our method tends to invariably outperform MetaSRA, size of the training set
makes a difference. Further, there are likely features in sample text (e.g., names of the fields,
i.e., keys) that a rule-based method like MetaSRA may be able to leverage better than our
models.

Therefore, we evaluated the performance of combining the predictions from these two methods
(see Methods) and observed that combining NLP-ML with MetaSRA results in a median auPRC
of 0.93, more than the performance of either method alone (Fig. 2). This overall improvement is
particularly due to the boost from MetaSRA in tissues with relatively small training sets (<154
samples per tissue; Fig. S5, S6). The aggregate performance also indicates that automated
methods can be developed to accurately assign tissue and cell-type annotations 9 out of 10
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times just based on their unstructured or semi-structured text descriptions. A number of specific
cases are discussed below (see Discussion and Supplemental Note) to highlight and
understand some ways in which NLP-ML and MetaSRA perform in sample tissue classification.

While the combination of MetaSRA and NLP-ML more accurately annotates samples than
NLP-ML, there are a number of factors to consider when using MetaSRA in future applications.
MetaSRA is implemented in Python 2, which as of January, 2020, is no longer officially
supported. Hence, maintaining a long-term software solution dependent on MetaSRA may be a
challenge. Secondly, the method is low throughput and requires a large amount of time and
computational resources to process a single piece of text, whereas each of our models can
create an embedding for any text and make a prediction within seconds with modest hardware
requirements. Finally, MetaSRA does not scale with larger passages of text. When making
predictions on experiment-level metadata, MetaSRA took hours of computation time. MetaSRA
also requires semi-structured data in the form of key-value pairs of information whereas NLP-ML
can provide predictions on any piece due to our bag-of-words approach, making NLP-ML more
widely usable. We have also shown that, given enough training data, NLP-ML significantly
outperforms other text-based methods (see Figure S5). Therefore, while the combination of
NLP-ML and MetaSRA outperforms NLP-ML alone, the scalability and maintainability of
NLP-ML make it a more usable and long-term solution. Additionally, as more data become
available for different tissues and cell-types, we expect NLP-ML to continue to further improve in
performance.

Incorporating dataset-level information to annotate samples
Current methods for text-based sample annotation are designed to only use the metadata of a
particular sample without taking advantage of the metadata available for the parent dataset that
the sample belongs to. We investigated if these dataset descriptions could serve as an
additional rich source of information to improve the annotation of individual samples. First, for a
given dataset, we predicted tissue annotations by providing the dataset’s metadata as input to
the NLP-ML models trained on sample metadata (excluding samples in that dataset during
training; see Methods) and transferred those annotations to each of its constituent samples
(referred to as ‘dataset-based prediction’). Then, for each sample, we obtained a new tissue
prediction by adding the prediction based on its own (sample) metadata with the prediction for
its parent dataset (referred to as ‘dataset-and-sample-based prediction’). Comparing these
schemes to each other, we observe that sample predictions supplemented by dataset
predictions result in better performance for a number of tissues and cell-types (Figure 3). This
improvement indicates that, for some tissue and cell-types, leveraging additional dataset
descriptions can help annotate samples correctly. However, the combination of dataset and
sample predictions does not always outperform using sample text alone. In fact, the
dataset-and-sample-based predictions are nearly always better or are equally as good as using
the dataset-based predictions. Therefore, while dataset metadata can be useful in some cases
to improve sample annotations, it is insufficient to use dataset metadata alone to make sample
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tissue annotations. A direct comparison shows that NLP-ML based on sample descriptions
alone, in general, outperforms NLP-ML using dataset descriptions alone (Fig. S7, S8).

Figure 3. Metadata of sample’s parent dataset is useful but insufficient to infer sample
annotations. A) Scatterplot of the area under the precision-recall curve (auPRC) scores of sample tissue
predictions from just sample text (x-axis) vs. combination of predictions from both sample and dataset text
(y-axis). B) Scatterplot similar to panel A but with auPRC scores of predictions from just dataset text on
the x-axis. Combination of dataset-and-sample-based predictions versus the dataset-based predictions,
where the predicted probability for an experiment is used as the prediction for all samples in that dataset.
Each point in the scatterplots correspond to a tissue/cell-type term. auPRC scores are averages across
cross validation folds. The solid line denotes equal performance between the two methods.

