
 

1 
 

Full title: Benchmarking of tools for axon length measurement in individually-1 
labeled projection neurons 2 
 3 
Short title: Benchmarking and individual axon length 4 
 5 
 6 
Authors: Mario Rubio-Teves1¶ , Sergio Diez-Hermano2¶ , César Porrero1, Abel Sánchez-Jiménez2, Lucía 7 

Prensa1, Francisco Clasca1, María García-Amado1&, José Antonio Villacorta-Atienza2&* 8 

(1) Department of Anatomy & Neuroscience, School of Medicine, Autónoma de Madrid University, 28029 Madrid, 9 

Spain 10 

(2) Department of Biodiversity, ecology and evolution, Biomathematics Unit, Faculty of Biology, Complutense 11 

University of Madrid, 28040 Madrid, Spain 12 

 13 

Key words: cerebral cortex, stereology, modelling, axon length measurement, single neuron.  14 

 15 

*Corresponding author 16 

Email: josea@ucm.es (JAV) 17 

Conflict of interest: All the authors declare no competing financial interests relevant to the present study. 18 

¶  These authors contributed equally to this work. 19 

& These authors contributed equally to this work.  20 

  21 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.443544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443544
http://creativecommons.org/licenses/by/4.0/


 

2 
 

ABSTRACT (limit 300 words) 22 

Projection neurons are the commonest neuronal type in the mammalian forebrain and their individual 23 
characterization is a crucial step to understand how neural circuitry operates. These cells have an axon 24 
whose arborizations extend over long distances, branching in complex patterns and/or in multiple brain 25 
regions. Axon length is a principal estimate of the functional impact of the neuron, as it directly correlates 26 
with the number of synapses formed by the axon in its target regions; however, its measurement by direct 27 
3D axonal tracing is a slow and labor-intensive method. On the contrary, axon length estimations have been 28 
recently proposed as an effective and accessible alternative, allowing a fast approach to the functional 29 
significance of the single neuron. Here, we analyze the accuracy and efficiency of the most used length 30 
estimation tools - design-based stereology by virtual planes or spheres, and mathematical correction of the 31 
2D projected-axon length - in contrast with direct measurement, to quantify individual axon length. To this 32 
end, we computationally simulated each tool, applied them over a dataset of 951 3D-reconstructed axons 33 
(from NeuroMorpho.org), and compared the generated length values with their 3D reconstruction 34 
counterparts. Additionally, the computational results were compared with estimated and direct 35 
measurements of individual axon lengths performed on actual brain tissue sections, to analyze the practical 36 
difficulties and biases arising in real cases. The evaluated reliability of each axon length estimation method 37 
is then balanced with the required human effort, experience and know-how, and economic affordability. 38 
This work, therefore, aims to provide a constructive benchmark to help guide the selection of the most 39 
efficient method for measuring specific axonal morphologies according to the particular circumstances of 40 
the conducted research.  41 

 42 
 43 
AUTHOR SUMMARY (limit 150-200 words) 44 

Characterization of single neurons is a crucial step to understand how neural circuitry operates. 45 
Visualization of individual neurons is feasible thanks to labelling techniques that allows precise 46 
measurements at cellular resolution. This milestone gave access to powerful estimators of the functional 47 
impact of a neuron, such as axon length. Although techniques relying on direct 3D reconstruction of 48 
individual axons are the gold standard, handiness and accessibility are still an issue. Indirect estimations of 49 
axon length have been proposed as agile and effective alternatives, each offering different solutions to the 50 
accuracy-cost tradeoff. In this work we report a computational benchmarking between three experimental 51 
tools used for axon length estimation on brain tissue sections. Performance of each tool was simulated and 52 
tested for 951 3D-reconstructed axons, by comparing estimated axon lengths against direct measurements. 53 
Assessment of suitability to different research and funding circumstances is also provided, taking into 54 
consideration factors such as training expertise, economic cost and required equipment, alongside 55 
methodological results. These findings could be an important reference for research on neuronal wiring, as 56 
well as for broader studies involving neuroanatomical and neural circuit modelling. 57 

 58 
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INTRODUCTION 60 

The highly integrated functioning of the brain relies on axons that directly connect distant regions. The introduction 61 

in the past decade of new viral vectors able to drive the in vivo expression of high levels of marker proteins has 62 

allowed, for the first time, the consistent and complete visualization of such long-range projection axons with single-63 

cell resolution [1-6]. Studies in small rodent brains applying these methods have revealed that despite being 64 

submicron-thick, an individual neuron axon can extend over long distances and branch in complex and specific 65 

patterns [6-9].  66 

Unlike dendrites, which integrate calcium signals in mainly linear fashion [10, 11], the axon is a transmission 67 

compartment for all-or-none fast sodium axon potentials. The functional impact of signals travelling down an axon 68 

thus depends critically on the wiring of the axon, as it constrains the number and distribution of its synapses. Axon 69 

morphologies may in this way lead to different network configurations, so precise axon characterization is a must for 70 

modelling and describing a plethora of brain capabilities [12-14]. Interestingly, the number and distribution of 71 

synapses can be reliably derived from the axon length within its target structures [8, 9, 15]. Accurate measurement 72 

of axon length, therefore, is key for the functional modelling of brain-wide circuits as it estimates the functional 73 

impact of the single neuron [16, 17]. 74 

However, mapping and measuring long-range projection axon trees remains challenging, as it requires working 75 

across a wide range of spatial scales, from submicron to brain-wide [18]. A significant recent advance has been the 76 

development of automated platforms that combine serial sectioning with high-resolution confocal image acquisition 77 

to produce massive whole-brain volumetric image datasets. On these datasets, fluorescently tagged axons can be 78 

traced and measured using tools for 3D navigation and annotation. Deformation of these datasets is known and 79 

measurable, and the axon length measurements are thus reliable as far as the reconstructions are complete. 80 

