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ABSTRACT 
With over three million deaths worldwide attributed to the respiratory disease COVID-19 caused 
by the novel coronavirus SARS-CoV-2, it is essential that continued efforts be made to track the 
evolution and spread of the virus globally. We previously presented a rapid and cost-effective 
method to sequence the entire SARS-CoV-2 genome with 95% coverage and 99.9% accuracy. 
This method is advantageous for identifying and tracking variants in the SARS-CoV-2 genome 
when compared to traditional short read sequencing methods which can be time consuming and 
costly. Herein we present the addition of genotyping probes to our DNA chip which target known 
SARS-CoV-2 variants. The incorporation of the genotyping probe sets along with the advent of 
a moving average filter have improved our sequencing coverage and accuracy of the SARS-
CoV-2 genome. 
 
INTRODUCTION 
 
The novel Coronavirus, SARS-CoV-2, is attributed to over one 141 million cases of the 
respiratory disease COVID-19 and has resulted in over 3 million deaths globally since its first 
report in December of 20191. SARS-CoV-2 is a positive sense, single stranded RNA virus prone 
to mutations in part due to its viral polymerase lacking error correction capabilities, resulting in 
poor replication fidelity2,3,4. Additionally, the 3’ to 5’ exoribonuclease activity has been attributed 
to moderate mutations in SARS-CoV-2 which affect transmission, receptor interactions, and 
host infectivity 5,6,7. With the help of whole genome sequencing many variants in the viral 
genome have been detected, several of which may be associated with an increased risk of 
mortality 8,9,10. 
 
In our previous work we introduced a SARS-CoV-2 whole genome resequencing approach 
utilizing a DNA array chip that can sequence accurately, at single base-pair resolution, the 
complete SARS-CoV-2 genome11. Eight SARS-CoV-2 clinical samples from COVID-19 patients 
in Wyoming were sequenced and yielded a sequencing accuracy and coverage of 99.86%-
99.92% and 98.07%-99.54% respectively. Here we introduce a DNA chip that includes genome 
tiling features, as previously described, plus specific probe sets to genotype known SARS-CoV-
2 variants. The data from the additional probes sets allows for a confirmation measurement of 
variant calls made by the tiling array probes sets. In addition, we have further improved the 
variant identification accuracy via a moving-average based filtering algorithm which identifies 
regions of low-quality data and determines the reliability of the variant calls. These additions to 
our previous work have resulted in a notable improvement of sequencing accuracy and 
coverage of 99.92%-99.99% and 98.37%-99.59% respectively. 
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Methods 
 
Sample Preparation and Hybridization 
Samples were prepared as described in our previous work11. Briefly, in order to test the 
robustness and improved sequencing accuracy of the DNA chip by including specific genotyping 
probes in addition to the tiling array features, we sequenced eight clinical samples from COVID-
19 positive patients. The eight clinical samples were acquired from the Wyoming Public Health 
Laboratories through collaboration with the UNM Department of Pediatrics as described in Hoff 
et al. We will maintain the naming scheme of our previous work and refer to these samples as 
WY24, WY26, WY32, WY36, WY41, WY44, WY59, and WY64. 
 
The samples re-amplified using the ARTIC protocol12 using biotinylated dUTP in order to 
prepare the sample for sequencing using the DNA chip equipped with both the tiling DNA array 
and genotyping probe sets. Fragmented samples were hybridized to the DNA chip overnight 
prior to Cy3-Streptavidin staining. The chips were then scanned using a custom-built confocal 
scanner in the Cy3 channel. 
 
DNA Chip Design 
The tiling array is identical to the DNA chip design described previously11,13. In short, each 
position in the genome (on the sense and antisense strand) is represented on the chip using a 
group of features composed of 25-mer oligonucleotide probes. Each feature in the probe sets is 
represented by one of the four bases at the 13th position, flanked on either side with the 
reference sequence. Thus, each position in the SARS-CoV-2 genome is represented by 2 probe 
sets, one for the sense strand and one for the antisense strand on the tiling DNA array. Note, 
SARS-CoV-2 is a ssRNA virus, but the antisense strand is synthesized during the ARTIC PCR 
amplification. 
 
