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While recent meta- analyses have suggested that local taxonomic richness has on average remained 8 

invariant, potential shifts in functional traits remain underexplored at global scales. Here, by linking the 9 

largest cross-taxa community time series database to multiple trait databases, we show that within 10 

communities there is no clear trend between size traits and changes in abundance rank over time. This 11 

suggests that there is no pervasive tendency across biomes for larger species to be doing proportionally 12 

better or worse than smaller species.  13 

Recent analyses have found that despite high and increasing levels of community turnover, there is no clear 14 

overall trend in the local-scale species richness1–4. However, it remains unclear how this result translates into 15 

functional changes. One of the most fundamental functional traits of a species is its size5,6 and there is an 16 

expectation that a warming climate is will likely favour smaller bodysizes
7,8

. Further, larger species have been 17 

more extinction prone during some previous mass-extinctions
9,10

, are more likely to show strong recent 18 

population declines
11

, and (although relationships are threat-dependent) tend to be assessed at a higher risk of 19 

extinction12 due to longer generational intervals and increased threat from habitat fragmentation and 20 

hunting13. 21 

One might therefore expect a detectable signal of shifts in community trait values beneath the apparent 22 

underlying consistency in taxonomic diversity. To examine this, we tested whether the body size of a species is 23 

correlated to a relative change in abundance through time using the publicly available BioTIME database14. 24 

This database is the largest collection of time series of ecological communities and has wide geographic and 25 

taxonomic scope 14. After cleaning and standardising the names associated with the records, we linked six 26 

fundamental ‘size’ traits from four openly accessible trait databases representing four guilds –  adult body 27 

mass from a database of amniote life history traits15, adult body length and qualitative body size of marine 28 

species from the WoRMS database16, plant maximum height and seed mass from the TRY database17, and 29 

maximum body length of fish from a compilation
18

 based on data in the FishBase repository
19

.  30 

Observations from single-location studies were collated, while widely dispersed studies were separately 31 

binned into a global grid of cells, each approximately 10km wide, and data from each study and cell were 32 

treated as discrete assemblages, following previous analyses1,20. Selecting only assemblages with quantified 33 

observations of ≥10 species, over ≥5 years, and with ≥40% of the species having records for at least one trait, 34 

we generated 22,915 community time series from 167 studies. This filtered dataset represented 2,516,175 35 
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observations of 12,033 species, of which 8,238 could be linked to at least one ‘size’ trait (representing 84.6% of 36 

observations). Equally weighting studies, the average time series length was 17.2 years (range 5-70.5) and the 37 

average number of species per included assemblage was 56.7 (range 10-337).  38 

To focus on changes within the community and mitigate the risk of issues with changing sampling intensities 39 

through time, for each trait and community assemblage time series for which there was sufficient data, we 40 

calculated ‘τ’ - the Kendall rank correlation coefficient between the trait in question and change in relative-41 

rank of the abundance of each species within the assemblage (Fig 1a). This gives a non-parametric measure of 42 

whether larger species are more or less likely than smaller species to have increased their relative rank 43 

through time and, importantly, can be calculated where trait values for only a fraction of the observed species 44 

are available. To weight each study within BioTIME equally, where there were multiple assemblages per study 45 

these were averaged to generate a τ value for each possible study-trait combination. In order to provide a null-46 

model against which to evaluate the statistical significance of this multistage analysis, we repeated the 47 

procedure with 100 trait randomisations per assemblage.  48 

For five of the six tested size traits the distribution of study τ values was not significantly different from the 49 

null model (Fig. 2, Extended Data Table 1). The one exceptional trait (amniote body mass) showed an overall 50 

average positive relationship between size and relative abundance trends. Possible confounding factors for the 51 

value of τ associated with each study, namely the total span of the time series, the number of sample points, 52 

the species richness, the average trait completeness, the number of assemblages within the study, the grain of 53 

the study and the absolute latitude did not consistently predict τ (Extended Data Figure 1, Tables 2-3).  54 

