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 2 

Abstract 11 

 12 

Bacteria causing chronic infections are often found in cell aggregates suspended in polymer 13 

secretions, and aggregation may be a factor in infection persistence. One aggregation 14 

mechanism, called depletion aggregation, is driven by physical forces between bacteria and 15 

polymers. Here we investigated whether the depletion mechanism can actuate the aggregating 16 

effects of P. aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, 17 

and how depletion affects bacterial inter-species interactions. We found cells overexpressing the 18 

exopolysaccharides Pel and Psl, but not alginate remained aggregated after depletion-mediating 19 

conditions were reversed. In co-culture, depletion aggregation had contrasting effects on P. 20 

aeruginosa’s interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus 21 

(cocci) and P. aeruginosa (rods) to segregate from each other, S. aureus to resist secreted P. 22 

aeruginosa antimicrobial factors, and the species to co-exist. In contrast, depletion aggregation 23 

caused P. aeruginosa and Burkholderia sp. to intermix, enhancing type VI secretion inhibition of 24 

Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in 25 

addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces 26 

inherent to the depletion mechanism can actuate the aggregating effects of self-produced 27 

exopolysaccharides and determine species distribution and composition of bacterial 28 

communities.   29 
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 3 

Introduction 30 

 31 

At sites of chronic infection, bacteria are often found within cell aggregates suspended in 32 

polymer-rich host secretions such as mucus, pus, sputum and others (1-3). Aggregated growth is 33 

thought important because it can increase the ability of bacteria to survive environmental stresses 34 

such as pH and osmotic extremes, as well as host-derived and pharmaceutical antimicrobials (4, 35 

5). Bacterial aggregation also affects disease-relevant phenotypes such as bacterial invasiveness, 36 

virulence factor production, and resistance to phagocytic uptake (6-10).  37 

 38 

Bacteria can aggregate via bridging aggregation, which occurs when adhesions, polymers, or 39 

other molecules bind cells to one another. Another general yet underappreciated mechanism is 40 

depletion aggregation (11). Depletion aggregation occurs in environments containing high 41 

concentrations of non-adsorbing polymers (12, 13). Such conditions exist in the cytoplasm of 42 

eukaryotic cells (11), cystic fibrosis airways (14), wounds (15), biofilm matrices (16), and others 43 

settings. Depletion aggregation is initiated when bacteria spontaneously come into close contact 44 

with each other (Fig 1A), causing the polymers in between cells to become restricted in their 45 

configurational freedom, and thus decreasing their entropy. When polymers spontaneously move 46 

out from in between bacterial cells (17) a polymer concentration gradient is established across 47 

adjacent bacterial cells, producing an osmotic imbalance (i.e., the depletion force) that physically 48 

holds the aggregate together (Fig 1B and C) (18).  49 

 50 

While definitions and terminology can vary among investigators, biofilm formation and 51 

depletion aggregation can be differentiated by two factors. First, biofilms are generally 52 

considered a phenomenon of surface-attached bacteria (19-23), whereas depletion aggregation 53 

operates on cells suspended in polymer solutions. Second, biofilm formation is driven by 54 

bacterial activity (19, 21, 23) whereas depletion aggregation is a consequence of physical forces 55 

generated when high concentrations of polymers are present. If bacteria and polymer 56 

concentrations are high enough, aggregation via depletion will occur as default and obligatory 57 

outcome unless mechanisms like mechanical disruption or bacterial motility produce stronger 58 

counteracting forces. The dependency on environmental conditions also means that a reduction 59 
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 4 

in polymer concentration will cause aggregate to disperse, unless other mechanism of bacterial 60 

adhesion supervene.    61 

 62 

Previous work has shown that the concentrations host-derived polymers like mucin, DNA, and 63 

F-actin found at infection sites cause bacterial depletion aggregation (as do model polymers like 64 

PEG), that and that depletion aggregation causes bacteria an antibiotic-tolerant phenotype (14). 65 