Nevertheless, devices for producing high-resolution 3D datasets are prohibitively expensive and the resulting multi-81 

terabyte datasets require high-end computing infrastructure. For the foreseeable future, these high-end platforms will 82 

remain limited to industrial-scale research facilities. At present they remain focused in producing open-access 83 

datasets of adult “standard” model species brains intended as reference for other brain circuit studies [6, 19-21].  84 

Hundreds of laboratories and imaging facilities around the world currently rely on small, camera-lucida (2D) or 85 

computerized (3D) systems to reconstruct and measure neuron morphologies from brain tissue sections [22-24]. 86 

These systems remain the feasible way for reconstructing neuronal morphologies on brains manipulated under 87 

specific experimental conditions, or when in situ visualization of specific tissue markers is required, in developing 88 

animals or in species other than mice. However, producing accurate axon length data from serial histological sections 89 

is not trivial, as projection axons can extend across the brain and thus be spread over a large number of tissue sections. 90 

Thus, it is important to evaluate the accuracy and efficiency of the procedures currently in use, with the aim of 91 

comparing data available in the literature from different methods.  92 

Direct measurements of axon length can be obtained through three-dimensional (3D) reconstruction-tracing of 93 

arborizations across serial sections [25]. This is usually done manually and is slow and work-intensive, as it must be 94 
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done at high magnification and deals with uneven distortions and misalignments due to histological tissue processing. 95 

A widely used computerized tool is Neurolucida (MBF Bioscience, Williston, VT, USA), which allows for manual 96 

tracing among other capabilities, but a wide array of software tools from different sources is also available online 97 

[23]. Regardless of how sophisticated the software used is, the basis for length estimation is still the same: 98 

transforming image data into a series of vectors with a tree-like structure defined by a set of parameters that includes 99 

its euclidean coordinates, from which an approximation to the real, total path length is derived.  100 

A faster, indirect alternative is to produce a 2D reconstruction by projecting onto a plane using a camera lucida or a 101 

slide-scanner, and then multiplying it by a correction factor [2, 7]. Although this method has been recently applied 102 

to a wide range of thalamocortical neurons, the accuracy of the estimation method and the suitability of the correction 103 

factor has not been tested before.  104 

Other indirect approaches to measure axon length are based on stereological techniques. Design-based stereology 105 

takes advantage of unbiased sampling schemes with different kinds of probes (planes or spheres) that are applied to 106 

the tissue to produce a number of interactions with the object of interest (the axon) that, because of the randomness 107 

of the sampling, can be used to mathematically infer its length with a known error [26-28]. These stereological 108 

methods have been traditionally applied to estimate the axonal length of neuronal populations ([29, 30] for virtual 109 

planes; [31-33] for virtual spheres) and, more recently, of  individual neurons [34]. 110 

In the present study, we sought to compare these estimation tools when measuring individual highly complex axonal 111 

arbors. This way, we propose a twofold objective. On the one hand,  we assess the accuracy and efficiency of these 112 

methods to provide a rigorous rationale of their pros and cons. On the other hand, we evaluate their performance 113 

when estimating individual axon length and so as a qualitative approach to the functional importance of a single 114 

neuron. Taking advantage of the large number of neuron morphologies available at NeuroMorpho.org [35], we 115 

computationally implemented length estimation protocols from model-based estimates (mathematical correction of 116 

2D length) and design-based stereology (sampling with isotropic virtual planes and spheres) to compare among 117 

themselves and with direct reconstruction-derived measurements. Our results provide: 1) a classification of the 118 

different estimation methods according to their accuracy and performing effort, 2) a guide for selecting the most 119 

suitable parameters for each length estimation method in line with the researcher’s necessities (type of axon 120 

characterization demanded by the problem, available funding and personnel, assumable error, time to be invested, 121 

etc.) and 3) a summary of advantages and disadvantages of estimates vs. direct methods.  122 

  123 
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MATERIAL AND METHODS  124 

Neuron sample  125 

A sample of 951 neuron morphology files was downloaded from the NeuroMorpho database (NeuroMorpho.Org, 126 

RRID:SCR_002145; [35]. 127 

We searched the database for full-morphology files produced on the mouse model (Mus musculus). The neurons 128 

contained in those files had been uploaded to NeuroMorpho.org by a number of different laboratories, and were 129 

produced either through direct reconstruction on a series of sections from a sparsely-labeled brain (containing one or 130 

a few neurons) that spanned the total length of the arbor or, in the case of those belonging to the MouseLight project, 131 

through semiautomatic tracing of single cells from a densely labeled (containing hundreds of neurons) brain digitally 132 

scanned by means of single two-photon tomography (STPT) [4]. Although different in practice, these two technical 133 

approaches are conceptually the same and were considered equivalent in the coming analysis. That is, the axonal 134 

length of the 3D reconstructions was considered as the “true value” and used to measure the accuracy of the different 135 

estimations.  136 

Neurons were then qualitatively classified into four distinct classes based on easily recognizable features of their 137 

morphology and previous classifications (Fig. 1; [36]): type 1 (“specific”) neurons were characterized by a single 138 

focal arborization (N = 90); type 2 (“multispecific”) neurons displayed focal clusters in multiple spatial locations (N 139 