In addition to tiling array probes for every position of the SARS-CoV-2 genome, we incorporated 
probes specific to sites of known variants and genomic regions of interest. These positions were 
identified by analyzing all SARS-CoV-2 full genome sequences in the GISAID database as of 
May 2020 utilizing the cleaning and filtering functions designed by Lanfear14,15. Similar to the 
tiling array probes, each variant selected for genotyping was synthesized on the chip with probe 
sets for both the sense and antisense strands. 
 
Base or Variant calling method for genome tiling array and genotyping probe sets 
Using the maximum likelihood method developed by Hoff 2021, the raw data from the genome 
tiling array was used to construct the maximum likelihood (ML) model variant and base calling 
and assigning the Q score each base call (either variant or reference base). The difference and 
differential were calculated for the genotyping probe sets. The difference and differential were 
calculated as described by Hoff et al; briefly, the difference is the highest intensity feature - 
lowest intensity feature, and the differential is the highest intensity feature - second highest 
intensity feature normalized by the difference. The Q score for the base or variant calls from the 
genotyping features was calculated using the ML model constructed from the tiling array data. 
 
Accuracy and coverage calculations of the genome tiling array are used as the baseline for 
comparison purposes throughout our work. Accuracy calculations account for the number of 
correct reference calls, correctly identified true variant calls, and incorrect calls divided by the 
total number of high-quality calls where the Q score was greater than the Q-threshold (Qth) of 
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20. Coverage is calculated as the total number of calls (both reference base or variant calls) 
divided by the size of the SARS-CoV-2 reference genome. 
 
Incorporation of the Genotyping Probe-set 
To improve overall accuracy and coverage we devised a method to incorporate high quality 
calls made by the genotyping probe-set, replacing low quality calls from the genome tiling array, 
while retaining the high-quality calls of the genome tiling array. The replacement strategy looks 
to improve the calls made by the genome tiling array in two separate iterations which look at the 
‘correctness’ of the call relative to the reference and the overall Q score of each individual read. 
Specifically, the first iteration of replacement removes variant calls made by the tiling array that 
are not confirmed by genotype probes, where the genotyping Q score is higher. The second 
iteration of replacement serves to improve the overall quality of the entire sequencing data set 
by incorporating the Q score for the genotyping probes when the calls agree. The following 
sections will provide details on the utilization of the genotyping probes along with the tiling array 
features. 
 
First Iteration of the Replacement and Incorporation of the Genotyping Probe-set. For all 
variant calls from the tiling array with a Q score less than 50, the base call for the corresponding 
position from the genotyping array is examined. If the Q score for the genotyping probe does not 
confirm the variant call and has a higher Q score, the variant call is removed, and a reference 
base is called. Additionally, during this set, if the tiling array does not call a base because the Q 
score is below 20, a reference or variant call is made based on the genotyping probes if the 
genotyping Q score is greater than 20. 
 
Second Iteration of the Replacement and Incorporation of the Genotyping Probe-set. The 
second iteration will replace additional calls that have higher Q-scores in the genotyping probes 
than in the genome tiling array. This additional step improves the reliability of the previous 
reference calls and increases the total number of reads being used. For instance, when both the 
genome tiling array and the genotyping probe set make the same reference base call, the read 
with the higher Q score is selected. Additionally, when the genotyping probe set confirms a 
variant call made and has a higher Q score than the genome tiling array, then the data with the 
higher Q score is retained. 
 
Q score Moving Average Filter  
We developed a simple tool in R to calculate the individual moving average of Q scores (MAQs) 
centered around each position in the SARS-CoV-2 genome. The MAQ was calculated for each 
genome position considering the twelve flanking bases on either side of the position, 25 bases 
total which is the length of the oligonucleotides on the chips. The calculated MAQ value for 
every position in the genome was added as metadata for every base call. 
 