Here we investigated how the depletion mechanism affects aggregation mediated by P. 66 

aeruginosa’s biofilm exopolysaccharides and recently identified in cystic fibrosis sputum. We 67 

also investigated how depletion aggregation affects the interactions between bacterial species 68 

that may co-exist in vivo. 69 

 70 

 71 

 72 
 73 

Results 74 

 75 

Depletion aggregation can actuate bridging interactions by exopolysaccharides. Biofilm 76 

formation is generally thought to occur when surface-attached cells accumulate by growth, 77 

moving towards each other, or recruitment from overlying media; and produce 78 

exopolysaccharides and other matrix components that enable them to stick together via bridging 79 

interactions (24, 25). Unlike surface-attached cells, bacteria suspended in solutions are subject to 80 
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random (i.e. Brownian) movement or fluid flows that can disperse them, reducing cell to cell 81 

contact and the potential for bridging interactions. These points led us to hypothesize that in 82 

addition to being a primary aggregation mechanism, the depletion mechanism could facilitate 83 

bridging interactions mediated by biofilm matrix components.  84 

 85 

P. aeruginosa encodes three exopolysaccharides. Pel is a cationic polymer composed of partially 86 

acetylated N-acetylgalactosamine and N-acetylglucosamine (26), Psl is a neutral polymer 87 

containing glucose, mannose, and rhamnose (27), and alginate is a negatively-charged polymer 88 

composed of mannuronic and guluronic acid (28, 29). We first tested wild-type P. aeruginosa 89 

that are capable of producing all of these three exopolysaccharides (30, 31). As seen previously, 90 

wild type P. aeruginosa exposed to the model polymer PEG 35 kDa rapidly aggregated via the 91 

depletion mechanism, and immediately diluting the polymer by adding PBS caused the 92 

aggregates to disperse whereas adding additional PEG did not. As noted above, reversibility with 93 

dilution is a hallmark of depletion aggregation, as it is driven by crowding effects of 94 

environmental polymers. 95 

 96 

We reasoned that longer aggregation time periods could enable wild type P. aeruginosa to 97 

produce biofilm exopolysaccharides and adhesive bridging interactions. However, 98 

disaggregation of wild-type P. aeruginosa was noted even in aggregates that were held together 99 

by polymer exposure for 18 hrs (Fig 2A; Movie 1). To determine if high level expression of 100 

exopolysaccharides could cause depletion-induced aggregates to persist after polymer dilution 101 

we repeated these experiments using P. aeruginosa overproducing alginate (due to a mutation in 102 

alginate regulator, mucA) and Pel and Psl (due to induced expression from a PBAD promoter). P. 103 

aeruginosa over-expressing Pel and Psl remained aggregated after PBS (or PEG) dilution (Fig 104 

2B and C), whereas the strain over producing alginate did not (Fig 2D). 105 

 106 

We also studied clinical isolates taken from cystic fibrosis patients (32) that are known to 107 

overexpress Pel, Psl, or alginate. All 10 P. aeruginosa CF clinical isolates tested that over-108 

produced the exopolysaccharides Psl or Pel (6, 33) formed dilution-resistant depletion aggregates 109 

(Fig 2E, Table 1), consistent with observations in corresponding engineered lab strains. In 110 

contrast, all (9/9) alginate-overproducing clinical isolates (i.e. mucoid strains) had a reversible 111 
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 6 

aggregation phenotype (Fig 2F, Table 1), consistent with observations with the mucoid PAO1 112 

mucA22. Collectively, these results indicate that under the conditions tested, Pel and Psl can 113 

stabilize aggregates formed by the depletion mechanism if they are highly expressed while 114 

alginate does not. The different chemical compositions or other physical properties such as 115 

charge may explain differences in aggregate reversibility.  116 

 117 

 118 

  119 
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 7 

Table 1. P. aeruginosa morphology and aggregate reversibility phenotypes. 120 

Strain Morphology Reversible aggregation? 
PAO1 Non-mucoid Yes 
PAO1 ∆wspF/pslD; 
pBAD::Pel 

Non-mucoid No 

PAO1 ∆wspF/pelF; 
pBAD::Psl 

Non-mucoid No 

PDO300 mucA22 Mucoid Yes 
PAO1 ∆mucA Mucoid Yes 
Clinical Isolate 2-6.3 Mucoid Yes 
Clinical Isolate 29-14 Mucoid Yes 
Clinical Isolate 7-15.4 Mucoid Yes 
Clinical Isolate 9-19.6A Mucoid Yes 
Clinical Isolate W1 Mucoid Yes 
Clinical Isolate W2 Mucoid Yes 
Clinical Isolate W3 Mucoid Yes 
Clinical Isolate W4 Mucoid Yes 
Clinical Isolate W5  Mucoid Yes 
Clinical Isolate 27-6.4 Rugose No 
Clinical Isolate 28-17.9 Rugose No 
Clinical Isolates 29-5.6 Rugose No 
Clinical Isolate 14-4.2 Rugose No 
Clinical Isolate 17-6.6 Rugose No 
Clinical Isolate S1 Rugose No 
Clinical Isolate S2 Rugose No 
Clinical Isolate S3 Rugose No 
Clinical Isolate S4 Rugose No 
Clinical Isolate S5 Rugose No 

