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Abstract

Neutrality tests such as Tajima’s D (Tajima, 1989) and Fay and
Wu’s H (Fay and Wu, 2000) are standard implements in the population
genetics toolbox. One of their most common uses is to scan the genome
for signals of natural selection. However, it is well understood that
deviance measures like D and H are confounded by other evolutionary
forces—in particular, population expansion—that may be unrelated
to selection. Because they are not model-based, it is not clear how to
deconfound these statistics in a principled way.

In this paper we derive new likelihood-based methods for detecting
natural selection which are robust to confounding by fluctuations in
effective population size. At the core of our method is a novel proba-
bilistic model of tree imbalance, which generalizes Kingman’s coales-
cent to allow certain aberrant tree topologies to arise more frequently
than is expected under neutrality. We derive a frequency spectrum-
based estimator which can be used in place of D, and also extend to the
case where genealogies are first estimated. We benchmark our meth-
ods on real and simulated data, and provide an open source software
implementation.

1 Introduction
Understanding how species to adapt to their surroundings has been a defin-
ing challenge in biology for several centuries. One of the primary drivers of
adaptation is, of course, natural selection. Recently, as genomic data has
become much easier to obtain, significant efforts have been made to study
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natural selection using patterns of population genetic variation. In addition
to advancing our general knowledge of evolution, this research has the po-
tential to improve health and reduce disease by pinpointing the molecular
basis for certain complex, adaptive phenotypes.

Because natural selection exerts a strong influence on the trajectory (fre-
quency over time) of a selected allele, the ideal data for studying selection
are time series of allele frequencies observed across many generations. Unfor-
tunately, such data are rare except in laboratory settings. In order to study
selection in natural populations, research has focused on devising methods
for inferring selection from contemporaneous samples of polymorphism data.
This is a challenging problem, because we have to make inferences about
complex selection mechanisms using only a “snapshot” of genetic variation
obtained at a single point in time. Theoretical models are essential in order
to decipher these complicated signals in a principled way.

One way to reason about signals of natural selection is by considering its
effect on genealogies. Relative to a neutral baseline, natural selection induces
certain genealogical distortions. For example, a positively-selected variant
sweeping towards fixation induces unbalanced, “star-like” genealogies, re-
sulting in excesses of linkage disequilibrium and low- and high-frequency
variants in the vicinity of the selected allele (Tajima, 1989; Fu and Li, 1993;
Fay and Wu, 2000; Kim and Nielsen, 2004). Another form, balancing se-
lection, produces genealogies which outwardly resemble those found in a
structured population (Kaplan, Darden, and Hudson, 1988). These distor-
tions are then manifested in terms of altered patterns of genetic variation.
By fitting a statistical model of this process, we can learn about natural
selection from polymorphism data.

1.1 Our contribution

In this article, we derive new procedures for detecting natural selection in
genetic variation data. Our approach is based on a probabilistic model of
genealogical imbalance which is designed to capture certain hallmark signals
of selection described above. It generalizes Kingman’s ubiquitous coalescent
process (Kingman, 1982a; Kingman, 1982b), and builds on earlier attempts
in phylogenetics to model the process of speciation (Aldous, 1996; Blum
and François, 2006). Although more principled and correct models of the
coalescent process under selection have been studied previously (Krone and
Neuhauser, 1997; Neuhauser and Krone, 1997), owing to their complexity,
they are not widely used for inference. As we will see, ours is a simple
approximation which retains much of tractability of neutral coalescent; the
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resulting estimators are fast, model-based, and easy to understand and im-
plement. An important feature of our method it explicitly models variation
in effective population size, leading to a “demographically corrected” neu-
trality test that has demonstrable advantages when population size indeed
varies over time. Finally, because our method is based on a generative model
of tree formation, it can be extended with little effort to cases where gene
trees or ancestral recombination graphs have already been inferred, as is be-
coming increasingly common in population genetics (Kelleher et al., 2019a;
Speidel et al., 2019).

1.2 Related work

We lack space to survey the full panoply of methods that have been de-
veloped to study natural selection using genomic data; see recent reviews
by Vitti, Grossman, and Sabeti (2013) and Stern and Nielsen (2019). We
focus here on two classes of methods for detecting natural selection which
are most closely related to our proposed approach.

The first class is frequency spectrum-based methods, which operate on the
principle that natural selection distorts equilibrium allele frequencies rela-
tive to what is observed under neutrality. The most widely used frequency
spectrum-based statistic is Tajima’s D (Tajima, 1989):

D =
θ̂π − θ̂W

ŝ
, (1)

where θ̂π and θ̂W are, respectively, Tajima’s and Watterson’s estimators of
the population-scaled mutation rate θ, and ŝ is an estimate of the standard
deviation of their difference. Both estimators are unbiased for θ under neu-
trality, but have different biases for non-neutral evolution, such that ED ̸= 0
when examining allele frequencies obtained from a region that is under se-
lection. Other related statistics include Fu and Li’s D (Fu and Li, 1993),
and Fay and Wu’s H (Fay and Wu, 2000). A unifying interpretation of the
various frequency spectrum-based statistics was given by Achaz (2009) who
showed that each can be written as a certain weighted sum of entries of the
SFS.

As suggested by (1), a common feature shared by all of the above-
mentioned tests is that they are based on measures of deviance. That is,
under neutrality each test statistic has zero mean, and larger magnitudes
of the statistic suggest larger deviations from neutrality. However, beyond
this general feature, interpretation of these measures can be subtle. For
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example, Tajima’s D is sensitive to deviations at all locations of the fre-
quency spectrum, whereas Fay and Wu’s H only has power to detect a
large excess of high frequency variants (Achaz, 2009). Negative values of D
might indicate either directional selection or population growth, while pos-
itive D can alternatively indicate either balancing selection or population
structure (Ferretti et al., 2017). More generally, deviance statistics based
on the SFS are confounded by other evolutionary forces, in particular fluc-
tuating historical effective population size, and there is not an obvious way
to compensate for this1. Finally, because they operate using only marginal
allele frequency information, these methods do not incorporate haplotype
information or patterns of allele sharing, which can be a valuable auxiliary
signal of natural selection.

A second group of methods for detecting selection can be described as
haplotype-based methods. These are designed to exploit characteristic signa-
tures of linkage disequilibrium that are deposited in the genome in the wake
of a selective event (Maynard Smith and Haigh, 1974; Kaplan, Hudson, and
Langley, 1989). Among the best-known of this class of methods are the so-
called extended haplotype homozygosity (EHH) score (Sabeti et al., 2006),
the integrated haplotype score (iHS; Voight et al., 2006), and the singleton
density score (SDS; Field et al., 2016). Each of these scores is derived via
population genetic and/or genealogical arguments about how variation is
altered in the vicinity of a selected variant. For example, SDS is designed to
detect regions of the genome where the terminal branches of the underlying
genealogy are shorter than usual, as is expected under recent positive selec-
tion. However, although each of these statistics has been shown to work well
in certain settings, ultimately these methods are heuristic, and not based on
a concrete evolutionary model.

Given the profusion of ad hoc methods that have been proposed for
detecting natural selection, it is natural to wonder why likelihood-based
methods are not more common. The advantages of likelihood-based testing
and estimation are well known (Neyman and Pearson, 1933; Lehmann and
Casella, 2006). However, likelihood-based methods in population genetics
are, in general, difficult: computing the likelihood of a sample of genomes,
even under a simple neutral model, requires integrating over all of the possi-
ble ancestry scenarios that could have generated a given data set, a massive
computational undertaking (Stern and Nielsen, 2019). Nevertheless, there

1One standard practice is to subtract the genomewide mean of the test statistic from
local estimates. But this assumes that the bulk of the genome is evolving neutrally, and
recent work has questioned the validity of this assumption (McVicker et al., 2009; Cai
et al., 2009; Lohmueller et al., 2011).
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has been some recent progress. Berg and Coop (2015) studied an approx-
imate likelihood model for selection at a single locus, and very recently, a
noteworthy contribution was made by Stern, Wilton, and Nielsen (2019),
who propose an approximate full-likelihood method for inferring natural
selection using recombining sequence data. Building on earlier work (Ras-
mussen et al., 2014), their method (approximately) integrates over the space
of all possible allele genealogies and allele frequency trajectories for the se-
lected allele.

Although these likelihood-based methods achieve state-of-the-art results,
a potential downside is that they are computationally expensive. The method
of Stern, Wilton, and Nielsen, for example, depends on obtaining a posterior
sample of local trees from the program ARGweaver (Rasmussen et al., 2014),
which can take many hours to generate even for moderate sample sizes. In
practice, this makes it less likely that such methods would be employed in
the exploratory phase of an analysis, as is routinely done with e.g. Tajima’s
D. It seems that there is scope for a method that is easy to deploy while
also mitigating some of the confounding issues described above.

2 Methods
Our starting point is the standard n-coalescent (Kingman, 1982a; King-
man, 1982b) which is defined as a stochastic process on the set of par-
titions of the set {1, . . . , n}. The process begins at time t = 0 in state
C(0) = {{1}, . . . , {n}}. The instantaneous transition rate at time t is

(|C(t)|
2

)
,

where 1 ≤ |C(t)| ≤ n denotes the number of blocks in the partition remaining
at time t. When a transition occurs, the new state is obtained by choosing
two partition blocks uniformly at random and merging them. Thus, the
number of partition blocks decreases monotonically over time, continuing
until it reaches the absorbing state {{1, . . . , n}}. The trajectory of states
{C(t) : t ≥ 0} can be straightforwardly identified with a bifurcating tree
on n leaves, with internal nodes occuring upon each block merger. For this
reason, Kingman’s coalescent is often described as a distribution on binary
trees.