= 116); type 3 (“non-specific”) neurons featured axons that never developed dense, focal, highly-ramified clusters, 140 

but instead had a much more sparse or scattered appearance (N = 269); lastly, type 4 (“local”) neurons resembled 141 

interneurons of different shapes and sizes and were, because of their smaller size and ease of reconstruction, the more 142 

numerous in the dataset (N = 476). Sometimes neurons had characteristics that could cause them to be assigned to 143 

more than one category; in those cases, the more predominant feature decided what type it belonged to. This 144 

classification pays no attention to the anatomical position or developmental origin of each cell, and was performed 145 

previous to the analysis in order to see if gross morphological appearance could be used to infer the applicability of 146 

a specific method to a particular neuron.  147 

 148 
Figure 1. Neuron classification. Representative examples of neurons from the NeuroMorpho dataset showing the four 149 

axonal types considered in the study (Drawings generated from morphologies AA0641, AA0002, AA0051, AA0771 from 150 

Neuromorpho.org). 151 

 152 

 153 
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 154 

Computational implementation of axon length estimation methods 155 

 156 

The full-morphology files from the database were analyzed by means of custom-made Matlab scripts (Matlab 2017b; 157 

The Mathworks, Natick, MA, USA), where only the information for the axon was treated. Projection-based method 158 

was implemented by eliminating the Z coordinates from the axon points to project them onto the XY plane. The 159 

length of the resulting projected axon multiplied by a proper coefficient (see Results) will then be used as estimation 160 

of the axon tridimensional length. Note that the XY plane was not a priori established but defined by its own 161 

morphology file and each source’s method of acquisition. Sphere and plane-based estimation methods were 162 

implemented following similar processes. The analyzed axon was divided into sections of 50 μm thick parallel to the 163 

XY plane (plane defined by X and Y coordinates in the morphology file). In both cases the sampling box dimensions 164 

were 50x50x50 μm3 and all sections were analyzed. The specific probes (spheres and planes) were introduced into 165 

the sampling box according to the requirements of each particular method (random orientation in each sampling box 166 

for plane-based method). The relevant parameters, as sphere diameter, plane distance, and step length between 167 

sampling boxes, were adjusted accordingly for the computational simulations (Fig. 2). 168 

 169 

Figure 2. Methods for length estimation. A. Projections 170 

method. One tissue section containing several axon fibers 171 

(above). The method consists of measuring the axon 172 

length projected in the X-Y plane (represented below) and 173 

multiplying it by a factor to obtain the 3D actual length. 174 

B. Stereology with virtual spheres. This method is based 175 

on the estimation of axonal length from the intersections 176 

occurring between the axon segments and the surface of 177 

virtual spheres introduced in sampling boxes inside the 178 

tissue section thickness. Four sampling boxes inside a 179 

section are represented in black, with the virtual spheres 180 

inside (in grey). C. Stereology with virtual planes 181 

estimates axonal length by using the intersections between 182 

the axon segments (in red) and a set of parallel and 183 

isotropically oriented planes contained within the 184 

sampling boxes included in the tissue sections. Four 185 

sampling boxes (in black) with parallel virtual planes 186 

inside (in grey) are represented; r and d stand respectively 187 

for sphere radius and distance between planes. 188 

 189 

 190 
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Statistical analysis 191 

Projection-based length estimation. Correlation between axon’s real length and projection’s length was assessed by 192 

means of linear regression (ordinary least squares, OLS), with axon type considered as a factor. Parameter estimators 193 

(alphas) were obtained through error-resampling bootstrapping (2000 repetitions). 95% confidence intervals (CI95%) 194 

were calculated using the 0.025 (lower limit) and 0.975 (upper limit) quantiles of the bootstrapped distribution of 195 

alpha values. Prediction errors were estimated through 5-fold cross validation (CV), independently for every axon 196 

type and plane combination. Error’s density distributions were obtained through bootstrapping (100 repetitions), and 197 

probabilities were calculated as the area under the curve for a given error interval (i.e. + 5% and +10%). 198 

3d plane-based stereology. Model errors were calculated as the absolute difference between axon’s real length and 199 

length estimated by all combinations of sampling step and distance between planes. Correlation between model error, 200 

step and distance was assessed by means of linear regression (OLS), independently for every axon type. Prediction 201 

errors were calculated as smoothed interpolations for 200 possible values of step and distance. Error’s density 202 

distributions were obtained as smoothed histograms with automatic bandwidth selection, and probabilities were 203 

calculated as the area under the curve for every step and distance combination and for a given error interval (i.e. + 204 

5% and +10%). Additionally, all models defined by step and distance were compared in terms of normalized root 205 

mean square error (RMSE) by means of 5-fold CV. 206 

3d sphere-based stereology. Analysis followed the same procedures as the plane-based stereology, considering 207 

sampling step and probe diameters in this case.  208 

Mean absolute error, mean intersections, and error probability distributions were obtained through linear 209 

interpolation from these estimations performed for diameter values in [10, 15, 20, ...,50] (virtual spheres), distance 210 

values in [3, 6, 9, ...,30] (virtual planes) and step values in [70, 80, ...,150] (both probe types). The adjusted R-squared 211 

coefficients range from 0.88 to 0.98.  212 

Practical implementation 213 

We performed practical examples with real tissue sections comparing the three methods analyzed in the 214 

computational approach: direct axon measurements from Neurolucida reconstructions, projections-based length 215 

estimation and design-based stereology (virtual planes) (Fig. 2).    216 

We measured the axonal length of three mouse neurons which fitted in categories 1, 2, and 3 of our study by using 217 

the mentioned three length estimation methods (Fig. 3). We did not include type 4 neurons in the experimental 218 

approach based on the results obtained with the computational approach (see Results section). Experimental 219 

procedures including mice surgery, virus injection for labelling neurons and immunohistochemistry as previously 220 

described [5]. All procedures involving live animals were conducted under protocols approved by the University 221 

ethics committee and the competent Spanish Government agency (PROEX175/16), in accordance with the European 222 