 121 

Cell shape determines species distribution in depletion aggregates. Theory predicts that 122 

bacteria aggregated by the depletion mechanism will be arranged to minimize the amount of 123 

volume occupied, as efficient packing will increase the space available for polymers and 124 

concomitant entropy gains. This effect should cause bacteria with similar shapes to be arranged 125 

together, and bacterial with different shapes to separated, unless bacterial activity intervenes. To 126 

test this hypothesis, we mixed P. aeruginosa, Burkholderia cenocepacia, Escherichia coli (rods) 127 
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 8 

and Staphylococcus aureus (a coccus) bearing different florescent labels in various combinations 128 

in PEG 35 kDa, and examined species distribution by microscopy.  129 

 130 

Polymer-mediated depletion aggregation caused cocci shaped species (S. aureus) to segregate 131 

from rods (P. aeruginosa and B. cenocepacia). In some cases, entire aggregates appeared 132 

composed of single species. In other cases, sections of mixed-species aggregates were composed 133 

primarily of either the rod or cocci-shaped species (Fig 3A and B). In contrast, depletion 134 

aggregation caused bacteria with similar cell shapes (i.e. differentially labeled P. aeruginosa 135 

with P. aeruginosa, or P. aeruginosa with E. coli) to intermix (Fig 3C and D). Similar results 136 

were seen using mixtures of formalin-killed P. aeruginosa and S. aureus, and formalin-killed P. 137 

aeruginosa and 2 µm diameter spherical beads similarly sized as S. aureus (Fig S2A and B). 138 

These experiments, along with previous work using inert particles (34), show that physical forces 139 

mediating depletion aggregation cause like-shaped bacteria to intermix, and differently shaped 140 

bacteria to separate. The physical arrangement of bacterial species in aggregates can affect 141 

competitive and cooperative interactions (see below). 142 

 143 
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 9 

 144 
 145 

Depletion aggregation promotes antimicrobial tolerance in S. aureus. Our finding that 146 

depletion aggregations can determine the physical arrangement of species led us to investigate its 147 

effects on interspecies interactions. P. aeruginosa and S. aureus are often co-isolated from CF 148 

airways (35, 36) and wounds (37, 38) for long durations. However, in laboratory co-cultures, P. 149 

aeruginosa rapidly inhibits S. aureus by quorum-regulated antimicrobials such as rhamnolipids, 150 

hydrogen cyanide, phenazines, quinolones, and others (39-43). Because aggregation can increase 151 

antimicrobial tolerance (44, 45), we hypothesized that depletion aggregation could enhance the 152 

ability of S. aureus to co-exist with P. aeruginosa.  153 

 154 

Similar to previous studies, (39-43) we found that wild-type P. aeruginosa severely inhibited S. 155 

aureus in non-aggregated broth co-cultures (Fig 4A), and inhibition was diminished if P. 156 

aeruginosa’s main quorum sensing systems were genetically inactivated (i.e. ΔlasR/rhlR PAO1; 157 

p<0.01) (Fig 4A, compare white bars). However, in co-cultures exposed to PEG 35 kDa to 158 

induce depletion aggregation, wild-type P. aeruginosa killing of S. aureus was reduced by over 159 

10-fold (Fig 4A, black bars).  160 

 161 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2021. ; https://doi.org/10.1101/2021.05.11.443568doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443568
http://creativecommons.org/licenses/by/4.0/