Biological meaningfulness and generalizability of NLP-ML models
Having shown that NLP-ML tissue prediction models outperform other text-based methods, we
next wanted to explore whether these machine learning models are achieving high accuracy
because they are capturing biologically-meaningful signals in sample descriptions. First, as
each individual tissue model is trained independently of each other, we hypothesized that if the
models are capturing meaningful signals in the text data, then models of related tissues should
be similar to each other. To test this hypothesis, we analyzed the model coefficients of the full
logistic regression classifier of all the tissues using dimensionality reduction (Figure 4).
Visualizing the tissue models based on the first two components reveals that models of tissues
from the same anatomical systems tend to be clustered with each other, indicating that NLP-ML
models of related terms in the tissue ontology have similar model coefficients.

Second, we leveraged the inherent flexibility of our NLP-ML models to examine their
generalizability: though they are trained to classify sample descriptions, practically any piece of
text can be provided as input to these NLP-ML models to get tissue predictions as output. We
began with using descriptions of terms in biomedical ontologies. We created text-based
embeddings of terms (see Methods, Creating embeddings for ontology terms) in a number of
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Figure 4. NLP-ML models of anatomically related tissues are similar to each other. tSNE
visualization of standardized logistic regression model coefficients for NLP-ML models of all tissues and
cell types trained on the full gold standard. Tissue/cell-type terms with similar models are close to each
other on this plot. Colors and marker shapes designate terms to high-level anatomical systems based on
the UBERON-CL ontology (see Methods).

ontologies based on the names and descriptions of those terms provided in each ontology and
made tissue predictions on these embeddings using our NLP-ML models. We then examined
the predictions for a subset of tissue-specific Gene Ontology Biological Processes (GOBP) and
Disease Ontology (DO) terms based on term-tissue mappings from a previous study (Basha et
al. 2020). Our NLP-ML models classify tissue-specific GOBP terms to the right tissue with an
auPRC three times as expected by random chance (median log2(auPRC/prior) = 3.51 across
tissues; Fig. 5A). GOBP terms mapped to blood are the hardest to predict most likely because
of the diversity of blood-related processes and the variability in associating specific biological
processes to blood. The NLP-ML models have a lower performance (median log2(auPRC/prior)
= 1.05 across tissues; Fig. 5B) when classifying diseases (DO terms) to their mapped tissues.
This result is not surprising because short descriptions of disease terms available from
ontologies will invariably lack information about the tissue associated with the disease. Further,
the disease-tissue mappings used for this evaluation are imperfect (e.g., general, multi-system
terms such as coenzyme Q10 deficiency being mapped to the brain) or, many times, ambiguous
because it is not clear whether a disease is mapped to a tissue because of disease origin,
manifestation, or clinical symptoms. In both cases, GOBP and DO, model performance does not
depend on the number of terms annotated to a given tissue. When we examine the predicted
probability for each tissue-specific term, we find that relevant GOBP terms are more often
correctly predicted than DO terms (GO: Tables S1–2; DO: TableS3–S4 as examples).
Nevertheless, taken together, the model clustering and ontology term predictions demonstrate
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that the NLP-ML tissue models trained using sample descriptions are capturing meaningful
relationships between tissues and are using tissue-relevant signals in text to drive the
predictions.