Community Council Directive 2010/63/UE. The soma of these neurons was located in the thalamus, and their axon 223 

extended to different targets in the cerebral cortex. The complete axon inside the cortex was reconstructed using the 224 
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Neurolucida software (Neurolucida 2020; MBF Bioscience, Williston, VT, USA) and the length obtained with this 225 

direct measurement was compared with the resulting axonal length from both the use of virtual planes (stereology) 226 

or the projections method. We used 50 microns-thick sections containing the complete axon of each neuron.  227 

The projection-based method consisted in drawing the complete axon of each neuron, contained in the corresponding 228 

set of sections, by using the 20X lens of a microscope connected to a camera lucida (Nikon Eclipse E400; Nikon, 229 

Tokyo, Japan). Camera lucida drawings containing the projected axon were scanned and redrawn for digitization on 230 

Canvas X GIS (Canvas GFX, Boston, MA, USA); this software was also used to extract the length of all axon 231 

segments. Projected length was multiplied by the proper alpha value of each axon type (see Fig. 4B and “Projected 232 

based estimation” section) to estimate the real axonal length.  233 

The stereological approach consisted on projecting virtual planes over the sections observed in a microscope 234 

connected to a computer running stereology software (newCAST stereology software package for VIS; Visiopharm, 235 

Denmark); sampling parameters used for the 3 neuron types were: 75 μm step length in X and Y axes; sampling box 236 

size: 50 (X axis), 50 (Y axis) and 10 (Z axis) μm and 5 μm of plane separation; a fractionator sampling scheme was 237 

used to estimate the axonal length [37]. We calculated the coefficient of error (CE) due to the sampling method for 238 

the estimates by using the equations detailed in [38]. 239 

 240 

Figure 3. Complete reconstruction of the three mouse neurons used for the practical implementation of the length 241 

estimations methods in the laboratory. For all the cases, the soma was located in the thalamus and the axon reached 242 

different regions of the cerebral cortex. 243 

  244 
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RESULTS 245 

 246 

Projection-based estimation  247 

The projection-based method of length estimation relies on the assumption of isotropy (that fibers distribute their 248 

length equally across all possible directions; [22]). Under this condition the 3D length of isotropic fibers is equal to 249 

the product of the two-dimensional (2D) length of its projection onto a plane by a constant factor of π/2 (Fig. 2A). 250 

However, neurons do not distribute their fibers randomly, so the accuracy of this estimation will ultimately depend 251 

on the degree of anisotropy of the cell it is being applied to. Another way of seeing this is that each neuron will have 252 

its own correction factor, depending on its degree of anisotropy.  253 

In order to analyze the reliability of projection-based axon length estimation in real neurons, we projected the 254 

morphologies of the dataset from NeuroMorpho.org onto the XY, XZ and YZ planes. We found that the relationship 255 

between the 2D projection length and the reference length of the 3D model is indeed linear for all four types of 256 

neurons (Fig. 4A). This confirms there is a coefficient describing the relationship between the 3D length of the real 257 

structure and the length of its projection onto a plane. For the dataset used in this study, we calculated the alpha 258 

values for the different types of axons in our classification, whose 95% confidence intervals (95% CI) overlap 259 

between 1.272 and 1.277 (Fig. 4B). The particular alpha values for each axon type are detailed in Fig. 4A.  260 

 261 

 262 
 263 

Figure 4. Axon length correlations for projection-based stereology. A. Correlation between 3D real length and 2D 264 

projection length, by axonal type. Red lines represent the mean estimated 3D real length (ordinary least squares), and light 265 

red shaded areas correspond to 95% confidence intervals (CI95%). Gray dots depict full samples comprising all planes 266 

measurements (XY, XZ and YZ, note the organization of the data in triplets). Global adjusted R-squared = 0.99.  B. 267 

Estimated slopes (red dots) and CI95% (horizontal black bars) values for correlations in A. Slopes can be interpreted as 268 
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coefficients (alpha) that multiply 2D projection values to obtain predictions of 3D real lengths. Note that all axon types 269 

share a common set of potential alphas at a 95% confidence level (gray shaded area). 270 

 271 

Next, we quantified the probability of estimation error, defined as the difference between the 3D axon length and the 272 

length estimated from the model, when the different alpha factors are applied to the corresponding axon type in the 273 

projection-based approach. In order to do that, all axons were projected onto XY, XZ and YZ planes and their 3D 274 

length were estimated by multiplying the projection length by alpha. The area under curves in Fig. 5A describes the 275 

probability of finding a specific estimation error; as an example, dark and lightly shaded areas correspond to the 276 

probability of getting an estimation error of 5 and 10%, respectively. Noticeably, these cover much of the area under 277 

the curve, which means that it is highly probable to get estimation errors lower than 10% when using this approach. 278 

Specifically (Fig. 5B), types 1, 2, 3 and 4 neurons had a 65, 78, 71 and 38% probability of having a 5% absolute 279 

estimation error (estimation error between -5% and 5%), whereas the probability of it being 10% was 88, 92, 88 and 280 

62%, respectively. It should be remarked that these estimation errors were similar across orthogonal projection 281 

planes, showing the robustness of the method when applied in practice since the projection plane is not a relevant 282 

parameter.  283 

 284 

 285 
Figure 5. Estimation error probability projection-based stereology. A. Estimation error is distributed according to the 286 

shown probability densities (axon types in columns; red, green, and blue for XY, XZ, and YZ planes respectively). The 287 

probability of getting a certain error during axon length estimation will be given by the area below the curves (dark and 288 

light colors for + 5% and + 10% estimation error respectively). B. Absolute estimation error vs. probability (given by the 289 

area below the curves in A). Dashed lines point the probabilities of estimating axon length with absolute errors of 5% and 290 