 10 

Our previous finding that depletion aggregation caused marked antibiotic tolerance in P. 162 

aeruginosa (14) led us to hypothesize that depletion-mediated tolerance explained P. 163 

aeruginosa-S. aureus co-existence in aggregates. We tested this by exposing dispersed and 164 

depletion-aggregated S. aureus to filter-sterilized culture P. aeruginosa supernatant found that 165 

dispersed S. aureus were ~10-fold more sensitive to killing after 18 hrs (Fig 4B). Control 166 

experiments indicate that PEG did not diminish the antimicrobial activity of P. aeruginosa 167 

supernatants (see Fig S3), and that the inhibitory effects were mediated by quorum-controlled 168 

factors (Fig 4C). These results indicate that depletion aggregation can promote co-existence of 169 

P. aeruginosa and S. aureus by enhancing S. aureus tolerance to quorum-controlled 170 

antimicrobials secreted by P. aeruginosa. 171 

 172 

 173 
 174 
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 175 
 176 

Depletion aggregation promotes contact-dependent bacterial antagonism.  In addition to 177 

secreted factors, P. aeruginosa and other bacteria also possess competitive mechanisms that 178 

depend upon cell-to-cell contact. One mechanism is type VI secretion (TSS) in which a needle-179 

like apparatus delivers toxins into neighboring cells (46). Our finding that depletion aggregation 180 

causes like-shaped bacterial cells intermix in aggregates led us to hypothesize that it would 181 

promote TSS-mediated bacterial antagonism.  182 

 183 

To test this, we mixed P. aeruginosa which capable of T6SS with Burkholderia thailandensis, a 184 

TSS-susceptible rod-shaped Gram-negative bacterium (47). In dispersed conditions, no P. 185 

aeruginosa-B. thailandensis antagonism was apparent over 24 hours, as the ratio P. aeruginosa 186 

to B. thailandensis remained unchanged (Fig 5A). In contrast, P. aeruginosa outcompeted B. 187 

thailandensis in depletion aggregates as measured by viable counts (Fig 5A) and visually 188 
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 12 

assessing differentially-labeled species (Fig 5B). Notably the competitive advantage of P. 189 

aeruginosa was eliminated by genetically inactivating TSS (i.e. PAO1 ΔclpV1 (Fig 5C)). Taken 190 

together, these results demonstrate that depletion aggregation can facilitate contact-dependent 191 

mechanisms of bacterial antagonism. 192 

 193 

 194 
 195 

Discussion 196 

 197 

Previous observations by a number of groups has shown that pathogens causing chronic infection 198 

like those in cystic fibrosis and wounds are generally found to be living in aggregates suspended 199 

in polymer-rich secretions, rather than as surface attached biofilms (1, 2, 10, 38, 48-56). Our 200 

previous work shows that physical forces produced by polymers found at infection sites can 201 

cause bacteria to form suspended aggregates by the depletion mechanism, and depletion 202 

aggregation produces disease-relevant phenotypes (14). In this study we found that depletion 203 

aggregation can actuate bridging interactions mediated by two of P. aeruginosa’s self-produced 204 

biofilm polysaccharides; cause bacteria with like shapes to arrange together and bacteria with 205 

different shapes to segregate, and has different effects on bacterial competition mechanisms 206 

mediated by secreted factors and cell-to-cell contact.  207 

 208 
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 13 

Surface attachment is thought to be fundamental to biofilm formation; sensing and adhering to 209 

surfaces induces physiological responses important in biofilm growth, and attachment keeps 210 

nascent biofilm-forming cells from dispersing (from random movement or fluid flows) before the 211 

matrix binds them together (23). Our previous work and current experiments raise the possibility 212 

that the depletion mechanism might serve somewhat similar functions as attachment surfaces. 213 

Previously we found that like surface attachment (57), depletion aggregation can induce stress 214 

responses in P. aeruginosa that mediate antibiotic tolerance (14). Our current experiments show 215 

that depletion aggregation also brings suspended cells together and can promote adhesion by 216 

self-produced polymers. One important caveat is that in the conditions used here, 217 

exopolysaccharide overexpression was required as P. aeruginosa PAO1 capable of producing 218 

“wild-type” levels of polysaccharides did not exhibit matrix-mediated adhesion even after long 219 

periods of depletion aggregation. Notably, mutant strains constitutively expressing EPS can be 220 

isolated from infected CF subjects (58), and in vivo conditions could induce expression of matrix 221 

polysaccharides to levels needed to cause bridging aggregation.  222 

 223 

Our findings also have implications for interspecies interactions that may occur in infections. 224 