An algorithm for drawing from Kingman’s coalescent follows directly
from the above description. It is listed in the supplement (Algorithm S1)
for completeness, though it is quite well-known. In this paper, we focus
on an equivalent, but less common, method of sampling from Kingman’s
coalescent, with the goal of obtaining a generalization which will prove useful
for studying natural selection. This algorithm is shown in Algorithm 1. The
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main distinction is that it proceeds forwards in time (i.e., from past up to
present), as opposed to Kingman’s original, retrospective process. That both
the forwards- and backwards-in-time algorithms have the same distribution
follows from e.g. Durrett (2008, Theorem 1.8).

2.1 The β-splitting family

We are motivated to consider Algorithm 1 because it can be generalized to
produce alternative distributions on tree topologies. Observe that in line 5
of Algorithm 1, we could replace the uniform distribution with some other
distribution on {1, . . . , |Bi|−1}. For example, a distribution which, for each
|Bi|, placed mass 1/2 on 1 and |Bi|−1, would produce unbalanced “caterpil-
lar” trees with a large portion of external branches. Similarly, a distribution
which placed all mass on (or near) |Bi|/2 would produce trees which tend
to be more “balanced” than is observed under Kingman’s coalescent. These
two extremes produce the types of trees that we expect to form under certain
types of natural selection, in particular directional and balancing selection.2

Such a model has been proposed by Aldous (1996), who studied proba-
bility distributions on random cladograms (topological trees with no branch
length information). Aldous defined a one-parameter family of distributions
which he called the β-splitting model3. In this model, a clade of size n is
randomly split into subclades of sizes {i, n − i}, where now i is distributed
according to a symmetric beta-binomial distribution with shape parameter
β, conditioned on i /∈ {0, n}. Concretely, this distribution is given by

pβn(i) = a−1
n (β)

(
n

i

)∫ 1

0
xi(1− x)n−ifβ(x) dx, 1 ≤ i ≤ n− 1, (2)

where
fβ(x) ∝ xβ(1− x)β (3)

is the symmetric beta density with shape parameter β, and

an(β) =

∫ 1

0
[1− xn − (1− x)n]fβ(x) dx

2A third type of selection, background selection, alters genetic diversity in a way that
is indistinguishable from shrinking the effective population size (Charlesworth, Morgan,
and Charlesworth, 1993), and is therefore not captured by our approach.

3This model should not be confused with the β-coalescent (Schweinsberg, 2003), which
is a more general type of coalescent model that allows for multiple merger events. We
discuss possible connections between generalized coalescent processes and our model in
Section 4.
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is the normalizing constant. Integrating out x in (2), one obtains

pβn(i) = a−1
n (β)

Γ(β + i+ 1)Γ(β + n− i+ 1)

i!(n− i)!
, 1 ≤ i ≤ n− 1. (4)

The beta density (3) is integrable for β > −1 (note that Aldous’ pa-
rameterization differs by 1 from the usual convention.) However, up to
normalization, (4) defines a valid probability distribution whenever min(β+
i + 1, β + n − 1 + 1) > 0; that is, for β > −2 . For β = 0, pn(i;β) ∝ 1 and
the distribution reduces to Kingman’s coalescent. By examining the ratio

pβn(i)

pβn(i+ 1)
=

(i+ 1)(n+ β − i)

(β + i+ 1)(n− i)
, (5)

we see that letting β → ∞ causes pβn to place most of its mass near n/2,
leading trees which are more “balanced” than under the usual coalescent.
If β → −2, ratio in (5) diverges for i ∈ {1, n − 1}, so pβn places mass on
i ∈ {1, n − 1}, resulting in maximally unbalanced splits and a “caterpillar”
tree.

The reader may wonder why the beta-binomial distribution was chosen,
when we could conceivably have used any distribution on {1, . . . , n − 1}.
The symmetric beta-binomial is attractive due to parsimony (it adds only
one extra parameter), and because it preserves some desirable properties of
tree distributions such as exchangeability. Also, its usage has precedent in
the related field of phylogenetics, where it has been proposed as a model for
speciation (Blum and François, 2006). Other authors have recently studied
further generalizations of this process to the case where the shape parame-
ters are not symmetric (Sainudiin and Véber, 2016). A disadvantage of this
model is that, in contrast to Kingman’s coalescent, the forward-splitting pro-
cess does not seem have any evolutionary interpretation (Aldous, 1996). We
choose to view it empirically as a useful tool for studying natural selection
using coalescent-based methods.

2.2 Expected site frequency spectrum

Given a sample of n individuals, the expected site frequency spectrum
(ESFS) is the distribution of the number of individuals i ∈ {1, 2, . . . , n− 1}
bearing the derived allele at a randomly selected segregating site. (We as-
sume that the identity of the ancestral allele is known.) In this section we
show how to determine the ESFS under the β-splitting model.
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We denote the ESFS by Eηξ, where the site frequency spectrum ξ ∈
∆n−1 is the sample version of ESFS, i.e. a vector whose ith entry denotes
the proportion of segregating sites where i members of the sample bear the
derived allelle. Here ∆n−1 denotes the (n− 1)-dimensional probability sim-
plex, i.e. the set of all numbers x1, . . . , xn ≥ 0 such that x1 + · · ·+ xn = 1.
The expectation is taken with respect to genealogies generated under a given
evolutionary model η. Although η could in principle be quite general, effi-
cient methods for computing Eηξ are only known when η describes neutral
evolution under either constant or variable effective population size. There-
fore, from this point on we take η to represent a function representing the
historical size of the population.

Under an “infinite sites” model with low rates of mutation, Griffiths and
Tavaré (1998) have shown the following key result:

(Eηξ)b ∝
n∑

k=2

pnkb · kEηTnk. (6)

In the preceding display, EηTnk is the average amount of time (under the
evolutionary model η) during which there are k lineages ancestral to a sample
of size n, and pnkb the probability that a branch at level k in an n-coalescent
tree has b sampled descendants in the present.

In Kingman’s coalescent,

pnkb =

(
n−b−1
k−2

)(
n−1
k−1

) , (7)

which can be derived by a combinatorial “stars-and-bars” argument (Dur-
rett, 2008). If the effective population size is constant, then ETnk =

(
k
2

)−1,
from which follows the well known result that (Eξ)b ∝ 1/b for Kingman’s
coalescent. If population size varies through time according to some size
history function η(t), then a simple expression for EηTnk no longer exists,
but Polanski and Kimmel (2003) have shown that it may be computed as
a certain linear transformation of the vector of first coalescent times EηTjj ,
j = 2, . . . , n. We return to this fact below.

Although Kingman’s coalescent and its generalization to variable effec-
tive population size are the two best-known applications of Griffiths and
Tavare’s formula (6), in fact their argument holds more generally for any
distribution on trees, assuming (crucially) that the branch lengths and topol-
ogy of those trees are independent. Since this is true for the β-splitting model
defined above, we can use a generalization of (6) to derive its expected SFS.
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Let E(β,η) denote expectation with respect to trees generated under the
β-splitting model. Since the β-splitting model alters tree topology only, we
have

(E(β,η)ξ)b ∝
n∑

k=2

pβnkb · kEηTnk, (8)

where the vector pβ
nk = (pβn,k,1, . . . , p

β
n,k,n−1) has the same interpretation as

above. In the next two subsections, we show how to compute the “topolog-
ical” (pβnkb) and “branch length” (EηTnk) components of this formula.

2.2.1 Dynamic programming algorithm for pβ
nk

A simple expression like (7) does not seem to exist when β ̸= 0. Instead, we
derive a dynamic programming algorithm for calculating the combinatorial
factors pβ

nk ∈ Rn−1, k = 2, . . . , n defined in the preceding section. The
method applies to any forward-splitting model and includes β-splitting as a
special case.

Define fβ
k,i,j to be the probability that a size-i block at level k splits into

blocks of size j and i− j. From the preceding section, we know that under
Kingman’s coalescent,

f
(β=0)
k,i,j ∝ i− 1

n− k
,

and for the general β-splitting model,

fβ
k,i,j ∝

i− 1

n− k

[
pβi (j) + pβi (i− j)

]
where pβi (·) was defined in equation (4).

For each level k let Sk ∈ Zn be a row vector such that Sk
b is number

of nodes at level k which subtend b = 1, . . . , n leaves at the bottom of
the coalescent tree. Also let e1, . . . , en ∈ Rn be the standard basis (row-
)vectors. Under the forward-splitting model described above, the sequence
S1,S2, . . . ,Sn forms a Markov chain, with transition probabilities

Pβ(S
k = s−ei+ej+ei−j | Sk−1 = s) =

i− 1

n− k + 1
·[fβ

k−1,i,j+fβ
k−1,i,(i−j)]. (9)

The starting state of the Markov chain is S1 = (0, 0, . . . , 1) = en. Focusing
on an individual entry Sk+1

j and summing over all possible events that would
cause it to increase, we obtain

P(Sk
j = sj + 1 | Sk−1 = s) =

1

n− k + 1

n∑
ℓ=j+1

(ℓ− 1)sℓ
∑

q∈{j,ℓ−j}

fβ
k−1,ℓ,q. (10)
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Similarly, a decrease can occur only if a size-j block was chosen to split in
the preceding level:

P(Sk
j = sj − 1 | Sk−1 = s) =

j − 1

n− k + 1
sj . (11)

In matrix notation, (10) and (11) combine to yield

E(Sk | Sk−1 = s) = s

(
In +

Qβ
nk

n− k + 1

)

where In ∈ Rn×n is the identity matrix, and

Qβ
nk = (F β

nk − In)Ln

Ln = diag(0, 1, . . . , n− 1)

F β
nk ∈ Rn×n

(F β
nk)i,j = fβ

k,i,j + fβ
k,i,(i−j).