Figure 5. NLP-ML models can correctly classify tissue-associated biological processes and
diseases based on their text descriptions. A) Model performances on a set of manually curated
tissue-specific Gene Ontology biological process (GOBP) terms (Basha et al. 2020). B) Model
performances on a set of manually curated tissue-specific Disease Ontology terms (Basha et al. 2020). In
both panels, The models are indicated along the y-axis with the number of annotated GOBP/DO terms in
parentheses next to the tissue name. Performance is shown on the x-axis using the logarithm of the area
under the precision-recall curve (auPRC) over the prior, where the prior is the fraction of all GOBP/DO
terms specific to a particular tissue. This metric accounts for the variable number of annotated terms per
tissue.
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Comparing and combining NLP-ML with models based on gene expression
A powerful approach to predict sample annotations is to, in fact, completely disregard the
provided sample description and instead use the –omics data associated with the sample as
input to machine learning models. This approach has been successfully used to predict multiple
types of annotations for transcriptome samples including sex (Ellis, Collado-Torres, and Leek
2017), tissue and cell-types (Lee et al. 2013), phenotypes (Li et al. 2019), and diseases (Lee et
al. 2019). Therefore, we looked into how our models that predict tissue annotation based on a
sample’s description (NLP-ML) perform compared to models that predict tissue annotation
based on the sample’s recorded transcriptome profile. For this analysis, just like before, we
trained L1-regularized logistic regression (L1-LR) models – one model per tissue – based on our
gold-standard of 11,618 microarray samples and their associated tissue labels but using the
expression profiles as features (in contrast to using embeddings of sample text descriptions as
features in NLP-ML). We observed that L1-LR performed slightly better than other classifiers for
this task (Fig. S9). Then, we compared the performance of these models to the NLP-ML and
MetaSRA models using the same CV scheme used to evaluate NLP-ML. With a median auPRC
of 0.80, in aggregate, the expression-based models perform a little better than NLP-ML and a lot
better than MetaSRA.

Though the expression-based models and NLP-ML models perform similarly overall (Fig. 6)
(median auPRC values of about 0.80 and 0.74, respectively; p = 0.12, Fig. S3), there is high
variability in their relative performances over various tissues based on their training set sizes
(Fig. S10, S11). Both methods perform with high accuracy for tissues with larger training sets
(≥154 samples/tissue; Fig. S10C-D, S11C-D). However, in the group of tissues with a moderate
number of training samples (≥64 and <154 samples/tissue), while the performance of both
methods drop, the expression-based models achieve high auPRCs for a handful of tissues (Fig.
S10B, S11B). This trend is more pronounced in the group with the smallest training sets (<64
samples/tissue; Fig. S10A, S11A). Here, while NLP-ML has a low-to-moderate performance for
all tissues in this group, the expression-based models are split into two distinct groups with high
and low performance. Hence, at least for a subset of tissues, accurate expression-models can
be trained even with very small training sets and, for such tissues, these models can be
complementary to the NLP-ML models. Conversely, the better performance of NLP-ML in many
other tissues indicates that there are features predictive of tissues/cell-types in sample text that
cannot be gleaned from the associated expression data until larger training set sizes are
reached. Due to this complementarity between these two types of models, we also tested
combining their predictions and observed that NLP-ML+Expression models indeed perform
better than either model across the board (Fig. S3, S10, S11E-H). Finally, adding predictions
from MetaSRA to this combination further improves performance, resulting in a median auPRC
of 0.97 (Fig. S3, S10, S11I-L), trends that are also consistent across tissues from various
anatomical systems (Fig. S3, S12). In the Discussion section below and in the Supplemental
Note, we have considered specific cases in detail to shed more light on when and how these
very different kinds of methods – based on text and –omics data – perform differently.
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Figure 6. NLP-ML models are nearly as accurate as expression-based models in predicting tissue
source of transcriptome samples, and combining them is better than either. A) Distribution of the
area under the precision-recall curve (auPRC) scores across tissues for the two top-performing
text-based methods – MetaSRA and NLP-ML – and for the method based on expression profiles
(‘Expression’) for sample tissue classification. Also shown are the distributions of auPRC scores for
combining the predictions of Expression with NLP-ML (‘NLP-ML+Expression’) and with NLP-ML and
MetaSRA (‘NLP-ML+MetaSRA+Expression’). Each point in the boxplot is the performance for a single
tissue model averaged across cross validation folds. B) Scatterplot of the area under the precision-recall
curve (auPRC) scores of sample tissue predictions by NLP-ML models (x-axis) vs. predictions by
expression-based models (y-axis). C) Scatterplot similar to panel B but with auPRC scores of predictions
by MetaSRA on the x-axis. Each point in the scatterplots correspond to a tissue/cell-type term. auPRC
scores are averages across cross validation folds. The solid line denotes equal performance between the
two methods.
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These results reveal that text-based features in sample descriptions can be as effective as and
complementary to the molecular signals in their –omics profiles for informing sample tissue
prediction. However, text-based models have a unique practical advantage: while models based
on –omics profiles need to be trained anew for –omics data from each experiment type (e.g.,
microarrays, RNA-seq, ChIP-seq, and methylation arrays) using newly curated gold-standard,
once trained using any gold-standard, text-based models can be used to classify samples
irrespective of type.