The experiments showing that depletion aggregation increases tolerance of S. aureus to 225 

antimicrobials produced by P. aeruginosa (Fig 6A) could help explain how P. aeruginosa and S. 226 

aureus can co-exist in chronic infections like wounds and CF lungs, but are difficult to maintain 227 

in liquid co-cultures. While the underlying mechanism remains to be characterized, our previous 228 

work showing that that depletion aggregation induces the SOS stress response (14) raises the 229 

possibility that a similar phenomenon operates in S. aureus (59, 60). If general stresses were 230 

induced, aggregated S. aureus may exhibit tolerance to other disease-important stresses including 231 

antibiotics.  232 

 233 

The effect of depletion aggregation to intermix species with similar shapes, and segregate species 234 

dissimilar shapes could have wide ranging effects. One consequence we demonstrated is 235 

enhanced efficacy of TSS-mediated inhibition of rod shaped Burkholderia sp. by rod-shaped P. 236 

aeruginosa, as TSS is dependent upon species intermixing and cell-to-cell contact (Fig 6B). 237 

Such interactions could contribute to the ability of P. aeruginosa to dominate other rod-shaped 238 

pathogens such as Haemophilus influenzae and Stenotrophomonas maltophilia (35, 36, 61-63) in 239 
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CF airways. Depletion aggregation could likewise enhance or inhibit other close-range 240 

mechanisms that depend on contact or have short diffusion distances (like oxidants) depending 241 

on whether species are of similar or dissimilar shapes. In addition, in settings where depletion 242 

aggregation is maintained for long durations (i.e. polymers are continuously present), its effects 243 

on species arrangement could shape co-evolutionary trajectories of species, as the within-244 

aggerate arrangement of cells likely affects selection, competition, and cell migration.  245 

 246 

 247 

 248 
 249 

Our study had several limitations. For example, we used a non-biological polymer (PEG) at a 250 

specific concentration (30% w/vol) with a defined molecular weight (PEG 35 kDa) to induce 251 

depletion aggregation as use of a defined polymer limited variability and the transparency of 252 

PEG enhanced microscopy. While it is possible that biological polymers could produce different 253 
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results, our previous work shows that depletion aggregation by DNA and mucin at 254 

concentrations found at infection sites cause similar aggregate morphology and antibiotic 255 

tolerance phenotypes as PEG (14). We also recognize that varying polymer size and molecular 256 

weight will affect the strength of the aggregating force, and these variables were not examined 257 

here. An additional limitation was that our experiments used laboratory strains and a handful of 258 

P. aeruginosa clinical isolates. Clinical isolates with different biological characteristics could 259 

affect depletion-mediated bacteria-bacteria interactions. For example, LPS or other cell envelope 260 

modifications that arise in vivo (62) could change cell surface charge or hydrophobicity, which 261 

could affect depletion-mediated bacteria-bacteria or bacteria-polymer interactions.  262 

 263 

Much research in model systems has been devoted to understanding bacterial sensing and 264 

signaling pathways, purpose-evolved genetic programs, and quasi-social cooperation that shape 265 

bacterial phenotypes important in chronic infections. The data presented here show that basic 266 

thermodynamic forces inherent to polymer-rich environments can have marked effects on 267 

complex bacterial behaviors including aggregation, stress survival, and interspecies competition. 268 

New strategies to manipulate pathogenesis phenotypes will require understanding the relative 269 

contributions of bacterially-driven processes and mechanisms caused by physical forces in the 270 

environment. Generating such knowledge is challenging as cause-and-effect relationships are 271 

difficult to discern thorough the observational studies possible with human samples, and because 272 

animal models representing chronic infection have been difficult to develop. Ultimately, 273 

understanding may come from studying the effects of interventions that manipulate bacterially-274 

driven processes or the physical environment present at infection sites.    275 
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Methods 281 

Chemicals/growth media/strains 282 

Growth media (Lysogeny broth, LB), polyethylene glycol MW 2,000 and 35,000 Da, and 283 

antibiotics were purchased from Sigma. Strains and their sources are listed in Table 2. 284 

 285 

Table 2. Strains used in this study. 286 

Strain Description Source 
PAO1 Wild type  (64) 
PAO1 ∆wspF/pslD; 
pBAD::Pel 

Deletion of wspF and pslD; arabinose-inducible Pel 
operon 

(65) 