Hence,

E(Sk) = E(Sk−1)

(
In +

Qβ
nk

n− k + 1

)

= · · · = E(S1)
k∏

i=2

(
In +

Qβ
ni

n− i+ 1

)

= en

k∏
i=2

(
In +

Qβ
ni

n− i+ 1

)
.

Finally,
pβ
nk =

1

k
E(Sk).

2.2.2 Computing the expected branch lengths

Next we discuss how to compute the other necessary quantity EηTnk in
equation (8). Let Tn = (Tn,2, Tn,3, . . . , Tn,n) be the vector of these times.
Polanski, Bobrowski, and Kimmel (2003) have shown the following relation-
ship for a general size history function η:

EηTn = A · EηT̃n (12)
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where EηT̃n is the vector of first coalescent times,

EηT̃nj =

∫ ∞

0
exp

{
−
(
j

2

)
Rη(t)

}
dt, j = 2, . . . , n (13)

Rη(t) :=

∫ t

0

ds

η(s)
,

and An ∈ R(n−1)×(n−1) has entries

An,k,j =

∏n
l=k,l ̸=j

(
l
2

)
∏n

l=k,l ̸=j

[(
l
2

)
−
(
j
2

)] .
As in the preceding section, this result holds for any tree distribution in
which branch lengths and topology are independent, so it can be applied to
our model.

Readers who are familiar with this area may notice that, for Kingman’s
coalescent, the expected SFS is typically not calculated via equation (8).
Instead, by another result of Polanski and Kimmel (2003), interchanging
the order of summations in equations (8) and (12) allows the (unnormalized)
ESFS to be expressed as a linear transformation of EηT̃n. Unfortunately,
this trick does not lead to simplifications in our more general model, so we
first compute the expected intercoalescence times and then plug them into
(8). For large n, the matrix-vector product (12) is numerically unstable, so
we use a high precision numerical library to evaluate the integral (13) and
then (12). This approach is less efficient than using hardware floating point
operations, but it only needs to be performed once per given demography,
so it is suitable for genomewide analysis.

2.3 Estimating β

Given the probabilistic model defined above, how can we estimate it in order
to infer β? In this section, we propose two methods depending on the type
of data that are available.

2.3.1 From the SFS

To perform inference using the SFS we rely on the so-called Poisson ran-
dom field (PRF) approximation (Sawyer and Hartl, 1992), which assumes
the coalescent tree at every segregating site is independent of all others.
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Assuming also that mutations are rare—formally, that θ → 0, as is rea-
sonable for humans and many other species—then we may approximate the
mutation process on a coalescent tree by a Poisson process.

Given an empirical frequency spectrum ϕ ∈ Zn−1, where ϕi is the number
of segregating sites where i copies of the derived allele were observed, the
PRF log-likelihood is

L(β, θ|ϕ) = ||ϕ||1 log(θ∥Eη,βξ∥1)− θ∥Eη,βξ∥1 +
⟨ϕ,Eη,βξ⟩
∥Eη,βξ∥1

, (14)

where the ESFS Eη,βξ is calculated using the procedure derived in Section
2.2. If the mutation rate θ is not known, then the maximum likelihood
estimate can be shown to equal

θ̂MLE =
∥ϕ∥1
∥Eη,βξ∥1

.

Substituting this back into (14), and setting p = ϕ/∥ϕ∥1, q(β) = Eη,βξ/∥Eη,βξ∥1,
we obtain that the profile likelihood

L(β|ϕ) = L(β, θ̂MLE | ϕ) = −DKL(p∥q(β)) + const.

In order words, maximizing the likelihood is equivalent to minimizing the
KL divergence between the categorical distributions p and q(β) (Bhaskar,
Wang, and Song, 2015).

2.3.2 From inferred trees

The ESFS is obtained by integrating over all possible genealogies at a given
site, and then fit to data by assuming independence between sites. An
alternative strategy is try to estimate those genealogies, and then do infer-
ence conditioned on them. Recently in population genetics, there have been
methodological breakthroughs that enable the estimation of ancestral re-
combination graphs using large numbers of genomes (Kelleher et al., 2019a;
Speidel et al., 2019). In the future, as algorithms and computational capa-
bilities continue to improve, this may become the dominant mode of popu-
lation genetic analysis. We therefore explored extensions of our methods to
the case where genealogies are estimated instead of integrated out.

Because of the probabilistic nature of our model, it is easy to extend
it to the case where the genealogy is observed instead of latent. Moreover,
estimating β conditional on a collection of inferred genealogies simplifies the
problem considerably. If we assume a bifurcating tree, the sizes of children
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nodes can be modeled by the beta-binomial distribution as previously de-
scribed. Just like the preceding section, we proceed level by level in the
(now observed) genealogy. At each level k = 2, . . . , n of the tree, let the size
of the internal node which splits into two child nodes be denoted Bk, and
the sizes of its child nodes ck and Bk − ck. We model the probability of an
the observed tree T as

P(T | β) =
n∏

k=2

pβBk
(ck), (15)

with pβBk
defined as in (4), so that β̂ obtained by numerical optimization.

Weighted likelihood When experimenting with this method, we ob-
served a small but consistent performance improvement by reweighting the
likelihood (15):

P(T | β) =
n∏

k=2

[pβBk
(ck)]

w(k),

where w(k) is a weighting function. For detecting directional selection, we
found that setting the weights proportional to the size of the internal node,
w(k) = Bk, worked well. For detecting balancing selection, we found that it
helped to weight the various terms by total amount of branch length at their
respective level in the tree: w(k) = ktk, where tk is the amount of branch
length at level k in the tree (see Section 3.1.) Using weights improved the
method’s performance of detecting the imbalance of the tree. The effect of
the different weighting methods is shown in Figures S4 and S5. The gain
was around 0.01–0.04 AUC in each scenario.

Related tree imbalance statistic The Colless statistic (Mooers and
Heard, 1997) is a measure of the imbalance of a binary tree, defined as

Ic(T ) =
1(

n−1
2

)∑
t∈T
|tr − tℓ|, (16)

where the summation is over all internal nodes t of the tree, and tr, tℓ are the
sizes of the two child nodes descending from t. We used the Colless statistic
as a baseline for comparing the performance of our β̂ statistic when fitted
to inferred trees. The exact relationship between β̂ and Ic(T ) is somewhat
opaque, but in general we can note that Ic is maximized for a caterpillar
tree, and is zero for a perfectly balanced tree with an even number of leaves.
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Hence it is negatively associated with β-splitting parameter. In the next
section, we compare the ability of these two measures to detect signals of
selection.

Polytomies In practice, we found that current tree inference softwares
often generate multifurcating trees. Since our method assumes a bifurcating
tree, we first resolved these polytomies by arbitrarily breaking them into
sequences of bifurcation events. Of course, polytomies could well represent
additional selection signal. Our current implementation ignores this, but we
discuss potential extensions in Section 4.

2.4 Alternative parameterization

We conclude this section with a note on implementation. When fitting our
model to data, we observed that the parameterization (4) exhibited some
numerical instability when performing gradient-based optimization. The
problem arises when computing the normalizing constant for the range −2 <
β < −1 which, as mentioned in Section 2.1, can no longer be interpreted as
a draw from a conditioned beta-binomial distribution. To work around this,
we restrict β > −1 and then perform a log transformation. Specifically, in
all of the results reported below, the following alternative definition of the
symmetric beta-binomial distribution is used:

BB(i|n, β) = Γ(n+ 1)

Γ(i+ 1)Γ(n− i+ 1)

Γ(i+ eβ)Γ(n− i+ eβ)

Γ(n+ 2eβ)

Γ(2eβ)

Γ(e2β)

Then we restricted i to be in {1, 2, . . . , n− 1};

pβn(i) =
BB(i|n, β)

1−BB(0|n, β)−BB(n|n, β)
(17)

where i ∈ {0, 1, . . . , n − 1}, n ∈ N+ and β ∈ R. The transformed distri-
bution has the following properties: when β = 0, this becomes a uniform
distribution so the model recovers the usual Kingman’s Coalescent. When
β → −∞, most of the weights of the distribution will be at the tails, so
corresponding tree will be similar to a caterpillar tree. And when β → ∞,
the weights will be accumulated around the center and lead to a balanced
tree.

2.5 Data analysis pipeline

A description of the pipeline used to analyze data and run our methods is
contained in the supplement (Section S1).
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3 Results
In this section, we study various characteristics of the methods we derived
in Section 2 using simulations, before concluding with applications to real
data.

3.1 Topological variance analysis

Recently Ferretti et al. (2017) gave an interpretation of several frequency
spectrum-based neutrality tests in terms of tree imbalance. In this section we
study our model using some of their results. This helps clarify the connection
between some existing neutrality tests and our work.

Following Ferretti et al., we define dk to be the size (number of leaf
nodes subtended by) a randomly selected lineage at level k in a genealogy.
Averaged over genealogies under the β-splitting model, we have

varβ(dk) =
n−k+1∑
b=1

b2pβnkb − (Eβdk)
2

=
n−k+1∑
b=1

b2pβnkb −
(n
k

)2
,

where pβ
nk was defined in Section 2.2.1, and the second inequality holds be-

cause Edk = n/k under any leaf-exchangeable tree distribution. Computing
varβ(dk) in closed form for our model is challenging due to the fact that pβ

nk

is recursively defined. Here we focus on a few special cases where we can
derive a precise answer, and study the general relationship using simulations.