Using the MAQ, we developed a simple moving average filter (MA-filter) as an additional base-
calling criterion to improve the reliability and confidence of the base calls made by the DNA chip. 
First, variant calls with a Q score above 30 were not analyzed by the MA-filter. However, variant 
calls with a Q score below 30 were subject to the MA-filter. We then filtered out and removed 
variant calls with a Q score below 30 if the MAQ was two standard deviations below the average 
of the Q scores across the entire genome. The base calls were then categorized as “Non-calls” 
and the data removed from the final analysis. The position, Q score, and MA of all reads 
identified as for the MA-filter-group were recorded. 
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The accuracy and coverage of the post-MA-filtered data was calculated as described in 
previous methods. The results were graphically compiled using ggplot2 package version 3.3.2 in 
R16. 
 
Accuracy analysis of samples 
True variants were separately identified by Illumina short-read sequencing and used to 
determine the accuracy of the variant calls made by the combined genome tiling array and 
genotyping probe sets11. We then analyzes the accuracy of the results from the chip based 
sequencing using tiling array features and genotyping probes on four sets of genome positions; 
all sites in the SARS-CoV-2 genome, the 42 positions of known SARS-CoV-2 variants from the 
Wyoming clinical samples in the GISAID database as of May 2020, all US SARS-CoV-2 variants 
from the GISAID database as of May 2020 (US Var, 5055 positions) and confirmed US SARS-
CoV-2 variants which have been identified in five or more samples as of May 2020 (USgt5, 
1044 positions). The post replacement, MA-filtered sequencing data was assessed for base-
calling accuracy at the positions described. We systematically assessed each known variant 
location and verified whether-or-not the genome tiling array and the genotyping probe set made 
the correct variant calls at these positions with a sufficient Q score. Variant calls that did not 
match the short-read sequencing true variant results were identified for further investigation. 
The base calls identified included reference calls made at true variant positions, incorrect 
variant calls at true variant positions, “Non-call” reads either due to low Q, or “Non-call” reads 
filtered out by the MA-filter. True variants were only correctly identified if the base call matched 
the variant base call of the Illumina short-read sequencing. A categorical Venn diagram of the 
variant calls was made using the VennDiagram package in R, version 1.6.2017. 
 
Results and Discussion 
 
Incorporation of genotyping probe sets and genome tiling array probe set data 
Complementing the data from the genome tiling array probe sets with the genotyping probe sets 
increased the accuracy of the base calls by three different mechanisms. First, when the variant 
is in a region that is identical to the reference sequence except for a single nucleotide variant, 
the genotyping probes simply provide additional measurements of a base. Secondly, the variant 
may reside in a region with additional variants, so therefore, the surrounding ‘reference’ 
sequence of the tiling array is different from the surrounding sequence on the genotyping array. 
Finally, the genotyping probes can assay more complex variants, such as indels. In the clinical 
samples we analyzed all improvements in the accuracy were due to additional redundant 
measurements because. The redundant measurements likely improved the base calling 
accuracy due to issues with certain probes sets and the probe sets location on the chip. For 
example, nearby extremely bright features can lead to slightly erroneous intensity 
measurements, which likely leads to some incorrect variant calls. 
 
Therefore, to improve the base and variant calling accuracy, we incorporated the base calls 
from the genotyping probes with the data from the genome tiling array probes in two iterations. 
The first iteration replaces non-reference calls and non-calls made by the genome tiling array 
with reference calls made by the genotyping probe set when the data quality from the 
genotyping probe sets is of higher quality. Table 1 illustrates the results after the first iteration of 
replacements. Overall, for the WY64 samples, the number of variant calls decreased by 2 when 
incorporating the genotyping probe set data. In the WY64 sample, we made 23 variant calls 
when using only the genome tiling array, and after the first iteration of replacements we 
identified 2 base calls that should be a reference call rather than a variant. Also, the coverage of 
the WY64 sample increased from 99.538% to 99.554% by replacing non-calls with a genotyping 
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probe call. Finally, with the second iteration of replacement additional base calls that have been 
determined by the genotyping probe sets to have a higher Q score where adjusted. This 
additional step improves the reliability of the previous reference calls and expands the genome 
coverage to 99.6180% respectively (Table 1). 
 