PAO1 ∆wspF/pelF; 
pBAD::Psl 

Deletion of wspF and pelF; arabinose-inducible Psl 
operon 

(26) 

MucA22 (PDO300) A mucA22 allele derivative of PAO1 constructed by 
allelic exchange  

(66) 

PAO1 ∆mucA Contains a truncated mucA allele  (67) 
Clinical Isolates  P. aeruginosa clinical isolates from various patients  (32) 
PAO1 ∆lasR/rhlR Deletion of lasR and rhlR (68) 
PAO1 ∆clpV1 Deletion of clpV1 (46) 
PAO1 attTn7::GFP Constitutive expression of GFP (69) 
PAO1 ∆clpV1; attTn7::GFP Deletion of clpV1; constitutively expressing GFP (47) 
PAO1 attTn7:TFP Constitutive expression of TFP (20) 
PAO1 attTn7::YFP Constitutive expression of YFP (20) 
E. coli pUCP18-mCherry Carries plasmid expressing IPTG-inducible mCherry (70) 
B. thailandensis E264 Wild type (71) 
B. thailandensis E264 
attTn7::mCherry 

Constitutive expression of mCherry (47) 

B. cenocepacia K56-2 
attTn7::GFP 

Constitutive expression of GFP (72) 

S. aureus SH1000 Wild type (73) 
S. aureus pCE-SarA-mCherry Constitutive expression of mCherry (74) 

 287 

PEG-induced depletion aggregation of bacteria 288 

For PEG-induced depletion aggregation, bacteria were added at the indicated densities to either 289 

LB diluted 4:6 with distilled water or LB diluted with 50% PEG 35 kDa (w/vol) prepared in 290 

distilled water to ensure that nutrient concentrations were the same in dispersed and aggregated 291 

conditions. LB was diluted with water or 50% w/vol PEG 35 kDa for all experiments described 292 

unless noted otherwise. Cultures were then incubated on a roller (60 rpm) at 37°C unless 293 

indicated otherwise. 294 

 295 
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Aggregate reversibility assays 296 

The indicated bacterial strains were grown overnight in full-strength LB. One hundred µl of 297 

overnight cultures were used to inoculate 3 ml of LB+PEG 35 kDa. After 18-h of growth, 100 µl 298 

of the indicated cultures were removed to a 1.5 ml tube containing 900 µl of either 1x PBS or 299 

PBS supplemented with 30% w/vol PEG 35 kDa and vortexed. Imaging was performed on 50 µl 300 

culture aliquots pre- and post-dilution using a Leica DM1000 LED microscope by spotting onto 301 

a glass slide. Aggregate dispersal was scored by eye by comparing to undiluted control cultures. 302 

 303 

Bacterial competition assays 304 

S. aureus SH1000 (73) and P. aeruginosa PAO1 (64) were grown overnight at 37°C with 305 

shaking in LB broth. S. aureus and P. aeruginosa were pelleted and resuspended at 108 CFU/ml 306 

in fresh LB broth. One hundred µl of each culture was added to 2 ml LB supplemented with 307 

either 30% w/vol PEG (35 kDa or 2 kDa) where indicated. Bacteria were grown in co-culture for 308 

18 h and viable bacteria were enumerated by serial dilution and plating on LB plates. Colony 309 

morphology was used to differentiate P. aeruginosa from S. aureus.  310 

 311 

For experiments investigating the effects of quorum-regulated antimicrobials on S. aureus 312 

killing, P. aeruginosa PAO1 or ΔlasR/rhlR (68) were grown overnight at 37°C with shaking in 313 

50 ml LB broth in a 250 ml flask. Bacteria were removed by centrifugation (10 minutes, 9,000 x 314 

g) and supernatants were filter sterilized using bottle top vacuum filters with 0.2 µm pore size 315 

(Millipore). PEG 2 kDa or 35 kDa was added to these supernatants to a final concentration of 316 

30% w/vol where indicated. S. aureus was inoculated into P. aeruginosa supernatants at 108 317 

CFU/ml and cultured for 6 h at 37°C on a roller at 60 rpm. Viable S. aureus were enumerated by 318 

serial dilution and plating onto LB agar plates. 319 

 320 

To investigate TSS mediated killing, P. aeruginosa PAO1, ΔclpV1 (46), and B. thailandensis 321 