For β → −2, corresponding to the caterpillar tree, it is easy to show that

lim
β→−2

varβ(dk) = (k − 1)
(n
k
− 1
)2

, (18)

as already noted by Ferreti et al. Also, for Kingman’s coalescent, β = 0,

varβ=0(dk) =

n−k+1∑
b=1

b2
(
n−b−1
k−2

)(
n−1
k−1

) − (n
k

)2
=

n(n− k)(k − 1)

k2(k + 1)
. (19)

For β →∞, we were unable to derive a closed-form expression for limβ→∞ varβ(dk).
However, Ferretti et al. showed that the dominant contribution to topolog-
ical variance comes from level k = 2, for which

varβ(d2) = var(X | 1 ≤ X ≤ n− 1), where X ∼ BetaBinomial(n;β, β).
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If n and β are both large, the condition 1 ≤ X ≤ n− 1 has probability near
one and can be ignored. Using the variance formula for the beta-binomial
distribution, we have

lim
β→∞

varβ(d2) ≤ lim
β→∞

nβ2(n+ 2β)

4β2(2β + 1)
≈ n

4
, for large n.

We further define

varβ(d | T ) =
1

l

n∑
k=2

ktk varβ(dk),

which is the topological variance of a given genealogy, weighted by the rel-
ative proportion of branch length at each level (see equation (4) in Ferretti
et al.). Substituting tk and l by their expected values in equations (18) and
(19), as n→∞,

varβ=0(d) = H−1
n−1

n∑
k=2

n(n− k)

k2(k + 1)
≍ π2 − 9

6
· n2

log n

lim
β→−2

varβ(d) = H−1
n−1

n∑
k=2

(n
k
− 1
)2
≍ π2 − 6

6
· n2

log n
,

where Hn is the nth harmonic number.
Now let T be a neutrality test statistic (for example, Tajima’s D or Fay

and Wu’s H). Since the parameter β only affects tree topology, we obtain
from formula (17) of Ferretti et al.,

EβT = EβT − Eβ=0T = αn
T

(
varβ(d)− varβ=0(d)

)
,

where αT (n) is a test-specific constant which depends on n, and for simplicity
we ignored the normalization term fΩ(θl).

To show an example of how the topological variance affects neutrality
tests such as Tajima’s D, we simulated genealogies under various settings
of β, assuming constant population size with no recombination (Figure 1).
The box plots are empirical distributions of two neutrality tests (Tajima’s
D and Fay and Wu’s H) for various settings of β ∈ [−2,∞). The dashed red
lines represent the limiting values predicted by the calculations shown above.
The figure shows how different values of these statistics can be interpreted
in terms of β, and vice versa. We see, for example, that D and H appear
to be more sensitive to β < 0, in the sense that their distribution at β = 0
nearer the β →∞ limit than the β → −2 limit.
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3.2 Simulated data

To benchmark our methods on simulated data, we studied their ability to
classify simulated genomic regions as being either neutral or under some
form of selection. The receiver operating characteristic (ROC) curve, and
associated area under curve (AUC) statistic, are standard ways to measure
the performance of a classifier. For each experiment described below, we
generated data under two different models, and then plotted ROC curves
for each method. The two possible models are printed at the top of each
ROC curve. The legend lists each method that was compared, along with
its AUC score.

The classification procedures derived from our methods are denoted btree
and bsfs. The bsfs results were obtained by maximizing (14) over β with
respect to the observed frequency spectrum. btree is the tree-sequence based
estimate, obtained by maximizing the conditional likelihood defined in (15)
over β conditional on a given tree. As a baseline, we also compared our
method to Colless’ statistic (see Section 2.3.2) and Tajima’s D. Finally,
ROC curves were computed by thresholding the empirical null distributions
of each test statistic. We also use these neutrally evolved simulations to
infer population size histories (η(t)) that we use for bsfs. Our simulation
process is explained in detail in Section S1.1.

3.2.1 Directional selection

We simulated a single population with constant population size N = 2×104.
The simulated region was 105 base pairs, with recombination and mutation
rates of 1.25×10−8 and 2.5×10−8 per base pair per generation, respectively.
When each simulation terminated, we randomly sampled n = 50 haploid
genomes and computed the relevant test statistics. We introduced a benefi-
cial mutation 250 generations prior to present into the middle of the region,
and we restarted the simulation if the mutation is lost or fixed. Following
Stern, Wilton, and Nielsen (2019), we varied two parameters; selection co-
efficient s ∈ {.001, .003, .01, .02} and allele frequency F ∈ {0.25, 0.5, 0.75}
of mutation when the simulation terminated. Genic selection was assumed,
i.e. the relative fitnesses of the wild-type homozygotes, heterzygotes, and
derived homozygotes were 1, 1 + s/2, and 1 + s, respectively.

Figure 2 displays results for each of the methods. In general, we observed
that tree-sequence based methods are better at detecting strong selection
compared to SFS-based methods. This is expected, because a recent hard
sweep leaves a signal of elevated linkage disequilibrium that is invisible in
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the frequency spectrum (Kaplan, Hudson, and Langley, 1989). In particular,
the btree method achieves at least 0.8 AUC for s ≥ 0.003 and F ≥ 0.5. The
performance Colless’ statistic and btree are similar. btree has significantly
higher AUC (p = .014, Wilcoxon signed rank test), but the overall gain
is small (mean ∆AUC = 0.0034). Among the SFS-based statistics, our
method (bsfs) achieved significantly higher AUC scores (p = .0014, Wilcoxon
signed rank test) than Tajima’s D, and the average gain is notable (mean
∆AUC = 0.049).

3.2.2 Balancing selection

Next we studied our methods’ ability to detect long-term balancing selection.
Since this type of selection acts on a longer time scale than directional
selection (Charlesworth, 2006), it is necessary to forward simulate for many
more generations. To speed up the simulations, we reduced the population
size by a factor of 10 to N = 2 × 103, and increased the mutation and
recombination rates to 1.25×10−7 and 2.5×10−7. The simulated region was
2500 base pairs. When each simulation terminated we randomly sampled
n = 250 haploid genomes and computed the relevant test statistics using
them. Heterozygously advantageous mutations were introduced at constant
rate throughout the simulation. We varied two parameters: t0 ∈ {2 ×
103, 3 × 103, 4 × 103, 5 × 103} which represents the number of generations
before present when beneficial mutations began, and selection coefficient
s ∈ {.0004, .0008, .002}. The dominance parameter was set to h = 25 in
all cases. Thus the fitnesses of the homo- and heterozygote were ≈ 1 and
s · h ∈ {.01, .02, .05}, respectively.

Figure 3 contains ROC curves along with the AUC values in parenthesis
for each of the methods. For balancing selection btree again outperforms
Colless’ statistic, but the difference is subtle (mean ∆AUC = 0.0026) and
not significant (p = 0.31, Wilcoxon signed rank test). In contrast to the
case of directional selection, SFS-based statistics did better than tree-based
statistics in this example. Among the SFS-based statistics, our method
(bsfs) achieved significantly higher AUC scores (p = 0.0011, Wilcoxon signed
rank test) than Tajima’s D with a mean ∆AUC = 0.024. We performed
some additional analysis to better understand why SFS-based statistics are
better than the tree-based ones for detecting balancing selection. We found
that long branches near the root of the tree that occur in genealogies under
long-term balancing selection have a pronounced impact on the SFS, but do
not affect the topology of inferred trees.
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3.2.3 Effect of variable population size

It is well known that, when used to detect natural selection, Tajima’s D
is confounded by population structure and changes in effective population
size (Stajich and Hahn, 2005; Biswas and Akey, 2006). In the single-
population case, one interpretation of this phenomenon is that D measures
both topological and branch length distortions compared to the neutral coa-
lescent (Ferretti et al., 2017), and population size changes also distort branch
lengths. In contrast, our SFS-based estimator is designed to detect topo-
logical changes only, and it can be modified to take into account population
size history (Section 2.2).

We compared the ability of D and bsfs to detect directional selection
under four scenarios:

• Constant population size under neutrality;

• Exponential growth under neutrality;

• Constant population size with directional selection;

• Exponential growth directional selection.

For the selective scenarios, we introduced a single mutation 250 generations
before present to the middle of the 105 base pair region, restarting the
simulation if the mutation was lost or fixed. The sample size was n = 250
haploids. The recombination and mutation rates were again 1.25 × 10−7

and 2.5 × 10−7. For the bsfs method, we first estimated the underlying
population size history η(t) using 25Mb of neutral data simulated under the
corresponding demography. Other varying parameters for the experiments
can be seen at Table S1. In the table, Ne(0) is the population size at
the time simulation starts, g is the growth rate of exponential growth, s is
the selective coefficient of the beneficial mutation and h is the dominance
parameter.

In Figure 4a, our method has higher AUC than D for distinguishing a
neutral model from selection for both constant population size and expo-
nential growth (left and center panels). To illustrate the pitfalls of using
D without correcting for demography, we also considered a third scenario
(right-most panel) in which there is no selection; the only difference be-
tween the two models is that one of them underwent exponential growth,
while effective population size in the other was constant. In this plot, a
“true positive” signifies that the constant-sized model is rejected in favor of
the exponential growth model when the latter model generated the data,
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and similarly for a false positive. As expected, the plot shows that D has
high power to detect exponential growth—however, if the analyst were un-
aware that the population had experienced growth, then this could wrongly
be interpreted as evidence for selection. In contrast, after adjusting the ex-
pected frequency spectrum to compensate for this effect, our estimator does
no better than a coin-toss (AUC ≈ 0.5) at distinguishing between the two
régimes.

