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Abstract 

Counting and classifying white blood cells (WBCs) in 

blood samples helps the early diagnosis of the disease. 

Many works have been done to develop machine 

learning-based methods to count WBCs. However, most 

of these works have low generalizability, and their 

accuracy decreases sharply as the dataset changes. In this 

paper, a new method is presented that helps to increase 

the generalization power. In this method, first, the 

WBC's nucleus is segmented, and then its convex hull is 

obtained. By subtracting the nucleus from the convex 

hull, a new image is created called the representative of 

the convex hull (ROC). Then, by Training a 

convolutional neural network (CNN) with the cells’ 

RGB image as well as the binary images of the nucleus 

and ROC, the generalization power is increased. The 

proposed method was first trained on the Raabin-WBC 

dataset, then its performance was evaluated on the LISC 

dataset without retraining. The proposed method's 

accuracy on the Raabin-WBC and LISC datasets is 93.97 

% and 51.57 %, respectively. Besides, the generalization 

power of four well-known CNNs named VGG16, 

ResNext50, MobileNet-V2, and MnasNet1 was 

investigated. It was found that VGG16 has more 

generalization power among these models. 
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Introduction 

It is no secret that white blood cells (WBCs) have a 

central role to play in the immune system of our bodies. 

It can be said that WBCs are the soldiers and defenders 

of the body against diseases and infections. When a 

person gets an illness, the white blood cells come into 

action and try to destroy the germs and viruses. In other 

words, in the early stages of the disease (before 

appearance of the symptoms), changes in the number of 

WBCs in the blood are evident. Therefore, differential 

count of WBCs in blood samples can lead to the 

detection of the disease at an early stage.  

In general, WBCs fall into five categories: lymphocytes, 

monocytes, neutrophils, eosinophils, basophils. Each of 

them is responsible for a special task. Lymphocytes, 

divided into two types of B and T [1], usually play an 

influential role against foreign organisms, particularly in the 

fight against viruses [2]. On the other hand, neutrophils 

serve as the primary line of defense against bacterial 

infections in the body [2], and eosinophils and basophils are 

commonly involved in inflammatory and allergic responses 

[2]. The typical number of WBCs in normal peripheral 

blood is between 4,000 to 10,000 cells per microliter, most 

of which are neutrophils [3]. Depending on the type of the 

disease, the number of WBCs either increases or decreases. 

Low WBC count is called leukopenia, and the high white 

blood cell count is called leukocytosis [4].  

The analysis of normal peripheral blood samples is 

usually performed manually under a microscope by a 

hematologist. Due to the difficulty of recognizing the type 

of WBC, blood sample analysis is usually erroneous. 

Besides, the heavy workload in hematology centers and 

extreme fatigue have caused more erroneousness. In 

addition, this type of blood sample analysis is too time-

consuming, and sometimes lengthening the time of blood 

sample analysis and examination leads to the late diagnosis 

of the disease. So, the disease progresses in such short time 

that it gets difficult to be treated. Therefore, there is a need 

for an intelligent, fast, and affordable system to analyze 

blood samples. This is where machine learning-based 

methods come in handy. 

Usually, a proper dataset must be collected to train a 

classifier. After data collection, data are split into two 

groups of training and test. The classifier is learned with 

training data, and its performance is evaluated with the test 

set. Since the process of assembling the test set is similar to 

the training set, the classifier can categorize the test set 

accurately if appropriate and meaningful features are fed 

into the model. Yet unfortunately, in the real world, the 

classifier's input data are generally collected with various 

devices or samples under different conditions than the 

training set. This causes a notable drop in the accuracy level 

of the classification. 

In collecting microscopic images, blood smear staining 

method, camera, microscope, magnification, and lighting 

conditions are the most important factors that differentiate 

datasets from each other. These factors cause the extracted 

features in the two datasets to be different from each other 

and lead to the classifier’s making a mistake. The 

differences between the two datasets are sometimes so great 

that it is easily visible. Figure 1 shows some samples of two 

datasets called Raabin-WBC [5] and LISC [6], the 

collection processes of which are different. In Table 1, the 

specifications of these two datasets and their collection 

process have been compared. 

Some Works have been done to overcome the low 

generalizability. One of these methods is transfer learning 

[7]. In this method, the deep neural network is trained on a 

very large dataset such as ImageNet [8] and then fine-tuned 

with a small WBC dataset. Fine-Tuning a deep 

convolutional neural network (CNN) trained on the 

ImageNet database, which contains 14 million images from 

1000 categories [9], helps extract more robust and invariant 
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features and adds more generalization power. Although this approach has had some successes, it is still not satisfying,

and the results we reported in this article prove this claim. 