Moving average filter to identify unreliable variant calls. 
A moving average (MA) filter was developed as a means to objectively identify base calls that 
might be less reliable. This method was developed because we previously observed a high 
number of variant calls of low quality in certain regions of the genome. Therefore, a region of 
low MA Q score indicates that the data is less reliable. After the incorporation of the genotyping 
probes, we made 21 variant calls for WY64, and 9 of these variant calls had a Q score between 
20 and 30 and were flagged for further analysis. The average Q score across the entire genome 
in sample WY64 was 40.7004 (S.D. 2.2559), and we therefore set the MA Q score cutoff at two 
standard deviations below the mean, 36.1886. All 9 reads flagged for further analysis had a MA 
Q score lower than the cutoff and thus were removed from the analysis. Ultimately, in the WY64 
sample we identified 113 non-calls with a Q score less than 20 prior to the MA-filter. The 
number of non-calls increased to 122 after the 9 lower quality calls were removed and the 
number of variant calls were decreased to 12. The categorical breakdown of the “called” reads 
as a function of Q-score and position is depicted as a scatter plot in Figure 1. 
 
Validation of variant calls 
To verify the variant calls, we compared the resequencing results from the full-genome tiling 
array and genotyping probe sets after applying the MA-filter, to both the reference genome and 
to the variant calls from the Illumina sequencing results. For the WY64 sample, we confirmed 
whether a variant call made by the resequencing chip correctly detects a variant (matches 
Illumina sequencing results), makes an erroneous variant call (Illumina data calls a reference 
base), or misses a variant that Illumina identified. In this analysis we assumed that the Illumina 
data is 100% accurate at identifying viral variants. 
 
For the WY64 sample, we missed one true variant at position 24,453 in the genome (Fig. 2). 
This variant was initially detected by the genome tiling array with a relatively low Q score of 
24.8; however, the genotyping probe sets for this position called a reference base with a 
relatively low, but higher Q score of 25.3. Therefore, we ultimately called a reference base at 
this position. To further investigate the base at this position, we looked at the variant call file that 
was produced during the analysis of the Illumina short read data. The Illumina short read 
alignments at this position indicated that 251 mapped reads covered this location in the SARS-
CoV-2 genome. Of these 251 reads, 127 contained the reference base at this position, while 
124 reads contained the variant base at this position. Therefore, we suspect that this clinical 
sample contains quasispecies; some viruses have the 24,453 variant while others represent the 
reference genome. The existence of quasispecies may explain the relatively low Q score for this 
position, which is well below the average Q score seen across all positions in the genome 
(Q>40). 
 
While we speculate that our inability to correctly call the variant at position 24,453 in the WY64 
sample is due to the presence of a quasispecies of virus, further investigation is needed. Viral 
quasispecies arise due to the high mutation rates of the viral genome and the change of relative 
frequency of the variants in the population18.  Quasispecies have been identified in the novel 
SARS-CoV-2 virus and their associated mutations have been shown to have a moderate to high 
impact on viral gene expression19. We hypothesize that simultaneous high Q scores in genome 
tiling array and genotyping probes at a single base may be an indication of the existence of 
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quasispecies, and our data analysis pipeline can be extended in the future to quantify the 
presence of quasispecies. 
 
Genotyping at known variants site  
To examine how effective our approach is at genotyping known variant sites, we analyzed the 
accuracy of the results at the known variant sites within all Wyoming samples, all United States 
samples, and also all variants sites that appear more than five times in the United States 
samples. The definition of known sites is based on data within the GISAID database as of 
August 2020. 
 
Using the maximum likelihood method, replacement methods, and removal of low-quality reads 
through the MA-filter, we analyzed 8 SARS-CoV-2 genomes from clinical samples at the sites of 
known variants. Overall, seven of the eight SARS-CoV-2 samples had 100% accuracy at the 42 
identified WY variant positions after the replacement iterations and MA-filter. In sample 64, we 
replaced a single correct variant call with an erroneous reference call, leading to an accuracy of 
97.62% at the 42 Identified WY variant positions. However, we suspect this error may be due to 
the presence of a quasispecies. Accuracy at the USgt5 variant positions ranged between 
99.70% to 100% (WY32 and WY36 respectively) and 99.68%-99.94% accuracy at all US-variant 
positions (WY32 and WY24, respectively) (Table 2). 
 