Another way to see this result is in Figure 4b, which shows the empirical
distributions of D and β̂ obtained from bsfs. After correcting for demogra-
phy, the two neutral simulations (orange and blue) have roughly the same
empirical distribution using our method, even though they are generated
under quite different growth models. In contrast, the distribution of D un-
der neutral exponential growth closely matches that of directional selection
under exponential growth, and is very different from the distribution under
neutrality and constant population size.

We repeated this experiment under simulated balancing selection. We
again simulated four different scenarios:

1. Constant size with no advantageous mutation;

2. Exponential growth with no advantageous mutation;

3. Constant size with heterozygote advantage and;

4. Exponential growth with heterozygote advantage.

For the exponential growth scenarios, the growth began 250 generations ago.
Detailed settings for each type of simulation are shown in Table S2. Results
were similar to the directional selection experiment. In Figure 5b, we see
that selection and growth “cancel out” in Tajima’s D: it has a similar distri-
bution under exponential growth and balancing selection as under neutrality
with constant size. In contrast, the null distribution of bsfs is invariant after
correcting for demography.

3.3 Real data analysis

We applied our models to data from the 1000 Genomes Project (The 1000
Genomes Project Consortium, 2015), using tree sequences that were inferred
by Kelleher et al. (2019b). To understand how our model works compared to
other known statistics, we focused on 7 regions which are known to experi-
ence selection: LCT in chromosome 2, SLC45A2 in chromosome 5, HERC2
in chromosome 15 for European populations; SLC44A5 in chromosome 1,
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EDAR in chromosome 2, ADH1 in chromosome 4 for East Asian popu-
lations; MHC in chromosome 6 for all populations. For LCT, SLC45A2,
HERC2, SLC44A5, EDAR, ADH1 we used the btree statistic to investigate
directional selection since it is sensitive to linkage disequilibrium. For MHC
we used bsfs since our simulation results show that our frequency spectrum-
based methods are better at detecting long-term balancing selection. We
performed one-sided testing: for directional selection, p-values were calcu-
lated by p−, and for balancing selection by p+ (cf. eqn. 21).

3.3.1 Directional selection

Lactose is the principle sugar in milk. Like other mammals, humans histor-
ically lost the intestinal enzyme lactase after infancy, and with it the ability
to digest milk. But between 5,000 to 10,000 years ago, a genetic mutation
arose that confers lactase persistence in adults. Today it is found in a major-
ity of the adult populations of Northern and Central Europe. The location
of this mutation in the gene LCT displays one of the strongest signals of
directional selection in the human genome (Bersaglieri et al., 2004).

In Figure 6a, as expected we have a very small p-value for the European
populations around LCT. This indicates our estimated β-splitting parame-
ters are negative, as expected for strong directional selection (Section 2.1).
Specifically, Utah Residents with Northern and Western European Ances-
try (CEU), British in England and Scotland (GBR) and Finnish in Finland
(FIN) have significantly negative β̂. Southern European populations such
as Toscani in Italia (TSI) and Iberian Population in Spain (IBS) also show
evidence of selection, though the signal is weaker, reflecting the fact that
the strength of selection may be lower in these populations (Gerbault et al.,
2011).

SLC45A2 is a gene related to pigmentation (Branicki et al., 2008). It
encodes a transporter protein that mediates melanin synthesis. In humans,
it has been identified as a factor in the light skin of Europeans. As shown
in Figure 6b, selection signals tended to be noisier in this region, and our
median centered btree statistic does not see a pronounced peak this gene.
The segments around this gene have small p-values for only TSI and CEU.
However, the p-values are not above the genome-wide Bonferroni threshold,
and are eclipsed by other nearby regions.

Figure 6c shows results for HERC2, which is associated with eye and skin
pigmentation (Donnelly et al., 2012). Around this region there are blue-eye
associated alleles found at high frequencies in European populations. In our
results, the lowest p-value belongs to FIN, followed by GBR and CEU.
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Turning to East Asian populations, we first studied SLC44A5, which is
associated with neurological diseases and has been reported in several recent
papers to be under selection in Japanese and Chinese populations (Liu et
al., 2013; Zhao et al., 2019; Yasumizu et al., 2020). Our method confirms
these findings (Figure 6), with highly significant hits centered on this gene
for Japanese in Tokyo, Japan (JPT) and Han Chinese in Beijing, China
(CHB).

We also found significant hits for all East Asian populations near EDAR
(Figure 6e), again confirming earlier studies (Botchkarev and Fessing, 2005;
Hlusko et al., 2018).

Finally, we examined the ADH1 family. Alcohol is degraded primarily
by alcohol dehydrogenase, and genetic variation affecting the rate of alco-
hol degradation found at ADH1B and ADH1C. Variants of these genes are
thought to be associated with alcohol drinking habits and alcoholism. Our
results (Figure 6f) confirm earlier findings (Han et al., 2007) that this family
is under directional selection in Kinh in Ho Chi Minh City, Vietnam (KHV);
Japanese in Tokyo, Japan (JPT); and Southern Han Chinese (CHS).

Estimates of the raw β̂ values corresponding to these Manhattan plots
are given in the supplement (see Figures S6 and S7).

3.3.2 Balancing selection

Next, we used our method to study long-term balancing selection in the
the major histocompatibility complex (MHC). MHC is a large region of the
vertebrate genome with immune-related functionality. Because evolution
favors allelic diversity in this region (Takahata, 1993), we expect to detect
signals of balancing selection in all populations. Our results (Figure 7)
confirm this expectation; we observed highly significant signals across all
1000 Genomes subpopulations. Importantly, since this is an upper tail test
for bsfs, we reject the null hypothesis that β = 0 in favor of the alternative
β > 0. Thus, our method correctly infers that MHC is under balancing
selection.

3.3.3 Results of genome-wide scan

In Section S5, we list the genomewide top hits (in terms of p-value) for the
five major superpopulations in the 1000 Genomes dataset. They include a
number of loci that are known to be under selection; such as LCT, ALDH ;
the HLA complex; and various pigmentation, and eye color-related genes.
There are also other hits that, as far as we can tell, have not yet been
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implicated by natural selection. Note that, due to linkage, many more genes
are tagged than are likely under selection, but the genes should be proximal
to a selected locus. A browser which can be used to explore all of our results,
and compare them with classical tests of neutrality, is provided at the URL
shown below.

4 Discussion
In this paper, we presented some new methods to detect natural selection
using a generalization of Kingman’s coalescent to the case where genealogies
exhibit systematic topological imbalance. We showed how this leads to
relatively simple estimators of selection that can be applied to frequency
spectrum data, or just as easily to sequences of estimated genealogies. An
important feature of our method is its ability to incorporate demographic
information. Using simulations, we recapitulated the tendency, already well
known in the literature, of widely used deviance statistics like Tajima’s D
to conflate variations in effective population size with natural selection. We
showed that our method can correct for this tendency, by incorporating
demographic estimates into its generative model of tree formation.

Our method is an example, albeit a basic one, of a recent trend towards
likelihood-based methods for inferring natural selection from polymorphism
data. We stress that our method will generally not be as sensitive as more
elaborate and correct approximations to the coalescent under selection—
compare, for example, the results of our Figures 2 and 3 with Figures 3 and 4
of Stern, Wilton, and Nielsen (2019). However, an advantage of our method
is easy to understand and interpret, and also fast, requiring only to solve
a univariate optimization problem. This can be done in only fractions of a
second even for large sample sizes (Figure S3). Running our method on the
entire 1000 Genomes dataset takes a few hours on a cluster. We see our work
as adding to the toolbox of exploratory procedures that the analyst performs
when studying a new dataset. Large “hits” yielded from our method can be
used to flag a region for subsequent analysis, perhaps using more advanced
and computationally expensive full-likelihood procedures. To this end, we
have created an open source software package that makes it easy to run
our methods. Researchers can also access our 1000 Genomes Project results
with the browser we developed for this purpose. It enables to search through
whole genome hits of our β estimates along with classical neutrality tests
across for all populations.

There are several ways our model could be improved. We focused on
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the beta-binomial distribution because of its earlier usages in phylogenet-
ics. However, as noted earlier, other distributions are possible, and perhaps
some other model produces tree topology distributions that are more suited
to studying natural selection. Another obvious criticism of our model is
that it assumes that β is constant over time. This seems most appropriate
for highly variable regions like HLA, where there is a continual introduc-
tion of new selected alleles. For regions that came under sudden directional
selection as the result of the introduction of a beneficial allele, it would be
better to use a model where the topological distribution of subtrees varies
over time. This could allow for estimating the age of a selected variant, or
understanding whether selection occurred on standing variation or because
of the introduction of a new allele, both topics of longstanding interest in
population genetics (Malaspinas et al., 2012; Hedrick, 2013; Barrett and
Schluter, 2008; Feder, Kryazhimskiy, and Plotkin, 2014; Terhorst, Schlöt-
terer, and Song, 2015; Palamara et al., 2018). Incorporating this feature
into our SFS-based model would be challenging, as it creates dependence
between the “time” and “topology” components of the expected frequency
spectrum, thus invalidating equation (6). But it is easily added to the tree-
based estimator in Section 2.3.2. We experimented with this, but found that
the branch lengths from the current generation of tree sequence estimation
programs are not yet reliable enough to support this kind of inference. As
these methods continue to improve, this could be a future extension of our
work.