These results indicate that there is not yet evidence for widely pervasive trends in a core functional trait, body 55 

size. Importantly however, this study should not be seen as a refutation of the enhanced threats faced by the 56 

very largest apex species
21

. Rather, against a background of considerable turnover
2,3

 across the whole 57 

community assemblage, on average, species positions in communities are being taken up by species of 58 

comparable size. This suggests that previously identified shifts towards smaller species found in some 59 

systems7,22 may not be as universal as currently expected8 and aligns with the divergent changes in global 60 

body-size abundance distributions observed between mammal guilds23. However, we note that the variance in 61 

� across the dataset was consistently larger than that generated by a null model randomising the available trait 62 

data within assemblages (Fig 2). This implies that many individual communities are experiencing significant 63 

directional change in their body size traits, rather than local stasis or indeed active regulation.  64 

The overall positive association across the amniote studies could have a number of causes that would benefit 65 

from further investigation. One putative explanation is that anthropogenic dispersal limitations (generally 66 

considered to act more strongly against smaller species) may be having a greater immediate impact than 67 

climate change24. There are also indications of differences between terrestrial and marine systems. Previous 68 

work with the same datasets
1,20

 has found greater species richness and abundance changes in marine systems 69 

than in terrestrial systems, while here we see a signal of greater trait-changes in the (largely terrestrial) 70 

amniotes. In our study, the fish lengths trait displayed a distinctive distribution of τ (Fig 2c), with a modal peak 71 
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of studies showing small negative values, and then a tail of strongly positive relationships. This guild is also the 72 

most likely to have experienced sustained anthropogenic pressure
25

 and many of the ‘fish’ datasets in BioTIME 73 

include data from surveys of actively fished and managed areas. Accurately quantifying marine community 74 

trends is a challenge
 26,27

, but this distinctive pattern could be tentatively interpreted as a signal of the 75 

imposition or relaxation of anthropogenic pressure across marine systems28,29. 76 

Our analysis necessarily sacrifices fine resolution for global scale. Although the lack of consistent study-level 77 

drivers of τ suggests that the results are unlikely to be solely determined by biases within the BioTIME 78 

database, future work should seek to improve the scope and resolution of available data to enable more 79 

strongly parametric analyses and examine additional measures of community change. While available trait 80 

databases of amniotes and fish are carefully curated, checked and taxonomically tidy, the other databases 81 

pose more problems in terms of taxonomic matching and consistency of trait measurements. Without direct 82 

correspondence between dynamics and trait data sources, it is necessary to take traits as fixed values for each 83 

species, despite known differences in traits in time30–32 and space33 that may themselves represent responses 84 

to global change. However, in Celtic sea fish within-species shifts have been shown to contribute less to 85 

community-level size shifts than changes in species composition 
34

. We also note that ‘size’ traits for 86 

indeterminately growing plants have a less clear meaning than for animals. However, both seed size and 87 

maximum height are linked to environmental variables
35,36

 and could therefore be hypothesised to influence 88 

species responses to global change.  89 

Many of the criticisms and defences regarding earlier studies using the BioTIME dataset, and indeed other 90 

metanalyses of large collections of time series, also apply to this work
37

. The statistical approach was 91 

developed to be as robust as possible to both incomplete trait data and changes in overall abundance and 92 

sampling effort through time. However, it must be noted that our largely non-parametric approach could lack 93 

the power and resolution to identify subtle changes. Biases in the underlying BioTIME database towards 94 

vertebrate taxa and North American and European sites14 are further exaggerated when crossed with trait 95 

data availability (Figure 1b). One particularly concerning gap is the absence of any insect studies due to a 96 

paucity of usable trait information. Observations suggest there have been considerable changes in the 97 

structure of insect communities24,38,39. Developing comprehensive insect trait datasets, including using proxies 98 

and data imputation, will be crucial to address this deficit
40–42

. 99 

In conclusion, despite these reservations, this global analysis suggests that cases of relative increases of larger 100 

species24,43 or trait constancy despite declines in abundance44, may in fact be as frequent as shifts towards 101 

smaller sized species
22

. Community responses may therefore be considerably more nuanced and localised than 102 

previously considered based on macroecological expectations
8
.   103 
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104 