10%, (colored areas in A). Insets. Absolute error distributions for planes XY, XZ, and YZ. 291 

 292 

 293 

 294 
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Stereological sampling with virtual spheres to estimate 3D length  295 

In order to attain an unbiased stereological estimate, every object (whose length will be estimated) in the specimen 296 

has to have the same probability of being sampled. In the case of length estimates, 2D probes (surfaces) are used to 297 

scan the sample volume. The object length is thus estimated by quantifying the intersections between the object and 298 

the probe, whose position and orientation must be random to ensure an unbiased estimation. The stereological 299 

sampling scheme [27] draws on the inherent advantages of virtual spheres to use them as probes in systematic random 300 

sampling schemes aimed at achieving length estimates (Fig. 2B). The intersections between the isotropic surface of 301 

the sphere with the axons are counted, and the resulting number is used to estimate the total length under the 302 

conditions of randomness and isotropy above stated. The relevant parameters used in this estimation are the step 303 

distance (distance between the spheres in X and Y axes, which determines the number of spheres), and the sphere 304 

diameter (which determines the sampling surface dimensions).  305 

To evaluate the efficiency of this method to estimate axon length, we performed sampling with virtual spheres on the 306 

cells in the dataset using different combinations of step distance and sphere diameter (Fig. 6). The results show that 307 

the mean absolute error in the length estimation when using this approach was surprisingly high, reaching values of 308 

60-70% across all types (Fig. 6A). In neuron types 1, 2 and 3 the mean absolute error mainly depends on the probe 309 

diameter, being nearly independent of the step size.  This is a consequence of using small spheres compared with the 310 

axon length. On the contrary, in type 4 (local) neurons, whose axons are significantly smaller than the other types 311 

(Fig. 1), the mean absolute error in the axon length estimation showed a dependence on both the sphere diameter and 312 

the step size. 313 

In stereology the estimation error must be balanced with the sampling effort, which results from counting large 314 

numbers of intersections between the surface probe and the linear axon. Thus, we quantify the sampling effort directly 315 

as the number of intersections. Fig. 6B illustrates the mean effort of estimating axon length when using spherical 316 

probes, for the different types analyzed. It shows that for types 1, 2 and 3, achieving the lowest possible mean absolute 317 

error required counting between 200 and more than 1000 intersections, depending on the step size employed during 318 

the sampling (the higher the step, the lower the effort). This holds too for type 4 neurons, but the efforts required in 319 

general were significatively lower (50-250).  320 

Therefore, Fig. 6 is intended to estimate the parameter configuration according to the accuracy-effort trade-off. For 321 

instance, in case we would like to estimate the axon length of a type 1 single neuron by means of spheres-based 322 

stereology by only accepting a mean error lower than 10% and a mean effort lower than 300 intersections, matching 323 

Figs. 6A and 6B would suggest the probe diameter equal to 50 and the step higher than 140. 324 
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 325 
 326 

Figure 6. Mean absolute error for axon length estimation by spheres-based stereology. A. The mean absolute error 327 

(in % of the real axon length indicated by colors – see color bar) is shown for different values of the probe diameters and 328 

the step between sampling boxes, and for axon types 1 to 4 (columns). Note that the color bar is the same for Types 1, 2, 329 

and 3. B. Mean effort, quantized by the mean number of intersections, required to estimate the axon length with different 330 

values of the probe diameter and the step for axon types 1 to 4. Colors denote the number of intersections (in logarithmic 331 

scale; color bar is the same for types 1, 2, and 3). Mean intersection values were obtained through linear interpolation from 332 

estimation for diameter values in [10, 15, 20, ...,50] μm and step values in [70, 80,...,150] μm. 333 

 334 

Stereological sampling with virtual planes to estimate 3D length 335 

Other than spheres, it’s also possible to stereologically estimate the length of objects using isotropic (i.e., with random 336 

orientation) virtual planes as probes [26]. In this case, the sampling is performed in nearly the same way: sampling 337 

boxes containing the isotropic planes are spaced at a given XY step  to randomly and systematically sample the tissue. 338 

The only difference is the introduction of the distance between planes inside the box instead of the diameter of the 339 

spheres as the second parameter critical for the stereological estimate (Fig. 2C).  340 

The results of estimating axon length through sampling with isotropic virtual planes are depicted in Fig. 7. Depending 341 

on the combination of XY step and distances used, the mean absolute error for the estimation could be lower than 342 

5% for types 1-3 and 10% for type 4. The best results were obtained when trying to maximize the sampling surface, 343 

that is, when combining small XY steps (80 μm) with small inter-plane distances (5 μm; Fig. 7A), at the cost of 344 

increasing the number of intersections.  345 

The number of intersections was again used to quantify the effort demanded by the stereological procedure (Fig. 7B), 346 

since performing estimations with low mean absolute errors could require counting abnormally high numbers of 347 
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intersections. However, specific combinations of parameters could also greatly reduce the mean effort while 348 

preserving an acceptable estimation error. For example, when estimating length for type-2 axons, small steps 349 

combined with high inter-plane distances produced similar errors at a significatively lower effort cost than small 350 

steps combined with small inter-plane distances. This way, by combining Figs. 7A and 7B, a estimation of parameter 351 

configuration for plane-based stereology could be obtained according to the required mean error and effort. 352 

 353 

 354 
 355 

Figure 7. Mean absolute error for axon length estimation by planes-based stereology. A. The mean absolute error (in 356 