E264 (71) were grown overnight at 37°C with shaking in LB broth. Bacteria were resuspended in 322 

fresh LB at 109 CFU/ml. One hundred µl containing 1x108 CFU P. aeruginosa PAO1 or ΔclpV1 323 

and 100 µl containing 2.0x107 CFU B. thailandensis were added to 800 µl LB or the indicated 324 

polymer solutions and incubated in co-culture for 24 h at 37°C on a roller at 60 rpm. Viable 325 

bacteria were enumerated by serial dilution and plating on LB plates. Colony morphology was 326 
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used to differentiate P. aeruginosa from B. thailandensis. For fluorescent imaging of aggregates, 327 

strains PAO1 or ΔclpV1 constitutively expressing GFP (PAO1 attTn7::GFP, (69)) were co-328 

cultured with B. thailandensis E264 attTn7::mCherry for 24 hours (47). Image analysis is 329 

described below. 330 

 331 

Fluorescent microscopy 332 

S. aureus SH1000 carrying the fluorescent reporter pCE-SarA-mCherry (74), P. aeruginosa 333 

PAO1 attTn7::GFP, PAO1 attTn7::TFP (20), PAO1 attTn7::YFP (20), Escherichia coli carrying 334 

pUCP18-mCherry (70), B. cenocepacia K56-2 attTn7::GFP  (72) and B. thailandensis E264 335 

attTn7::mCherry were co-cultured as indicated. Depletion aggregates assembled from dead 336 

bacteria were prepared by washing and resuspending overnight cultures of PAO1 YFP or PAO1 337 

TFP in PBS at a concentration of 109 CFU/ml. Formaldehyde (16%, Thermo) was added slowly 338 

to bacteria while vortexing to a final concentration of 4% vol/vol. Bacteria were allowed to fix 339 

for 30 minutes with constant mixing to prevent bacteria from clumping. Cells were then 340 

centrifuged for 10 minutes at 9,000 x g, washed twice with PBS, and resuspended in 1 ml PBS. 341 

Complete bacterial killing was confirmed by plating fixed bacteria on LB agar. One hundred µl 342 

of the indicated fixed strains were added to 2 ml PBS or PBS+30% PEG 35 kDa. Bacteria were 343 

incubated in a 37°C in a roller at 60 rpm and visualized at the indicated times using a Zeiss LSM 344 

510 confocal laser-scanning microscope. Image series were processed using Volocity 345 

(Improvision).  346 
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Legends 581 

Figure 1. Depletion aggregation is an entropic mechanism that operates to aggregate 582 

bacterial cells in environments crowded with non-adsorbing polymers. (A) Bacterial cells (green) 583 

are suspended in an environment with high concentrations of non-adsorbing polymer (circles). 584 

(B) Polymers in between cells are restricted in their conformational freedom and spontaneously 585 

move out from in between cells (black arrows), increasing their entropy. The polymer 586 

concentration gradient across the cells produces an osmotic imbalance (blue arrows). (C) The 587 

osmotic imbalance (i.e., the depletion force) physically holds the cells together in aggregates. (D) 588 

Representative image of a P. aeruginosa PAO1 depletion aggregate with PEG 35 kDa as the 589 

polymer. 590 

 591 

Figure 2. Depletion aggregate dispersal phenotypes of P. aeruginosa laboratory strains 592 

and CF clinical isolates. (A-F) Aggregate dispersal of the indicated strain and isolates was 593 

measured. Depletion aggregation was induced with 30% w/vol PEG 35 kDa for 18 hours. 594 

Depletion aggregates were then diluted 10X with PBS and representative images were acquired 595 

immediately pre- and immediately post-dilution. See also Figure S1 and Movie S1. Scale bar 40 596 

µm. 597 

 598 

Figure S1. Depletion aggregation was induced with 30% w/vol PEG 35 kDa for 18 hours. P. 599 

aeruginosa PAO1 depletion aggregates were then diluted 10X with additional PEG 35 kDa. 600 