On a similar note, when running our method on tree sequence data,
we observed that the estimated trees contained many polytomies. Since
trees generated under Kingman’s coalescent are almost surely bifurcating,
we broke these polytomies arbitrarily in order to perform inference. How-
ever, polytomies could comprise another signal of selection, particularly in
the case of recent positive selection. Incorporating a probabilistic model
of node size into our method could potentially make use of this signal.
The Λ-coalescent (Sagitov, 1999; Pitman, 1999) is a generalization of King-
man’s coalescent which allows for various forms of multiple-merger events.
Research on inference methods under generalized coalescents is ongoing
(Spence, Kamm, and Song, 2016; Blath et al., 2016). In the future, our
method could be extended to work under this more general model.
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1 Initialize C1 = {{1, . . . , n}}, k = 1.
2 while k < n do
3 Sample Tk+1 ∼ Exp(k(k + 1)/2).
4 Sample Bi from Ck = {B1, . . . , Bk} with probability proportional

to (|Bi| − 1)/(n− k).
5 Sample m ∼ Uniform({1, 2, . . . , |Bi| − 1}).
6 Randomly partition Bi into non-empty subsets A,A′ such that

|A| = m and |A′| = |Bi| −m.
7 Ck+1 ← (Ck ∪ {A,A′})\Bi.
8 k ← k + 1.
9 end

10 Return Tn, . . . , T2, Cn, . . . , C2.
Algorithm 1: Kingman’s coalescent (forward-time version).

1 Initialize C1 = {{1, . . . , n}}, k = 1.
2 while k < n do
3 Sample Tk+1 ∼ Exp(k(k + 1)/2).
4 Sample Bi from Ck = {B1, . . . , Bk} with probability proportional

to (|Bi| − 1)/(n− k).
5 Sample m ∼ BetaBinomial(|Bi|;β, β) conditioned on

1 ≤ m ≤ |Bi| − 1.
6 Randomly partition Bi into non-empty subsets A,A′ such that

|A| = m and |A′| = |Bi| −m.
7 Ck+1 ← (Ck ∪ {A,A′})\Bi.
8 k ← k + 1.
9 end

10 Return Tn, . . . , T2, Cn, . . . , C2.
Algorithm 2: β-splitting coalescent model.
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Figure 1: Empirical distributions of Tajima’s D and Fay and Wu’s H under
different tree topologies. Going from left to right, tree structure goes from
caterpillar to balanced. Red lines represent the averaged limiting cases.
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Figure 2: ROC curves for positive genic selection. s represents selective
advantage of the mutation and F represents allele frequency of the mutation
in the sample.
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Figure 3: ROC curves for advantageous heterozygote mutation simulations.
s represents selective advantage of the mutation, h is the dominance factor.
t0 represents how many generations ago the advantageous mutations were
introduced into the sample.
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(a) ROC curves with AUC scores

(b) Box Plot

Figure 4: Directional selection under constant population or exponentially
growing size histories. bsfs is our SFS based method and TajD is Tajima’s
D. (a) bsfs performs better for detecting true signals in the first two figures.
In the third figure, D is picking up a false positive signal with respect to
detecting selection. (b) Under neutrality, bsfs has a zero centered empiri-
cal distribution regardless of the true population size history, whereas the
distribution of D is shifted.
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(a) ROC curves with AUC scores

(b) Box Plot

Figure 5: Balancing selection under constant population or exponentially
growing size histories. (a) bsfs performs better for detecting true signals in
the first two figures. In the third figure Tajima’s D fails to detect selection.
(b) Under neutrality, bsfs has a zero-centered empirical distribution and
balancing selection shifts the distribution upward. Balancing selection shifts
D to positive values but exponential growth pulls it downward.
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Figure 6: Results of directional selection p-value scan for 1000 Genomes
Project using median centered btree (Section S1.2.1). The Bonferonni-
corrected significance level is 1.6× 10−4 (Red dashed line). Significant pop-
ulations for each gene: (a) CEU, GBR, FIN; (b) None; (c) FIN, CEU, GBR;
(d) JPT, CHB, CDX; (e) KHV, CDX, CHB, CHS, JPT; (f) KHV, JPT,
CHS. The interval spanned by each gene is shaded in grey.
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Figure 7: Genome Scan p-values of the bsfs segments around HLA-DQ. Most
of the 1000 Genomes subpopulations have a pronounced balancing selection
signal in this region.
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Supplementary Materials
S1 Data analysis pipeline
In the data analysis we will refer SFS-based β-splitting estimate as bsfs and
tree-based β-splitting estimate as btree.

S1.1 Simulation studies

All simulations were performed using SLiMv3 (Haller and Messer, 2019).
An example for the complete simulation pipeline can be seen in Figure S1.

(a) For each simulation, we have a set of parameters θ, and we run that
set 250 iterations with a different seed.

(b) In SLiM we drop non-neutral mutations and run it until a stopping
condition, and then record the tree-sequence.

(c) SLiM is a forward simulator and does not guarantee a common ances-
tor. After the simulation is completed, genealogies with multiple roots
are recapitated using the procedure described by Haller et al. (2019),
and neutral mutations are introduced.

(d) bsfs is inferred from the allele frequency spectrum. For btree we esti-
mated tree-sequences from the genotype matrix using using tsinfer
(Kelleher et al., 2019a).

(e) A simulated region covers many trees (because of the recombination).
In order to represent the region, we combine these btree’s by taking
span weighted averages. An example calculation is shown in Figure
S1e. There are four btree estimates in this 10kb region, each spanning
a different non-overlapping region. For this simulation btree value is
calculated as:

β̂ =
612× β̂1 + (3239− 612)× β̂2 + (8739− 3239)× β̂3 + (10001− 8739)× β̂4

10000

S1.2 Real data analysis

We tested our model on 1000 Genomes Project. A toy example of our
analysis pipeline can be seen in Figure S2. For each 26 populations we
repeat the following process:
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(a) The genome-wide SFS is computed for each subpopulation.

(b) Population-specific size histories η are inferred using these empirical
frequency spectra.

(c) For SFS-based analysis, genomes are divided into intervals as described
below, and the local frequency spectrum is calculated for each interval
conditional on the size history function inferred in the previous step.

(d) Tree-sequences subdivide the genome into disjoint regions spanned by
each local tree.

(e) SFS-based estimates are obtained by estimating bsfs using a sliding
window along the genome.

(f) Tree-sequence estimates are performed for each local genealogy.

(g) Tree-based estimates are converted to genomic coordinates using the
averaging procedure described above.

(h) To combine these spatially correlated estimates, we use a changepoint
detection procedure to aggregate the bsfs and btree estimates into a set
of piecewise-constant functions (Celisse et al., 2018; Truong, Oudre,
and Vayatis, 2020). Heuristically, we chose a fixed number of change-
points for all populations. We chose in a way that we expect a change
point on the average of 10Mb (3,100Mb/10Mb = 310 change points).

(i) Finally, p-values are computed for each segment using the procedure
described in the Section S1.2.3.

Genomic scan statistics depend on the choice of window size, and stride
(number of base pairs between the start of each consecutive window). Since
we are using estimated tree-sequences for 26 populations, the start and end
points of these estimated trees are different in each population. In real
data analysis we constructed two different methods of window statistics for
directional selection and balancing selection. For directional selection, we
are seeking population specific signal of the selection (that is the reason
why we use a median-centered β estimate, Section S1.2.1). But in order
to compare btree statistic with bsfs (and other neutrality tests) within the
population and with other btree’s across the populations we need them to
be defined on the same positions on the genome. To overcome this we first
estimate tree-based statistics (btree and Colless) for each tree. Second we
define the windows in base pairs (we defined window size 10kbp and stride
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size 5kbp) and calculate SFS-based statistics (bsfs and other neutrality tests)
for these windows. Finally we take averages of tree-based statistic inside each
windows (See Section S1.1 part (e)). In order to detect long term balancing
selection, we do not need the windows to be defined in the same regions.
Since we are not looking for a population specific signal. After some trial
and error, we see that windows defined by estimated tree locations give
better results for balancing selection. Instead of sliding base pairs, we chose
window size of 64 trees, and a stride of 32 trees, we calculated the SFS-based
statistics on those regions.

In directional selection setup, for bsfs, this window-size and stride setup
resulted 520,940 windows along the human genome for bsfs. This required
us to solve 520940×26 = 13, 544, 440 optimization problems. For btree, each
population has different number of trees, and in total it resulted 142,637,760
optimization tasks. Together with other statistics, all calculations required
less than four hours on a cluster. For the balancing selection setup, num-
ber of tree estimates doesn’t change so we do not need to estimate btree
again. But we estimated bsfs again for the different windows which required
solving an additional 8, 914, 860 optimization problems and this finished ap-
proximately in 2 hours.

S1.2.1 Median-centered estimates of β

Some regions on the chromosome experience the similar evolutionary history
among all human populations. For some regions, this causes a pronounced
spike in |β| for all 26 populations in 1000 Genomes Project data, confounding
our ability to detect population-specific signals of selection. To correct for
this, we performed median-centering for windowed statistic: let W defines
the set of windows along the chromosome, and β̂0

w,p be the β estimate of
window w ∈ W for each of the 26 1kg subpopulations

p ∈ P := {CEU,CHB, . . . ,YRI}.

Then the median-centered estimate of β̂w,p is defined as

β̂w,p := β̂0
w,p −median

{
β̂w,x : x ∈ P

}
.

S1.2.2 Combining multiple β̂ in each segments

Each segment decided by change point detection spans multiple windows.
We average these windowed estimates of β and get a single estimate that
represents each segment. To combine window estimates we used weighted
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averaging. Given ng windows spanning a given segment, we define β̄ω =∑ng

i=1 ωiβ̂i to be a weighted sum of estimated β̂ parameters, where ω is a
weight vector. After some experimenting, we found that choosing the entries
of ω to be proportional to the proximity of the mid-point of the segment
worked well, and all reported results are based on that choice of weights.