% of the real axon length indicated by colors – see color bar) is shown for different values of the distance between planes 357 

and the step between sampling boxes, and for axon types 1 to 4 (columns). Note that the color bar is the same for Types 1, 358 

2, and 3. B. Mean effort, quantized by the mean number of intersections, required to estimate the axon length with different 359 

values of the distance between planes and the step for axon types 1 to 4. Colors denote the number of intersections (in 360 

logarithmic scale; color bar is the same for types 1, 2, and 3). Mean intersection values were obtained through linear 361 

interpolation from estimation for distance values in [3, 6, 9, ...,30] μm and step values in [70, 80, ...,150] μm. 362 

 363 

 364 

Results in Fig. 7 show the expected estimation error under different parameter combinations. Nonetheless, to make 365 

a right choice of XY step and plane distance, the researcher requires to know the probability of making a certain error 366 

under such parameters. This is detailed in Fig. 8, which shows the probability of attaining absolute estimation errors 367 

lower or equal to 5% (first row in Fig. 8A) and 10% (second row in Fig. 8A). To easily understand these distribution 368 

plots, Fig. 8B shows a particular example, denoted for each axon type by white dots in Fig. 8A. This example 369 

corresponds to a distance = 18 𝜇m and step = 110 𝜇m, and the two areas under each curve quantify the absolute error 370 

probability under or equal to 5% and 10% (color areas coincide with the color codes for the corresponding white 371 

dots). For instance, for type 1, error probability is equal to 0.39/0.68 (upper/lower panels in A; blue/green areas in 372 
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first panel in B). That means if the researcher would estimate 100 samples with distance = 18 𝜇 and step = 110 𝜇, in 373 

35/68 samples the absolute error between real and estimated axon length will be below 5%/10%. 374 

 375 

 376 
 377 

Figure 8. Error probability distribution for axon length estimation by planes-based stereology. A. Probability of 378 

±5% (first row) and ±10% (second row) axon length estimation error for different combinations of distance and step, and 379 

for axon types 1 to 4 (columns); probability is marked by color gradient, from 0.25 to 0.92 (see color bar). Probabilities 380 

for types 1, 2, and 3 are plotted with the same colored-scale. White dots point to the cases for distance = 18 𝜇 and step = 381 

110 𝜇. Values were obtained through linear interpolation (Adjusted R-squared for 5% error: Type 1 = 0.80, Type 2 = 0.86, 382 

Type 3 = 0.81, Type 4 = 0.91; Adjusted R-squared for 10% error: Type 1 = 0.83, Type 2 = 0.83, Type 3 = 0.85, Type 4 = 383 

0.93). B. Error probability distribution for the particular cases detailed in A. The areas below the curves are the probabilities 384 

shown in A and pointed with the white dots.  385 

 386 

Comparison of the three length estimation methods in a practical implementation in the laboratory 387 

We measured and estimated the axonal length of three neurons corresponding to the first three axonal types 388 

considered in the study (no type 4 neurons were analyzed) by implementing in the laboratory the same approaches 389 

that were used in the computational analysis: 1) direct 3D reconstruction of the axon in Neurolucida, 2) the projection-390 

based method performed with a camera lucida, and 3) sampling with virtual planes (See Material and Methods). 391 

Results about expected errors comparing the axonal length obtained by the three methods are summarized in Table 392 
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1. Although the projection-based method proved to be a robust and accurate method in the computational analysis, 393 

its practical implementation resulted in an expected error that was higher than the one obtained with stereology (11.45 394 

vs 6.28% mean expected error). The possible sources of bias behind this difference will be discussed later.  395 

 396 

 397 

 
Direct 

measurement 
(Neurolucida) 

Stereology (Virtual planes) Projection-based 
estimation 

 
Sections analyzed 

/ Intersections 
Experimental 

error (CE) Expected error Expected error 

Type 1 neuron 28162 μm 26/834 0.036 % 28770 μm (2.2 %) 35980 μm (22 %) 

Type 2 neuron 60388 μm 31/593 0.043 % 66712 μm (9.48 %) 53301μm (11.7 %) 

Type 3 neuron 44393 μm 24/525 0.048 % 41211 μm (7.17 %)  44684 μm (0.66 %) 

Table 1. Differences between the three axonal length estimation methods after their practical implementation. 398 

Stereological parameters: step length X-Y: 75 μm, planes separation: 5 μm; CE: coefficient of error.  399 

  400 
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DISCUSSION 401 

We have directly tested and compared, for the first time, the accuracy and reliability of three indirect methods for 402 

length estimation of individually labeled axons visualized on serial tissue sections: 1) stereological sampling with 403 

virtual spheres [27]; 2) stereological sampling with isotropic virtual planes [26]; 3) and the correction for 2D-404 

projected length in camera lucida drawings [22]. Using the length derived from each neuron’s 3D reconstruction as 405 

true value, we estimated each method’s accuracy or “trueness” as the closeness of agreement between the reference 406 

values and the test results. To determine if these three methods yield equally consistent results across a wide range 407 

of branching complexity and dispersion, we applied them on axons of four different cell types [36]. This analysis 408 

was performed first computationally, modeling the methods in Matlab and testing them against a dataset of mouse 409 

brain neurons from NeuroMorpho.org, and then on a number of single, thalamocortical cells labeled in serial brain 410 

tissue sections from our lab. We conclude that estimations based on stereological sampling with virtual planes or 411 

with the 2D projection-based method are a feasible and efficient alternative to complete tracing to estimate axonal 412 

length, and that they could be reliably applied to long-range projection neurons. The performance of the three 413 

methods is largely consistent over a wide range of axon branching complexity and dispersion.  414 