Figure 1. a) Example of the non-parametric approach taken to accomadate patchy trait data and possible 105 

variation in sampling intensity through time for an arbitrary example assemblage. Here species with trait 106 

values are coloured, others without trait data are black. (i) Quantitative survey data is combined to generate 107 

assemblage time series. (ii) the relative ranks of each species are calculated for each year, through which is fit 108 

a linear model summarising the rate of change (β) in a species rank through time (iii). For those species where 109 

trait data is available, the concordance between body size traits and abundance rank changes (iv) is then 110 

summarised by τ, the Kendal rank-correlation coefficient (here, τ � 0.24). b) Global distribution of studies, for 111 

each tested trait, showing average τ for each study-trait combination. Marine:  Body length = ▲, Marine: 112 

Qualitative body size = ■, Fish: Maximum length = �, Amniotes: Adult body mass = J, Plants: Seed mass = +, 113 

Plants: Maximum height = �. Note that the locations are shown as centre point of each study, which can cause 114 

oceanic studies to be ‘located’ on land. See Extended Data Table 4 for full details of study-level results.  115 
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 116 

Figure 2. Distribution of Kendall’s rank correlation coefficient between the 6 tested body-size traits and 117 

changes in relative abundance through time (‘τ’). Each dot represents one study, averaging across the 118 

constituent assembly time series for studies of large spatial extent. Results are binned into classes 0.05 units of 119 

τ wide. Blue density plots show the distribution of 50 randomisations of available trait data. Statistical results 120 

refer to two-sided two-sample t-tests, comparing the distribution of observed τ values to the null distribution. 121 

Means shown are for the observed results. Full statistical results are given in Extended Data Table 1. 122 

  123 
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Methods  124 

Generating assemblage time series. We downloaded all studies available in the ‘open’ component of the 125 

BioTIME database of community time series14 from https://doi.org/10.5281/zenodo.3265871. BioTIME 126 

contains observations from both fixed plots (repeat measures from the same set of specific localised sites) and 127 

from wide ranging surveys and transects that may not necessarily precisely align year-on-year. We followed 128 

previous approaches
1
 and first identified studies as ‘multi-site’ or ‘single-site’ based on the number of 129 

coordinates in the BioTIME database. Single site studies were considered as one combined assemblage, while 130 

widely-dispersed ‘multi-site’ studies were portioned into assemblages based on a global hexagonal grid of 96 131 

km2 cells using dggridR
45. We retained records from assemblages with abundance or biomass data of at least 132 

10 distinct species and at least 5 years between the first and the last record. 133 

Cleaning Names Although the majority of the records are identified with binomials to species level, a portion 134 

of the records in the BioTIME database are labelled only at higher taxonomic levels. For simplicity, we refer to 135 

all distinct names as ‘species’. We identified uninformative labels (for example ‘spA’, ‘unidentified’, 136 

‘Miscellaneous’, ‘larvae’, ‘grass’) and common names (mostly birds) were converted to binomials using the 137 

Encyclopaedia of Life tool via the taxize R package46,47 followed by manual inspection based on study location 138 

and species distribution where multiple options were presented. We excluded studies where the species are 139 

listed using codes. Informative names were standardised against the GBIF name backbone48 using taxize. The 140 

dominant kingdom represented in each study was used to distinguish homonyms. Where BioTIME included 141 

only a genus level identification, we matched these to genus level trait values listed in trait databases. Where 142 

BioTIME only included taxonomic information of higher rank than genus, we did not attempt to match the 143 

traits. 144 

Trait data We used four separate trait databases that include some measure of organism size, but we did not 145 

mix information between databases. Amniotes: The life history database was downloaded from 146 

https://doi.org/10.6084/m9.figshare.c.3308127.v1
15

 from which we used the ‘adult_body_mass_g’ field. 147 

Plants: We downloaded from the TRY database (https://www.try-db.org/)17 all records of ‘seed dry mass’ (trait 148 