Using NLP-ML to annotate samples from multiple experiment types
In our final analysis, we examined two aspects of the predictive performance of our NLP-ML
models. First, in addition to the careful dataset-stratified cross-validation scheme, we wanted to
evaluate these models using a set of samples that were completely independent of the 11,618
samples used to train any of the models. Second, we wanted to evaluate the ability of our
models to crossover and make predictions on samples from new experiment types, a previously
mentioned benefit to using text as machine learning features. To satisfy both requirements, we
selected the five experiment types on ArrayExpress with the most number of human samples
– ‘RNA-seq of coding RNA’, ‘ChIP-seq’, ‘comparative genomic hybridization by array’,
‘methylation profiling by array’, and ‘transcription profiling by array’ – and made predictions on a
large random subset of samples from each experiment type (see Methods, Cross-platform
annotations). To then validate our predictions, for each of our five top-performing NLP-ML
models – colon, brain, muscle tissue, neural tube, and adipose tissue – we manually examined
the metadata of the top 10 predictions from each experiment type.

RNA-seq ChIP-seq
Methylation

Array CGHA Microarray Total

Adipose Tissue 7 8 10 3 10 38

Brain 10 10 10 9 10 49

Colon 6 10 10 5 9 40

Neural Tube 10 10 10 7 9 46

Muscle Tissue 9 0 10 0 10 29

Table 2. NLP-ML models trained on microarray sample descriptions can accurately infer
annotations for samples from five different –omics exp types. Each row corresponds to one of five
top-performing NLP-ML tissue models. The last column shows the total out of 50 that each of these
models annotated correctly. Columns 2-6 show the number of samples (out of 10) from each experiment
type that each tissue model annotated correctly. RNA-seq: RNA-seq of Coding RNA; Methylation Array:
Methylation Profiling by Array; CGHA: Comparative Genomic Hybridization by Array; Microarray:
Transcription Profiling by Array.

First, we observed that none of the top 10 predictions for any model and experiment type had a
predicted probability less than 0.5. Table 2 shows the number of correct predictions out of the
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top 10 samples made by the five selected models from each of the five experiment types. The
average precision (i.e. the average fraction of the top 10 predictions that are correct) of these
five models is 0.80, which indicates that NLP-ML models are able to identify tissue samples with
high accuracy from new experiment types without needing to retrain the models. Brain and
neural tube models performed the best on this cross-experiment analysis, followed by colon and
adipose tissue. The low performance of the muscle model (precision = 0.58) points to one of the
challenges in text-based models like NLP-ML that don’t rely on exact string matching: The
majority of samples incorrectly annotated to ‘muscle’ by this model contained the string
“musculus” (indicative of a mouse sample). False positive predictions by the adipose tissue
model were typically samples collected from individuals described to be on high-fat diets.
Nevertheless, these shortcomings of NLP-ML are far outweighed by its practical benefit of being
able to be deployed seamlessly on samples across experiment types.

Discussion
Though there is growing awareness about the importance of complete and unambiguous
sample metadata (Byrd et al. 2020), the millions of human –omics samples that have already
been submitted to databases like NCBI GEO and EBI ArrayExpress are associated with
incomplete and unstructured sample descriptions. Here, we propose a new approach, NLP-ML,
that combines natural language processing and machine learning to annotate samples to their
tissue of origin solely based on the unstructured text description available for them.