The projection-based method has been used to estimate the axonal length of single thalamocortical and nigrostriatal 415 

cells labeled on histological sections [2, 7, 22]. This method consists in tracing the axons present in successive 416 

sections (using camera lucida or directly from scanned images) and then multiplying the 2D-length measurements 417 

by a mathematically-derived factor of π/2 to estimate the orthogonal length in Z-axis (Fig. 2). However, the actual 418 

suitability of this factor has never been tested against a large number of morphologically diverse neurons. 419 

Importantly, for this factor to be accurate, axonal length has to be isotropically distributed (with uniformly distributed 420 

orientation, [22]), something that cannot be known beforehand. Here, we used a dataset of 951 neurons of different 421 

morphologies to determine the best-fit factor, which for all neuron types (around 1.27 for types 1-3). The results of 422 

this estimation were consistent across the three orthogonal planes for every class but type 4 (local) neurons, which 423 

showed higher errors, presumably due to their smaller size and anisotropic distribution. Thus, our computational 424 

approach demonstrates the robustness of the projection-based method independently of the orientation of the plane 425 

of section, which provides accurate length estimations with a large sample of heterogeneous axonal architectures.  426 

Design-based stereological methods can also be applied to the specific problem. However, careful selection of 427 

sampling parameters is key to make the process efficient while keeping a reasonable accuracy. As a general rule, the 428 

more exhaustive the sampling scheme (i.e., counting more intersections between the probe and the object of interest), 429 

the more precise the stereological estimation, which will in turn produce lower coefficients of error [38]. Accuracy, 430 

on the other hand, depends on the randomness of the sampling process. Although both virtual planes and spheres are 431 

based on the same principle [39], the computational results proved the first to be more accurate than the last due to 432 

restrictions imposed by the tissue thickness on the sphere’s diameter, which resulted in an inefficient and biased 433 

sampling and, consequently, a low accuracy. In this sense, large spheres (50 µm in diameter) would not get enough 434 

intersections to produce mean absolute errors below 10% when considering sections 50 µm-thick. In the case of 435 
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virtual planes, accuracy depended on both the XY step (or distance between sampling boxes) and the inter-plane 436 

distance, and the results differed slightly between neuron types: because of their smaller size and their focal and 437 

dense architectures, type 1 neurons required a more intense sampling than neurons in types 2 and 3 to achieve similar 438 

mean absolute errors. Also, the range of mean absolute errors for the virtual planes method was significantly smaller 439 

than that for virtual spheres (5-12% vs 10-60%). Thus, although both virtual planes [29, 30] and virtual spheres [31-440 

33] have been applied to estimate length in axonal arborizations arising from neuronal populations, when considering 441 

single cells in serial sections, the use of virtual planes would be preferable [34].  442 

To corroborate the observations made with the models, the projection-based method and the stereological sampling 443 

with virtual planes were tested against three sets of tissue sections, each set containing one single thalamocortical 444 

cell of types 1-3 that had been manually reconstructed in Neurolucida. Type 4 neurons were excluded, and virtual 445 

spheres were not considered for this test because of the inaccurate results they displayed in the previous 446 

computational analysis. Virtual planes were applied using a selection of parameters derived from Figs. 7 and 8, and 447 

the results showed an average expected error of 6.28%, well within the range of what we had previously determined. 448 

In addition, sampling error coefficients were also small. The projection-based method, however, didn’t translate so 449 

well to the real test cases, and its practical implementation resulted in an error that was higher than expected (11.45% 450 

in average, but as high as 20% for type 1). We hypothesize that this difference might be attributable to 1) practical 451 

biases related to the process of manual tracing with the camera lucida and 2) that this randomly-picked neuron 452 

overlaps types 1 and 4. Regarding the first bias, overlapping axons could occlude each other during sampling 453 

(especially in dense and focal type 1 neurons). Thus, despite the robustness shown in the computational analysis, the 454 

accuracy of the projection-based method suffered when it was implemented onto real test cases.  455 

Ultimately, the selection of the most suitable method may involve other practical factors, summarized in Table 2. In 456 

terms of economic cost, for example, the most accessible of the three methods is the projection-based approach, since 457 

it only requires a camera lucida/imaging system attachment for a microscope and a computer system with basic 458 

graphic design software. If a higher throughput and accuracy is required, the microscope could then be substituted 459 

with a slide scanner. However, this would raise the cost and make it similar to that of the specific software tools 460 

required to carry out design-based stereology (VIS or Stereo Investigator) or 3D, manual, direct reconstruction 461 

(Neurolucida). The projection-based approach requires less training, and also produces a 2D model of the neuron. 462 

3D tracing is also relatively easy to learn and implement, whereas design-based stereology is the most complex of 463 

the three, requiring extensive know-how about sampling design or the advice of an expert. In this regard, Figs. 6 and 464 

7 can provide some insights that help to design the stereological procedure when using either spheres or planes 465 

probes. Thus, the choice of the adequate parameters, i.e. distance between probes and sampling intensity, will depend 466 

on the type of neuron analyzed, and aims to get the highest efficiency, which means the less analysis time to get a 467 

low error estimation (around 5%). In the case of virtual planes, type 1 neurons, which normally have short and 468 

focalized axons, need more sampling intensity than types 2 and 3 to get the same error estimation (comparison 469 

between panels 7A and 7B for the same parameter values); the opposite happens with type 4 neurons in virtual 470 

spheres, that requires less effort (less sampling intensity) than the other neuron types to get the same error estimations.  471 
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With regards to efficiency, the three methods have in common the same disadvantage: they require sparsely-labeled 472 

brains (i.e., containing only a few labeled cells that don’t overlap, to avoid errors in the reconstruction). Otherwise, 473 

axons from different neurons overlapping each other could be difficult or even impossible to distinguish from one 474 

another. With that in mind, the time required to quantify the axon length of a single neuron naturally depends on its 475 

size and spread, and more so in the case of manual 3D tracing. Whereas design-based stereology and the projection-476 

based approach can analyze a large and complex mouse axon in about 8-16 hours, manually tracing that same cell in 477 