Conclusion 
Genomic data of the SARS-CoV-2 virus is essential for combatting this global pandemic. These 
data have been used to create healthcare policy, create hospital protocols, for allocation of finite 
resources on the front lines, and the development of multiple vaccines. Our technology 
addresses the need for continued monitoring of viral evolution and the spread of known viral 
variants which is imperative in combating further outbreaks of the virus. Through our previous 
work on a genome tiling array for SARS-CoV-2, Hoff 2021, and the subsequent improvements 
by inclusion of the genotyping probe sets outlined in this paper, we provide a highly accurate, 
reliable, rapid, and cost-effective method for surveillance of the rapidly-mutating SARS-CoV-2 
viral strains. By incorporating probes to detect known variants and a moving average filter to 
address low quality regions, we have sequenced eight clinical samples and improved the 
accuracy of our previous work from 99.86% to 99.98% and with improved coverage from 
99.18% to 99.59%. 
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Tables 

  
  Non-calls Calls Variant Calls Reference Calls 

True 

Variants 

True Variants 

Called Accuracy coverage 

WY24 Genome Tiling Array  226 29620 21 29599 - - 99.9291 99.2428 

  Replacement iteration 1 215 29631 19 29612 - - 99.9359 99.2796 

  Replacement iteration 2 183 29663 19 29644 9 9 99.9663 99.3869 

  MA-filter 190 29631 12 29619 9 9 99.9899 99.3629 

WY26 Genome Tiling Array  384 29462 40 29422 - - 99.8642 98.7134 

  Replacement iteration 1 363 29483 34 29449 - - 99.8847 98.7838 

  Replacement iteration 2 258 29588 34 29554 7 7 99.9088 99.1490 

  MA-filter 261 29560 28 29532 7 7 99.9290 99.1248 

WY32 Genome Tiling Array  344 29502 33 29469 - - 99.8881 98.8474 

  Replacement iteration 1 332 29514 31 29483 - - 99.8950 98.8876 

  Replacement iteration 2 298 29548 31 29517 6 6 99.9154 99.0149 

  MA-filter 309 29512 14 29498 6 6 99.9729 98.9638 

WY36 Genome Tiling Array  241 29605 29 29576 - - 99.9020 99.1925 

  Replacement iteration 1 231 29615 23 29592 - - 99.9223 99.2260 

  Replacement iteration 2 180 29666 23 29643 6 6 99.9427 99.4036 

  MA-filter 186 29635 16 29619 6 6 99.9663 99.3763 

WY41 Genome Tiling Array  574 29272 38 29234 - - 99.8702 98.0768 

  Replacement iteration 1 550 29296 33 29263 - - 99.8874 98.1572 

  Replacement iteration 2 476 29370 33 29337 9 9 99.9183 98.4119 

  MA-filter 489 29332 18 29314 9 9 99.9693 98.3602 

WY44 Genome Tiling Array  203 29643 26 29617 - - 99.9123 99.3198 

  Replacement iteration 1 198 29648 25 29623 - - 99.9157 99.3366 

  Replacement iteration 2 173 29673 25 29648 8 8 99.9427 99.4338 

  MA-filter 173 29648 20 29628 8 8 99.9595 99.4199 

WY59 Genome Tiling Array  388 29458 24 29434 - - 99.9185 98.7000 

  Replacement iteration 1 373 29473 22 29451 - - 99.9254 98.7503 

  Replacement iteration 2 332 29514 22 29492 7 7 99.9492 98.8943 

  MA-filter 336 29485 14 29471 7 7 99.9763 98.8733 

WY64 Genome Tiling Array  138 29708 23 29685 - - 99.9226 99.5376 

  Replacement iteration 1 133 29713 21 29692 - - 99.9293 99.5544 

  Replacement iteration 2 113 29733 21 29712 8 7 99.9529 99.6214 

  MA-filter 122 29699 12 29687 8 7 99.9832 99.5909 
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Table 1. Incremental accuracy improvements of base calls made by the DNA tiling array 
Results and breakdown of call accuracy, coverage, and viability of reads made with the genome 
tiling array and improvements made through the replacement iteration with the genotyping 
probe set data and MA-filter. Non-calls refer to calls where Q-score is less than Qth = 20 and/or 
calls that are filtered out by MA-filter. Calls refer to base calls where Q-score is greater than Qth 
and used for sequencing calls. Variant calls refer to non-reference base-calls. Reference calls 
are those made relative to the reference genome. True variants called are correct calls made in 
reference to known true variants. Accuracy and coverage are both percentage values. 
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Genome 