We have shown that our NLP-ML outperforms two representative text-based methods: i)
TAGGER, a baseline method that uses exact string matching to annotate sample descriptions
(Pafilis and Jensen 2016), and ii) MetaSRA, an advanced method that uses graph-based
reasoning to infer annotations from semi-structured sample metadata (Bernstein, Doan, and
Dewey 2017). We chose a bag-of-words representation for the sample descriptions in this work
due to the unstructured nature of most sample metadata in GEO and ArrayExpress. Even when
metadata tags or fields are used, they are used and presented inconsistently. Therefore, we
chose to use the presence of words in sample descriptions as the input signal.

Examining specific instances illustrates why this approach based on unstructured text (NLP-ML)
correctly annotates samples where the other text-based methods fail (MetaSRA and Tagger) do
not. For example, several samples lack informative metadata directly about the source
tissues/cell-types but the descriptions include mentions of a disease relevant to the source
tissue, which is picked up by NLP-ML as a useful piece of information (Supplemental Note 1.1,
1.2). NLP-ML also works better than other methods when unstructured sample descriptions are
further complicated by details about the experiment and sample preparation (SN 2.1, 2.2).
Another common scenario where NLP-ML outperforms other methods is when samples are from
individuals with an affliction related to one tissue but the sample itself is from another tissue
(typically blood) and both tissues are included in the description (SN 2.3). As expected, in the
subset of samples where the tissue is explicitly mentioned without the presence of accessory
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tissues aside from the true label, all three text-based methods provide accurate annotations not
just for microarray samples (SN 3) but also for samples from other technologies (SN 3.5, 3.6).
These findings align with the design principles of the other text-based methods we have
compared NLP-ML to in this work. Tagger relies on the explicit mention of keywords in the text.
MetaSRA has been shown to be highly accurate for providing metadata annotations based on
sparse, structured key-value pairs, a result which we are able to observe and confirm in our
work as well.

Next, along with the descriptions of the sample alone, we explored the potential of using the
typically large, unstructured descriptions that come with the entire experiment a sample is a part
of. We observed that experiment-level metadata can bolster NLP-ML predictions for samples
from some tissues and cell-types (Fig. 3A), indicating that there are experiments where the
sample-level information is lacking critical information needed to accurately classify tissues and
cell-types, and this information could be present in more experiment-wide descriptions (Fig. S8).
On the other hand, for most tissues, including the description of the entire experiment did not
make any difference or, sometimes, even hurt performance (Fig. 3A). We also show that, in
general, experiment-level metadata alone is not sufficient for accurate classification (Fig. 3B,
S8) and should be viewed as supplemental rather than complimentary information.

Given the NLP-ML models show good performance in text-based tissue classification, we
examined the trained logistic regression models in detail to understand if they were biologically
meaningful. Specifically, we compared all tissue models to each other based on their model
coefficients and observed that models of tissues from the same anatomical system cluster with
each other in low dimensional space (Fig. 4). Then, taking advantage of the fact that our models
can be applied to making tissue predictions on any text input, we made predictions on
tissue-related pieces texts in the form of descriptions of subsets terms in the Gene Ontology
(biological processes) and the Disease Ontology (Fig. 5A, 5B). Our NLP-ML models achieve
high median performance (log2(auprc/prior) values) across all tissues for which we have a set of
curated tissue-specific terms (Basha et al. 2020). These two findings together show that the
NLP-ML models are able to generalize and achieve accurate tissue classification for unseen
pieces of text, doing so in a way that captures the underlying biological relationships between
tissues.