Neurolucida could take 10 times more. Still, the main advantage of direct reconstructions is that they also produce a 478 

3D model of the neuron, with a collection of geometrical and topological parameters to be extracted from its structure, 479 

other than just length. 480 

Finally, potential biases are associated with each specific method. In fact, not even direct 3D reconstruction-tracing 481 

methods, which we took as in this study, are totally free of them. The implementation of any of these methods, 482 

therefore, has to rely on clear and reproducible criteria, so as to reduce inter-individual differences between 483 

researchers when counting intersections, in the case of stereology, or tracing axons, in the case of reconstructions 484 

[40]. Also, magnification has to be relatively high (≥200X), so that individual branches are clearly recognizable as 485 

such. The greatest variation in the results is, perhaps, that introduced by the shrinkage suffered by the sections due 486 

to histological processing. Fixation procedures with paraformaldehyde and sucrose cryoprotection of the brain can 487 

introduce a shrinkage of around 15% in all dimensions, whereas the dehydration process with alcohol prior to tissue 488 

covering on the slide are known to introduce a shrinkage of up to 70% in the Z axis (therefore reducing the section 489 

thickness [41]). This shrinkage correction has to be properly applied in measurements derived from both Neurolucida 490 

and the design-based stereological approaches; otherwise, length will be underestimated. In the case of the projection-491 

based approach, this correction is not necessary, given that it relies on 2D (XY) length, effectively ignoring the Z-492 

dimension. 493 

The current gold-standard in both resolution and throughput for this kind of studies are the large-scale pipelines 494 

developed by initiatives in the Allen Institute and the MouseLight projects [6, 19, 20], which are producing hundreds 495 

of neuron reconstructions registered on a template atlas in a semi-automatic manner. However, their specific 496 

requirements make them suitable to only a small number of highly-funded research centers. The methods discussed 497 

above, therefore, offer a reasonable alternative when working with sparsely labeled brains. Therefore, the majority 498 

of research groups without access to these tools can consider the methods discussed in this paper to fulfill their own 499 

research goals.  500 

In conclusion, accurate measurement of individual axon length is crucial as this feature is an accessible estimation 501 

of the functional impact of the single neuron. Nonetheless, the technical and economic difficulties of direct axon 502 

length measurement urge for accurate, but less time and effort demanding length estimations. The three approaches 503 

presented here - projection-based length estimation, stereology, and direct measurements from reconstructions - are 504 

valid for generating accurate axonal length estimations of single cells. The stereological method is less prone to 505 

biases inherent to the manual drawing of fibers in camera lucida projection-based estimations. Among the two 506 
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stereological approaches, the virtual planes method is more efficient and accurate than the one using spheres when 507 

dealing with single cell axons. Informed by the morphometric evidence presented here, the choice between these 508 

methods may thus largely depend on the human effort, training required for know-how acquisition, and economic 509 

cost. We therefore provide a useful guide for selecting the most appropriate individual axon length estimation method 510 

and the best parameters regarding the axonal morphology. Our results could be an important reference for 511 

neuroscientists interested in the wiring of neuronal circuits with powerful single-cell resolution methods, and in the 512 

building of brain models derived from this new anatomical knowledge.  513 

 514 

Method Key system 
requirements Cost Training 

requirements Time Method 
Biases 

Expected error 
range 

Other 
Outputs 

3D reconstruction 
(direct 

measurement) 

Neurolucida XYZ stage 
Neurolucida  ++ ++ +++ ++ 

Reference value 3D 
model Semi-automatic 

reconstruction 
(MouseLight) 

Two-photon 
microscope 
with vibratome 

+++ ++ + + 

Projections (model-
based estimation) 

Correction of 2D 
length 

Camera lucida + + ++ +++ Type 1: [1.6, 6.9] 
Type 2: [1.0, 4.7] 
Type 3: [1.1, 6.2] 

2D 
model Slide-scanner ++ + + ++ 

Stereology (design-
based estimation) 

Space Balls 
XYZ stage 
Stereology 
software 

++ +++ + + 
Type 1: [10.7, 56.8] 
Type 2: [9.7, 52.4] 
Type 3: [15.3, 64.1] 

None 

Virtual Planes 
XYZ stage 
Stereology 
software 

++ +++ + + 
Type 1: [4.7, 12.9] 
Type 2: [4.0, 8.6] 
Type 3: [5.0, 9.2] 

 515 
Table 2. Comparison of methodological approaches to measure or estimate axonal length in single neurons. The 516 

advantages and disadvantages from each of these three methods have been summarized in terms of: cost, training time, 517 

time of analysis, possible biases, the possibility of extracting additional information beyond the axonal length, and the 518 

error range computationally obtained for each neuron type and method (excluding type 4, see Figures 5-8). Different colors 519 

and +, ++ or  +++ stand for different levels in each of the parameters considered. Cost: ++, affordable according to average 520 

European grant support. Training requirements: +, one day of training approximately; +++, an expert needed for sampling 521 

design/some days of training. Analysis time  (per neuron): +, around 10-15 h; ++, between 50-100 h. Method biases: +, 522 

highly automated and controlled sources of bias, +++,  multiple sources of biases. 523 

 524 

 525 

  526 
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