S1.2.3 Significance testing

Since the β̂ are maximum likelihood estimates, β̄ω has approximately a nor-
mal distribution. To form p-values we therefore require the mean and vari-
ance of this statistic under the null hypothesis. Under neutrality, Eβ̄w = µg,
where µg ≈ 0 is the chromosome-wide average which is determined empir-
ically. To calculate var(β̄ω) we need to consider the dependence between
sequential estimates, which is non-zero due to linkage. We define

σ2
g = var

( ng∑
i=1

ωiβ̂i

)
= C0

ng∑
i=1

ω2
i+2C1

ng−1∑
i=1

ωiωi+1+· · ·+2Cng−1

1∑
i=1

ωiωi+ng−1

(20)
where Ci = cov(β̂j , β̂j+i) is the lag-i autocovariance term, which is assumed
to be stationary (does not depend on j). The coefficients Ci were are esti-
mated empirically using chromosome-wide averages.

For each location we perform a one-sided test to determine whether
β̄w is abnormally high (signifying balancing selection) or low (directional
selection). The corresponding p-values are

p+ = 1− Φ

(
β̄w − µg

σg

)
p− = Φ

(
β̄w − µg

σg

) (21)

Finally, the p-values are Bonferroni corrected to account for multiple testing.
In this case for 1000 genomes project population, we defined 311 segments,
then the significance level will be equal to 0.05/311 ≈ 1.6× 10−4.
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S2 Supplemental algorithms

1 Initialize Cn = {{1}, . . . , {n}}, k = n.
2 while k > 1 do
3 Sample Tk ∼ Exp(k(k − 1)/2).
4 Sample B,B′ ∈ Ck uniformly without replacement.
5 Ck−1 ← (Ck ∪ {B ∪B′})\B\B′.
6 k ← k − 1.
7 end
8 Return {(Tn, . . . , T2), (Cn, . . . , C2)}.

Algorithm S1: Kingman’s coalescent.
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S3 Simulation settings and code

Scenario Ne(0) g tg s h

1 2× 103 0 – 0 0.5

2 103 0.01 250 0 0.5

3 2× 103 0 – 0.05 0.5

4 103 0.01 250 0.05 0.5

Table S1: Simulation settings for directional selection experiment. Ne(0)
is population size at the start of the simulation, g is the growth rate of
exponential growth, tg is the generations ago when exponential growth starts
prior to sampling, s is the selective coefficient of the beneficial mutation and
h is the dominance coefficient.

Scenario Ne(0) µs tm g tg s h

1 2× 103 0 – 0 – 0 0.5

2 103 0 – 0.01 250 0 0.5

3 2× 103 10−8 4250 0 – 0.002 25

4 103 10−8 4250 0.01 250 0.002 25

Table S2: Simulation settings for balancing selection experiment. µs is the
mutation rate for advantageous mutation, tm is the number of generations
age that selection began, and the rest of the parameters are as in Table S1.

S3.1 Directional selection

initialize () {
if ( exists (" slimgui ")) {

defineConstant (" simID", 1);
}

defineConstant (" pmut", asInteger ([L]/2)); // Mutation
position

initializeTreeSeq ();
initializeMutationRate ([mu ]*0.08) ;
initializeMutationType ("m1", 0.5, "f", 0.0);
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initializeMutationType ("m3", [h], "f", [s]);
initializeGenomicElementType ("g1", m3 , 1);
initializeGenomicElement (g1 , 0, asInteger ([L]));
initializeRecombinationRate ([r]);

}
1 {

sim. addSubpop (" p1", asInteger ([Ne]));
}

1 late (){
defineGlobal (" bar", 0);
// target = sample (p1.genomes , 1);
// target . addNewDrawnMutation (m3 , pmut);
sim. treeSeqOutput ("/ scratch / stats_dept_root / stats_dept /enes

/slim_ " + simID + ". trees ");
}

1:[ Until ] late () {
if ([ start ]<sim. generation ){

newSize = asInteger (round ([ rep ]^( sim.generation -[ start
]) * [Ne ]));

p1. setSubpopulationSize ( newSize );
}

m3muts = sim. mutationsOfType (m3);
freqs = sum(sim. mutationFrequencies (NULL , m3muts ));
if ([ reset_lost ]){

if (sim. countOfMutationsOfType (m3) < bar){
cat( simID + ": RESTARTING ");
sim. readFromPopulationFile ("/ scratch /

stats_dept_root / stats_dept /enes/slim_" + simID
+ ". trees ");

setSeed ( rdunif (1, 0, asInteger (2^62) - 1));
defineGlobal (" bar", 0);

}
}

}
[ Until ] late (){

m3muts = sim. mutationsOfType (m3);
freqs = sum(sim. mutationFrequencies (NULL , m3muts ));
print ( freqs );
sim. treeSeqOutput (" trees /"+ simID +". trees ");
sim. simulationFinished ();

}

S3.2 Balancing selection

initialize () {
if ( exists (" slimgui ")) {
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defineConstant (" simID", 1);
}

defineConstant (" pmut", asInteger ([L]/2)); // Mutation
position

initializeTreeSeq ();
initializeMutationRate ([mu ]*0.08) ;
initializeMutationType ("m1", 0.5, "f", 0.0);
initializeMutationType ("m3", [h], "f", [s]);
initializeGenomicElementType ("g1", m3 , 1);
initializeGenomicElement (g1 , 0, asInteger ([L]));
initializeRecombinationRate ([r]);

}
1 {

sim. addSubpop (" p1", asInteger ([Ne]));
}

1 late (){
defineGlobal (" bar", 0);
sim. treeSeqOutput ("/ scratch / stats_dept_root / stats_dept /enes

/slim_ " + simID + ". trees ");
}

1:[ Until ] late () {
if ([ start ]<sim. generation ){

newSize = asInteger (round ([ rep ]^( sim.generation -[ start
]) * [Ne ]));

p1. setSubpopulationSize ( newSize );
}

m3muts = sim. mutationsOfType (m3);
freqs = sum(sim. mutationFrequencies (NULL , m3muts ));
if ([ reset_lost ]){

if (sim. countOfMutationsOfType (m3) < bar){
cat( simID + ": RESTARTING ");
sim. readFromPopulationFile ("/ scratch /

stats_dept_root / stats_dept /enes/slim_" + simID
+ ". trees ");

setSeed ( rdunif (1, 0, asInteger (2^62) - 1));
defineGlobal (" bar", 0);

}
}

}
[ Until ] late (){

m3muts = sim. mutationsOfType (m3);
freqs = sum(sim. mutationFrequencies (NULL , m3muts ));
print ( freqs );
sim. treeSeqOutput (" trees /"+ simID +". trees ");
sim. simulationFinished ();
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}
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S4 Supplemental figures
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Figure S1: Simulation pipeline. (a) In each set of simulations we fix a group
of parameters (θ) and a random seed. (b) After simulation is finished, we
save the tree sequence of the true genealogy. It can be seen that trees have
multiple roots and the sample only have one mutation at the third tree.
(c) We recapitate the trees and add the neutral mutations. (d) Genotype
matrix is extracted from the tree sequence and used to estimate bsfs. (e)
Tree sequences are inferred from genotype matrices and used to estimate
btree.
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Figure S2: Real data analysis pipeline. (a) We calculate genome-wide SFS
for the sample. (b) Using this we infer population size histories (η). (c)
We calculate windowed statistic of SFS. Window size is 2500 and stride is
1250. With the region of size 10000, we get 7 windows. (d) From genotype
matrix, we infer trees using tsinfer. (d) For each tree in the tree sequence,
we estimate btree. (f) For each windowed-statistic SFS we estimate bsfs. (g)
We take average btrees inside bsfs regions by taking span weighted avarage
of each. (h) We apply the change point detection method to define segments.
(i) We calculate the p-values for each segment.

S12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.12.443797doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443797
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) β from tree-sequences (b) β from SFS

Figure S3: Time-complexity of estimating β for a single optimization task.
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Figure S4: ROC curves for positive genic selection using btree with three
different choices of likelihood weights. s represents selective advantage of the
mutation and F represents allele frequency of the mutation in the sample.
Letter inside the parenthesis represents the likelihood weighting method;
(n):no weighting, (s): size of the internal node, (b): total amount of branch
length
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Figure S5: ROC curves for advantageous heterozygote mutation simulations
using btree with three different choices of likelihood weights. s represents
selective advantage of the mutation, h is the dominance factor. t0 represents
how many generations ago the advantageous mutations were introduced into
the sample. Letter inside the parenthesis represents the likelihood weighting
method; (n):no weighting, (s): size of the internal node, (b): total amount
of branch length
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Figure S6: Directional selection examples for 1000 Genomes Project. Seg-
mented genome-scan β estimates by median centered btree are provided. See
Figure 6

.
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Figure S7: Genome Scan β estimates by bsfs segments around HLA-DQ.
See Figure 7.
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Table S3: Most significant directional selection hits for East Asian

Population Chromosome start end p value Average β̂ genes

JPT 1 0.75 0.76 4× 10−15 -2.27 ACADM, RABGGTB, MSH4
KHV 2 0.17 0.18 4× 10−13 -2.39 RAD51AP2, VSNL1
KHV 2 1.09 1.10 1× 10−12 -2.02 RANBP2, CCDC138, EDAR,