Domain adaptation can also be considered as an approach 

to increase generalizability [10]. In this attitude, the 

classifier still needs to be trained with a few numbers of 

new datasets. Another way to enhance the generalization 

power is to design and extract robust and invariant hand-

craft features. However, developing such features is often 

not possible and is also a complex and time-consuming 

task.  

Given the challenge, this paper presents a new method 

that has been able to classify WBCs with more 

generalizability. In the next section, we will elaborate on the 

details of this method, and then, the obtained results are 

presented and compared with other works. 

 

Research Strategy  
In this study, Raabin-WBC and LISC datasets were used 

to investigate the generalizability of the WBC 

classification problem. For this purpose, training and test 

data of the Raabin-WBC dataset was used. Training data 

were employed to learn the model, and the test data were 

used to evaluate the classifier's performance. Besides, to 

assess the generalizability of the proposed method, the 

LISC data were categorized using the trained classifier 

without further training.  

 

Datasets 

As mentioned before,  Raabin-WBC [5] and LISC 

dataset [6] were used for this paper. The Raabin-WBC 

dataset is a very large dataset with many cropped WBCs 

images, all of which have been labeled by two 

hematologists. This dataset has three sets, namely, Train, 

Test-A, and Test-B. We did not use Test-B set, because 

this set has not yet been labeled. Train and Test-A sets 

contain 14,514 cropped images from five 

aforementioned general types of WBCs. Lymphocytes, 

monocytes, neutrophils, and eosinophils have been 

collected from 56 normal peripheral blood smears. 

Forasmuch as basophil cells are scarce in normal 

peripheral blood (<1%) [1], basophil images have been 

collected from one cancer case (chronic myeloid 

leukemia). All these smears have been stained with the 

Giemsa technique. Also, in Table 1, the specifications of 

this dataset are presented with the microscope and 

camera type. 

The LISC dataset includes 257 WBCs labeled by an 

expert. This dataset has been collected from peripheral 

blood smears and stained with Gismo-right technique 

[6]. These images have been imaged at a magnification 

of 100 employing a light microscope (Microscope-

Axioskope 40) and a digital camera (Sony Model No. 

SSCDC50AP) [6]. The properties of the LISC dataset 

have been presented in Table 1. 

 

Steps of the proposed method 

The proposed method contains three steps as following: 

 Detecting and segmenting the nucleus 

 Obtaining the convex hull of the nucleus and 

subtracting the segmented nucleus from the convex 

hull for making a new binary image. We named this 

image as the representative of the convex hull 

(ROC). 

 Classifying WBCs through feeding the RGB 

images, segmented images of the nucleus and ROC 

images into a CNN. 

 

We will elaborate more on the proposed method in the 

next sections. 

 

 
Figure 1. LISC and Raabin-WBC dataset. First, second, third, 

fourth, and fifth rows are lymphocyte, monocyte, neutrophil, 

eosinophil, and basophil, respectively.                                                  
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Table 1. The properties of Raabin-WBC and LISC dataset [11]. 

 
Dataset Number of WBCs Staining Microscope Camera 

Lym. Mono. Neut. Eoso. Baso. All 

Raabin-WBC 

[5] 
3461 795 8891 1066 301 14514 Giemsa 

1.Olympuse 

CX18 

2.Zeiss 

microscope 
(only for 

Basophils) 

1. Phone camera-

Samsung Galaxy S5 

2. Phone camera- LG 

G3 (only for 

basophils) 

LISC [6] 59 48 56 39 55 257 
Gismo-

right 
Axioskope40  

Sony-SSCDC50AP  

 

 

 

The nucleus segmentation algorithm 

To segment the nucleus, we utilized the method used in 

our previous work [12]. In this method, firstly, the RGB 

image is converted to CMYK color space. After that, 

two threshold values are computed using Otsu’s 

thresholding algorithm [13]. The first threshold is 

obtained by applying two-class Otsu’s thresholding 

algorithm, and the second threshold is obtained 

employing three-class Otsu's thresholding algorithm. 

Finally, the ultimate threshold value is attained through 

calculating the combination convex of the first threshold 

value and the second threshold value. This method can 

detect the nucleus with a dice similarity coefficient of 

95.42 %. More details of the segmentation algorithm 

have been presented in [12]. 

 

Obtaining ROC image 

By subtracting the segmented nucleus from its convex 

hull, the ROC image is obtained. However, here lies a 

big question why we made and used this image. It is 

clear that the shape of the nucleus is an important 

feature to diagnose the type of WBC. Considering this 

hypothesis, we found that the ROC image can also help 

to classify WBCs better. Figure 2 illustrates this claim. 

We can see that the ROC for the lymphocyte is very 

different from the ROC for the neutrophil. 
 