Tiling Array 

Replacement 

Iteration 1 

Replacemen

t Iteration 2 MA-filter 

WY24 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.61% 99.90% 99.90% 99.90% 

  US var 99.86% 99.94% 99.94% 99.94% 

WY26 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.51% 99.80% 99.80% 99.80% 

  US var 99.56% 99.76% 99.76% 99.78% 

WY32 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.51% 99.51% 99.51% 99.70% 

  US var 99.58% 99.62% 99.62% 99.68% 

WY36 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.90% 99.90% 99.90% 100.00% 

  US var 99.78% 99.84% 99.84% 99.88% 

WY41 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.80% 99.80% 99.80% 99.80% 

  US var 99.58% 99.70% 99.70% 99.72% 

WY44 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.61% 99.61% 99.61% 99.80% 

  US var 99.76% 99.80% 99.80% 99.88% 

WY59 WY var 100.00% 100.00% 100.00% 100.00% 

  US-gt5 99.80% 99.80% 99.80% 99.90% 

  US var 99.70% 99.76% 99.76% 99.78% 

WY64 WY var 100.00% 97.62% 97.62% 97.62% 

  US-gt5 100.00% 99.90% 99.90% 99.90% 

  US var 99.90% 99.92% 99.92% 99.92% 
 

Table 2. Accuracy improvements of genotyping at known variant locations 
Results of progressive improvements by the replacement and MA-filter methods at specific 
variant size, organized by sample. WY var examines 42 base positions of known variants within 
samples gathered and sequenced in WY. US-gt5 are 1044 sites of variants sequenced, 
detected and confirmed in the US that have occurred in more than 5 samples. US var are sites 
of all 5055 variants found in US samples as of August 2020 on the GISAID database. Accuracy 
calculations are confined exclusively to the variant locations 
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Figure Legends 
 
Figure 1. Scatter plot, WY64 Q score and MAQ with variant call breakdown after MA-filter. 
 
A scatter plot generated in R using ggplot2 displaying all reads made by the full genome tiling 
array reads with incorporation of genotyping probe-set data and MA-filter on sample WY64 
between position 26 and 29834. Every call was assessed with a combination of base call and Q 
score. High quality reads with Q > Qth (20) are used to make calls. Dark gray circles represent 
base positions where Q > Qth and make a ‘Reference Call’. All calculated MAQ are overlaid as 
light gray.  Brown dots are reads that have a low Q score where Q < Qth, are categorically ‘Non-
calls’, and excluded to make base-calls. Q scores of ‘Variant Calls’ are identified as larger red 
circles, where the final base call made by DNA chip after replacement and MA-filter is not 
reference and the Q > Qth. Within ‘Variant Calls’, a blue overlap indicates calls that are 
removed by the MA-filter, which takes all variant calls with a Q score between 20 and 30 and 
removes any with a MAQ lower than the MA-threshold. Within ‘Variant Calls’, a green overlap 
indicates true variant calls identified and verified with short-read sequencing data. 
 

Figure 2. Venn Diagram, WY64 Variant Calls after MA-filter. 

A Venn diagram depicting the categorical breakdown of calls made by the DNA chip on sample 
WY64. Variant Calls made by the DNA chip are contained within the red circle. Any circle or 
number outside of red implies that the call is a reference call. True variants are color coded in 
green and are confirmed by short-read sequencing data. The blue circle indicates variant calls 
that are filtered out by the MA-filter, converted to non-calls, and omitted from making base calls. 
Overlap between green and red circles indicates true variants correctly called by the DNA chip 
and verified through short-read sequencing data. Overlap between green and blue circles 
indicate an improperly removed true variant by the MA-filter where the read is situated in a local 
region of low MAs indicated by a low MAQ below the MAQ threshold. Ideally both green and 
blue circles should be contained within the red circle without overlapping each other, implying 
that all true variants and reads filtered out by the MA-filter were correctly identified as variant 
calls. 
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