26) and ‘plant height vegetative’ (trait 3106). We grouped these by accepted species name, and calculated the 149 

mean of the log 10 �seedmass� values and the maximum observed height. We did not assign a value when the 150 

standard deviation of log 10 �seedmass� values was greater than 1. The resultant dataset was derived from 91 151 

original datasets51-123. Fish: We downloaded a curated database of fish traits from 152 

https://store.pangaea.de/Publications/Beukhof-etal_2019/TraitCollectionFishNAtlanticNEPacificContShelf.xlsx 153 

18
 which in turn is largely based on data from the FishBase database

19
. It is focussed on the North Atlantic and 154 

Pacific continental shelf, but this represents the majority of the relevant BioTIME studies. It includes values for 155 

both genus and species level. We used maximum length, and when there were multiple values for a particular 156 

species, we took an average. Marine: We downloaded size data from the World Register of Marine Species 157 

(WoRMS) database16. Aphia IDs for all the species in our assemblages (excluding plants and fungi) were 158 

identified and used to download all attributes associated with these IDs held on WoRMS using the worrms R 159 

package49. Quantitative ‘body size’ measurements of length were scaled to millimetre units. We discarded 160 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443574doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443574
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

values from stages other than adults, values corresponding to minimums or thicknesses, then took a mean, 161 

except where the values differed by over an order of magnitude, which we discarded. Qualitative body sizes 162 

were divided into four categories (<0.2 mm , 0.2 - 2mm, 2-200 mm, >200 mm), that were carried forwards as 163 

simple numbers (1-4). Data not from adults was discarded, and where an ID was associated with multiple 164 

distinct size categories, it was discarded.  165 

Summaries of the trait data completeness are given in Extended Data Figure 2. Note that 80 studies had 166 

sufficient trait data for analysis under multiple traits - 36 had both categories of plant data, 31 had length data 167 

from both WoRMS and the fish-specific database, 7 studies spanned the amniote life history traits and WoRMS 168 

database, 5 studies shared both qualitative and quantitative size information from WoRMS, and one study 169 

could be related to both traits from WoRMS and the fish database.  170 

Abundance change – trait correlation. We assessed each assemblage-trait combination where ≥40% of the 171 

species had data for that trait. Within each year, all � species in the assemblage were assigned relative ranks (1 172 

= highest, 1/n = lowest) by their abundance or biomass depending on the fields available in BioTIME. Ties were 173 

averaged and where a species was not observed in a particular year, it was assigned a rank of zero for that 174 

year. Where a study included both ‘abundance’ and ‘biomass’ data, we preferentially used the abundance 175 

data. Presence absence-data was not used. We fit a linear model through the relative ranks over time of each 176 

species in the assemblage. The set of slopes (β� of these linear models within each dataset summarised the 177 

relative change in abundance of each species in the assemblage through time. Very small β values, caused by 178 

model fitting errors when there is no change in rank abundance, were set to 0 to avoid spurious rankings. The 179 

main response variable ‘τ’ for each assemblage was then computed as Kendall’s rank correlation coefficient 180 

between trait values and the set of βs. Species with missing trait values were excluded. The default ‘τ�’ 181 

approach was used for ties50. Where there were multiple assemblages per study, study level τ was a simple 182 

arithmetic mean of all assemblage level τ values. 183 

Statistics To generate a null model for the impact of traits, the relative abundance rank changes (βs) were 184 

computed as above, but the available trait values (including ‘NA’s where trait data was missing) were randomly 185 

reassigned to the species in that assemblage and τ recalculated. This was repeated 100 times per assemblage 186 

to generate a null distribution of expected τ values for each study. For each tested trait, we used two-sided 187 

Welch’s two-sample t-test to determine if the mean τ for that trait was significantly different to this null 188 

expectation.  189 

To examine study level determinates of τ within each trait, for each study we calculated: 1) the mean total 190 

species richness of each assemblage over the time frame, 2) the mean assemblage level trait data 191 

completeness, 3) the mean number of years that from which there was data, 4) the mean span of years from 192 

which there was data, 5) the number of assemblages within the study (i.e. the spatial extent), 6) the grain size 193 

of the study, as listed in the BioTIME metadata, and 7) the absolute latitude of the centre of the study. We fit a 194 

set of linear models to assess whether these factors could predict either τ or τ�. 195 
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