A number of studies have effectively shown that molecular –omics profile that were
experimentally measured from samples, for e.g. the gene expression profile of a transcriptome
sample, can ‘predict’ various attributes of the sample’s source, including tissue, age, sex, and
phenotype. This approach is highly complementary to inferring annotation from sample text
description because –omics profile-based models can predict attributes missing in the original
sample description. Many samples are known to contain descriptions that are lacking
informative text or are missing specific attributes altogether (Rajesh et al. 2021). We first confirm
this fact in our setting and then show that the aggregate performance NLP-ML is comparable to
that of expression-based models in sample tissue classification (Fig. 6A). In most cases,
NLP-ML and expression-based model performances across tissues are also correlated with
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each other except for the tissues with the smallest amount of training data (Fig. S11A–D).
Samples where expression-based models tend to outperform text-based methods pertain to
multi-level, complex tissues like the brain (SN 4.1, 4.2). Such tissues are also likely to have
small training set sizes. Text-based models do not tend to match up to expression-based model
performance when sample descriptions contain dense with several other types of details such
as experimental protocols and treatments (SN 4.3, 4.4). On the other hand, for more general
tissues involved in complex structures (e.g., hippocampus), or samples with descriptions
explicitly containing the tissue terms, as previously noted, our text-based models outperform
expression-based models (SN 5).

Given the complementarity of the text- and expression-based models, we combined the
predictions from both models and observed that this combination improves the median model
performance beyond either NLP-ML or expression alone (p = 4.47E-03 and p = 0.12 compared
to NLP-ML and expression, respectively). We suspect that the improvement in performance
from combining NLP-ML and expression is not greater because both predictors are trained on
the same gold-standard. And, hence, if trained on different standards – which can be done given
enough available data – we are likely to see even greater performance gains from the combined
use of text and molecular-profile features.

Specific instances such as those noted in SN 6.1 and 6.6 highlight scenarios in which
combining the two models leads to more accurate classification. In these cases, sample
metadata contains conflicting tissue signals and the expression profile may have weak
molecular signals, but together, result in a correct classification.

The NLP-ML approach developed in this study has several features that lend themselves for
further development towards more accurate text-based sample classifiers. First, NLP-ML is
accurate for several tissues and cell-types despite using all the words in the sample description.
However, model performance could be impacted by parts of the metadata that is irrelevant to
the prediction task at hand. This could include fields such as institution, platform, and author
and contact information. In our current work, we only downweight commonly occuring words
using IDF weights computed from PubMed. However, this weighting may end up emphasizing
author or institution names that are likely rarely mentioned across PubMed, thus throwing off
predictions. In future work, this weighting of words in sample descriptions can be improved in a
supervised, task-dependent manner. Second, combining predictions from a sample’s molecular
profile and the sample’s plain-text description can boost performance more than what we have
shown here if the two models are trained on independently labeled samples and datasets. In
this way, molecular –omics profile-based models can truly complement text-based methods by
filling in information missing in the sample metadata. Third, our observation about the
improvement in the performance of NLP-ML with training set size means that prediction
accuracy of our approach can continue to be improved simply by curating more samples and
datasets to specific tissues and cell-types. Finally, the approach presented here can be naturally
extended to other types of sample annotations including experimental factors, phenotypes,
diseases, and real-valued parameters such as age and condition/treatment duration. Recent
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studies have also shown similar approaches can benefit query expansion during database
searches (Teodoro et al. 2017) and in standardizing image metadata (Syed et al. 2020).

Large consortia of researchers and organizations such as the NIH are rightly pushing for the
adherence of FAIR Principles towards making publicly available data findable, accessible,
interoperable, and reusable (Wilkinson et al. 2016). Our NLP-ML approach supports these goals
by providing systematic annotations of human –omics samples for tissues and cell-types,
thereby enabling researchers to find and reuse relevant data from public data repositories.
While care needs to be exercised in using predicted annotations for further analysis (S. Wang,
McCormick, and Leek 2020), such systematic annotations provide a strong starting point
towards enhancing the ability to discover, use, and interpret millions of –omics profiles.

Data and code availability
We have made the trained NLP-ML models, a Python utility for text-based tissue classification,
and demo scripts at https://github.com/krishnanlab/txt2onto, along with extensive
documentation. Given an input file where each line is a piece of text to be classified, the
txt2onto utility will perform the necessary text preprocessing, create an embedding for each
piece of text, and then run each embedding through our pre-trained tissue models.
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