Scale bar 40 µm. 601 

 602 

Figure 3. Depletion aggregation spontaneously segregates bacteria with different cell 603 

shapes. Equal numbers of the indicated species were mixed prior to the addition of PEG 35 kDa 604 

to induce depletion aggregation. Aggregates were imaged 18-h later. Combinations of rod- and 605 

cocci-shaped bacteria are shown in (A and B) and combinations of rod-shaped bacteria are 606 

shown in (C and D). Scale bar 30 µm.  607 

 608 

Figure S2. Depletion aggregation operates on dead cells and inert latex beads. (A and C) 609 

Depletion aggregation was induced with PEG 35 kDa using combinations of dead formalin-fixed 610 

cocci and rods. Fluorescent microscopy was used to image aggregates after 18-h of growth. Note 611 
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species segregation in B (rod+cocci) but not in C (rod+rod). Bar, 30 µm. (B) P. aeruginosa (rod, 612 

white arrows) and fluorescent spherical latex beads (2 µm diameter, black arrows) were 613 

aggregated using 30% w/vol PEG 35 kDa for 18-h and imaged using fluorescent and brightfield 614 

microscopy. Bar, 30 µm.  615 

 616 

Figure 4. Depletion aggregation increases S. aureus tolerance to antimicrobials secreted 617 

by P. aeruginosa. (A) Equal numbers (107 CFUs) of S. aureus and P. aeruginosa (wild-type 618 

PAO1 or ΔlasR/rhlR) were cocultured in LB supplemented with 30% w/vol PEG 35 kDa where 619 

indicated. After 18-h, viable bacteria were enumerated by serial dilution and plating and plotting 620 

the competitive index (change [final/initial] in P. aeruginosa vs. S. aureus CFUs). Results are the 621 

mean ± SD, N=3 for each condition; **p<0.01 relative to wild type. (B and C) S. aureus (108 622 

CFU/ml) was added to filter sterilized supernatants collected from wild-type or ΔlasR/rhlR P. 623 

aeruginosa overnight cultures supplemented with 30% w/vol PEG 35 kDa where indicated. 624 

Viable S. aureus was enumerated by serial dilution and plating at the indicated times. Results are 625 

the mean ± SD, N=3 for each condition and timepoint; *p<0.02. 626 

 627 

Figure S3. PEG does not inactivate antimicrobials present in P. aeruginosa 628 

supernatants. One possible explanation for the reduced killing of aggregated S. aureus (see Fig 629 

4) was that PEG somehow inactivated antimicrobials present in wild-type P. aeruginosa 630 

supernatants. To address this possibility, we used a lower molecular weight PEG (PEG 2 kDa). 631 

As polymer molecular weight decreases, the polymer concentration required to induce depletion 632 

aggregation of a given number of cells increases (12, 14). Thus, PEG 2 kDa does not promote 633 

depletion aggregation at 30% w/vol  (14). Dissolving PEG 2 kDa into wild-type P. aeruginosa 634 

supernatants (A) did not reduce S. aureus inhibition compared to polymer-free controls (B), 635 

indicating that PEG did not inactivate antimicrobials present in P. aeruginosa supernatants.  636 

   637 

Figure 5. Depletion aggregation promotes contact-dependent bacterial competition. (A) 638 

The outcome of competitions between B. thailandensis and either wild-type or ΔclpV1 P. 639 

aeruginosa are shown. Initial cultures contained 1x108 CFU/ml P. aeruginosa and 2x107 640 

CFU/ml B. thailandensis. Results are after 24-h of co-culture in the indicated conditions and are 641 

the mean ± SD, N=3 for each condition; **p<0.01. (B and C) Fluorescent microscopy was used 642 
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to visualize depletion aggregates after 24-h of co-culture with 30% PEG 35 kDa. Representative 643 

images are shown with B. thailandensis strains in red and P. aeruginosa in green. Scale bar, 30 644 

µm. 645 

 646 

Figure 6. Model depicting how depletion aggregation affects bacterial competition and 647 

species distribution in aggregates. (A) Depletion aggregation causes bacteria with different cell 648 

shapes to spontaneously segregate. When P. aeruginosa and S. aureus were co-cultured under 649 

conditions promoting depletion aggregation, S. aureus tolerated antimicrobials secreted by P. 650 

aeruginosa, promoting species coexistence. (B) When two rod-shaped species such as P. 651 

aeruginosa and B. thailandensis are aggregated by the depletion mechanism, species segregation 652 

is not observed and contact-dependent T6SS-mediated killing is promoted, allowing P. 653 

aeruginosa to dominate. 654 
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