Classification 

To classify WBCs, we used convolutional neural 

network. Three channels of RGB image are usually 

inputted to the CNN, but in this paper, beside the RGB 

channels, we injected the binary images of the nucleus 

and ROC to the model. Therefore, this CNN model was 

created so that its input shape was 200⨉200⨉5. This 

network contains seven convolutional and three fully 

connected layers. Furthermore, to prevent over fitting, 

three batch normalization layers were employed. The 

training process was performed through stochastic 

gradient descent algorithm with a momentum 

coefficient of 0.9. This network has more than 2.2 

million trainable parameters. Figure 3 shows the 

structure of the model. 

The Raabin-WBC dataset was already divided into 

two parts for learning the model: about 70 percent for 

the training set and about 30 percent for the test (Test-A 

set). Moreover, 15 percent of the training set was 

considered as a validation set during learning process. 

The CNN model was trained for 15 epochs.  

The Raabin-WBC dataset was used to train the 

model and evaluate its performance, and the LISC 

dataset was utilized to examine the proposed method's 

generalizability. It is worth noting that the model was 

not retrained with the LISC dataset.  

The accuracy curves have been plotted for each epoch 

(Figure 4 and Figure 5). From Figure 4 and 5, it can be 

seen that there is a dramatic drop in accuracy for the 

LISC dataset.  

 

 
 

Figure 2. The segmented nucleus (first row), the convex hull of 

the nucleus (second row) , and the ROC image   
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Figure 3.  Architecture of the CNN model used in this paper.  Conv (convolutional layer). BN (batch normalization layer). FC (fully 

connected). 

 
Results and Discussion 

In order to have a proper comparison, we trained the 

convolutional network designed for this study with 

RGB image channels, only, and examined the 

generalizability in this case. Moreover, we investigated 

the generalizability of transfer learning-based methods 

employing four well-known deep CNNs called VGG16 

[14], ResNext50 [15], MnasNet1 [16], and MobileNet-

v2 [17]. For this purpose, these networks were fine-

tuned with training data. These models have already 

been trained on the ImageNet dataset, which contains 14 

million images from 1,000 classes. These networks are 

expected to have high generalizability because they 

have seen many different images, but the results show 

otherwise.  

From Table 2, Figure 4 and Figure 5, it can be seen 

that the accuracy of all models has dropped dramatically. 

By taking a meticulous look at Table 2, we can see that 

the accuracy of the model trained with RGB image fell 

from 86.76 % to 30.85 %, while the accuracy of the 

proposed method dropped from 93.97 % to 51.57 %.; it 

reveals that our approach towards injecting the binary 

images of the nucleus and ROC has been helpful in 

increasing the generalizability. In addition, among all the 

pre-trained networks, VGG16 had the best 

generalizability. As can be seen, by changing the dataset, 

the accuracy of this network, albeit having the best 

generalization power among all models, decreases from 

99.91 % to 58.75 %. 

Our proposed method ranked second among all these 

models after the VGG in terms of generalizability. It 

should be noted that the network used in our method has 

only 2.2 million trainable parameters. In comparison, the 

VGG16 network has 134 million trainable parameters, 

and this network was also trained on the ImageNet 

database. Therefore, holding the second position is not 

bad and shows that the proposed method has been 

successful in performance. 

Injecting binary images of the nucleus and ROC to 

the CNN led to an increase in the generalizability; it 

could be because the shape of the nucleus does not 

change with changing the dataset. The binary image is 

also resistant to changing the dataset, because its pixels 

are either 0 or 1. Therefore, the camera, microscope, 

staining method, and lighting conditions can not affect 

the binary image of WBC's nucleus. As a result, this 

approach is useful and has helped generalization power 

to improve. 

It is worth noting that all the results reported in Table 2 

are considered as the best accuracy level of each model 

for the LISC dataset (best epoch).   
 

Table 2. The comparison of generalization power. M 

(million) 

 
Method Accuracy (%) Parameters 

Test -A LISC 

ResNext50 [15] 99.80 26.85 22.9 M 

MnasNet1 [16] 98.47 27.24 3.1 M 

MobileNet-v2 [17] 99.46 47.86 2.2 M 

VGG16 [14] 99.91 58.75 134 M 

Training with RGB 86.70 30.85 2.2 M 

Proposed method 93.97 51.57 2.2 M 

 

 
Figure 4. The accuracy curve for test set 
 

 
Figure 5. The accuracy curve for LISC dataset 
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Conclusions 

This paper attempts to provide a new efficient method 

to increase generalizability. The results showed that our 

proposed method (using binary images of the nucleus 

and ROC) is effective in increasing generalization 

power. Moreover, we investigated the generalizability 

of four prominent CNN models and illustrated that the 

VGG16 has more generalizability than other models 

reported in Table 2. 

 

Implementing environment 

Our method and all the pre-trained networks mentioned 

in Table 2, were implemented using Python 3.6.9 and 

Pytorch library version 1.5.1.  
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