SH3RF3, SEPTIN10
CHB 15 0.64 0.65 1× 10−12 -1.79 CIAO2A, SNX1, SNX22, PPIB,

CSNK1G1, PCLAF, TRIP4,
ZNF609, OAZ2, RBPMS2, PIF1,
PLEKHO2, ANKDD1A, SPG21,
MTFMT, SLC51B, RASL12,
KBTBD13, UBAP1L

CDX 2 0.43 0.44 4× 10−10 -1.89 PLEKHH2, C1GALT1C1L,
DYNC2LI1, ABCG5, ABCG8,
LRPPRC

JPT 4 1.43 1.44 7× 10−10 -1.57 SMARCA5, FREM3, GYPE,
GYPB, GYPA

CDX 1 0.92 0.93 1× 10−09 -1.39 GFI1, EVI5, RPL5, DIPK1A,
MTF2, TMED5, CCDC18, DR1,
FNBP1L

JPT 3 0.17 0.18 1× 10−09 -1.15 PLCL2, TBC1D5, SATB1
KHV 4 1.00 1.00 1× 10−09 -2.42 DDIT4L
CDX 2 1.97 1.98 2× 10−09 -1.91 SF3B1, COQ10B, HSPD1, HSPE1,

MOB4, RFTN2
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Table S4: Most significant directional selection hits for European

Population Chromosome start end p value Average β̂ genes

CEU 2 1.35 1.37 2× 10−40 -2.31 R3HDM1, UBXN4, LCT, MCM6,
DARS1, CXCR4, THSD7B

GBR 12 1.11 1.13 3× 10−18 -1.50 ATXN2, BRAP, ACAD10,
ALDH2, MAPKAPK5, TMEM116,
ERP29, NAA25, TRAFD1, RPL6,
PTPN11, RPH3A

FIN 15 0.28 0.29 4× 10−15 -1.73 GOLGA8F, GOLGA8G
TSI 11 0.89 0.89 5× 10−13 -1.63 TYR
TSI 5 1.30 1.31 4× 10−11 -1.33 CHSY3, HINT1, LYRM7,

CDC42SE2
GBR 8 0.12 0.13 5× 10−11 -1.98 DEFB130A, FAM86B2
FIN 6 0.28 0.29 9× 10−11 -1.35 GPX5, ZBED9
GBR 15 0.75 0.75 3× 10−10 -1.39 CLK3, EDC3, CYP1A1, CYP1A2,

CSK, LMAN1L, CPLX3, ULK3,
SCAMP2, MPI, FAM219B,
COX5A, RPP25, SCAMP5,
PPCDC

GBR 6 0.35 0.35 8× 10−10 -1.42 TCP11, SCUBE3, ZNF76, DEF6,
PPARD

CEU 1 1.00 1.00 1× 10−09 -1.87 AGL
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Table S5: Most significant directional selection hits for African

Population Chromosome start end p value Average β̂ genes

ESN 19 0.43 0.44 4× 10−17 -2.19 PSG5, PSG4, PSG9, CD177,
TEX101, LYPD3, PHLDB3,
ETHE1, ZNF575, XRCC1

ESN 6 0.53 0.53 5× 10−16 -2.74 TMEM14A
GWD 6 0.59 0.62 9× 10−14 -2.25 KHDRBS2
LWK 8 0.44 0.47 1× 10−12 -1.60 SPIDR
ESN 11 0.49 0.49 2× 10−11 -1.60 TRIM49B, TRIM64C
YRI 1 1.62 1.62 2× 10−11 -1.80 DUSP12, ATF6
ESN 1 1.54 1.54 7× 10−11 -1.73 CRTC2, SLC39A1, CREB3L4,

JTB, RAB13, RPS27, NUP210L
ESN 3 1.25 1.26 2× 10−09 -1.61 SNX4, OSBPL11
ASW 13 0.52 0.52 4× 10−09 -1.43 NEK3
YRI 19 0.39 0.39 4× 10−09 -1.68 LGALS7, LGALS7B, LGALS4,

ECH1, HNRNPL, RINL, SIRT2
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Table S6: Most significant directional selection hits for Ad-Mixed American

Population Chromosome start end p value Average β̂ genes

PUR 22 0.29 0.29 1× 10−07 -1.87 EMID1, RHBDD3, EWSR1,
GAS2L1, RASL10A, AP1B1,
RFPL1

CLM 6 1.35 1.35 2× 10−07 -2.18 AHI1
CLM 8 0.44 0.48 2× 10−07 -1.54 SPIDR
PUR 3 1.29 1.30 4× 10−07 -1.91 EFCAB12, MBD4, IFT122, RHO,

H1-8, PLXND1
PUR 17 0.37 0.37 5× 10−07 -2.39 ACACA
MXL 2 0.24 0.25 8× 10−07 -1.99 NCOA1
PUR 12 0.44 0.48 1× 10−06 -0.94 NELL2, DBX2, ANO6, ARID2,

SCAF11, SLC38A1, SLC38A2,
SLC38A4, AMIGO2, PCED1B

MXL 8 0.86 0.87 1× 10−06 -1.71 PSKH2, ATP6V0D2, SLC7A13,
WWP1, RMDN1, CPNE3, CNGB3,
CNBD1

PUR 11 0.13 0.13 1× 10−06 -1.92 TEAD1
PUR 7 1.29 1.29 2× 10−06 -1.84 ATP6V1F, ATP6V1FNB, IRF5,

TNPO3
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Table S7: Most significant directional selection hits for South East Asian

Population Chromosome start end p value Average β̂ genes

BEB 16 0.34 0.47 3× 10−17 -1.45 SHCBP1, VPS35, ORC6, MYLK3,
C16orf87, GPT2

GIH 15 0.48 0.49 3× 10−12 -1.69 DUT, FBN1
STU 17 0.44 0.44 3× 10−12 -1.77 HROB, ASB16, TMUB2,

ATXN7L3, UBTF, SLC4A1,
RUNDC3A, SLC25A39, GRN,
FAM171A2

GIH 3 0.89 0.94 8× 10−12 -0.84 EPHA3, PROS1
GIH 2 0.97 0.97 1× 10−11 -1.73 FAHD2B
STU 16 0.30 0.31 4× 10−11 -1.23 SEPHS2, ITGAL, ZNF768,

ZNF747, ZNF764, ZNF688,
ZNF785, ZNF689, PRR14, FBRS,
SRCAP, TMEM265, PHKG2,
CCDC189, RNF40, ZNF629,
BCL7C, CTF1, FBXL19, ORAI3,
SETD1A, HSD3B7, STX1B,
STX4, ZNF668, ZNF646, PRSS53,
VKORC1, BCKDK, KAT8, PRSS8,
PRSS36, FUS, PYCARD, TRIM72,
PYDC1, ITGAM, ITGAX, IT-
GAD, COX6A2, ZNF843, ARMC5,
TGFB1I1

PJL 2 2.23 2.23 5× 10−11 -1.60 FARSB
PJL 2 0.92 0.95 6× 10−11 -1.63 TEKT4, MAL, MRPS5, ZNF514,

ZNF2, PROM2, KCNIP3
STU 10 0.93 0.94 1× 10−10 -1.20 CEP55, FFAR4, RBP4, PDE6C,

FRA10AC1, LGI1, SLC35G1,
PLCE1

STU 19 0.36 0.36 4× 10−10 -1.90 ZFP82
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Table S8: Most significant directional selection hits for 1000 Genomes
Project Populations

Population Chromosome start end p value Average β̂ genes

CEU 2 1.35 1.37 2× 10−40 -2.31 R3HDM1, UBXN4,
LCT, MCM6, DARS1,
CXCR4, THSD7B

GBR 12 1.11 1.13 3× 10−18 -1.50 ATXN2, BRAP,
ACAD10, ALDH2,
MAPKAPK5,
TMEM116, ERP29,
NAA25, TRAFD1,
RPL6, PTPN11,
RPH3A

BEB 16 0.34 0.47 3× 10−17 -1.45 SHCBP1, VPS35,
ORC6, MYLK3,
C16orf87, GPT2

ESN 19 0.43 0.44 4× 10−17 -2.19 PSG5, PSG4, PSG9,
CD177, TEX101,
LYPD3, PHLDB3,
ETHE1, ZNF575,
XRCC1

ESN 6 0.53 0.53 5× 10−16 -2.74 TMEM14A
JPT 1 0.75 0.76 4× 10−15 -2.27 ACADM, RABGGTB,

MSH4
FIN 15 0.28 0.29 4× 10−15 -1.73 GOLGA8F, GOLGA8G
GWD 6 0.59 0.62 9× 10−14 -2.25 KHDRBS2
KHV 2 0.17 0.18 4× 10−13 -2.39 RAD51AP2, VSNL1
TSI 11 0.89 0.89 5× 10−13 -1.63 TYR
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Table S9: Most significant balancing selection hits for 1000 Genomes Project
Popultions

Population Chromosome start end p value Average β̂ genes

ASW 6 0.322 0.327 < 10−38 1.33 RNF5, AGER, PBX2,
GPSM3, NOTCH4,
TSBP1, BTNL2, HLA-
DRA, HLA-DRB5,
HLA-DRB1, HLA-
DQA1, HLA-DQB1,
HLA-DQA2

YRI 4 0.989 0.991 < 10−38 4.71 METAP1
IBS 1 1.529 1.532 < 10−38 6.43 SPRR4, SPRR1A,

SPRR3, SPRR1B,
SPRR2D, SPRR2A,
SPRR2B, SPRR2E,
SPRR2F, SPRR2G

ESN 4 0.854 0.855 < 10−38 5.78 ARHGAP24
ASW 5 1.355 1.355 < 10−38 6.61 NEUROG1
ACB 11 0.051 0.051 < 10−38 5.16 OR52E1
ASW 6 0.330 0.331 < 10−38 4.98 HLA-DPA1, HLA-

DPB1
IBS 13 0.368 0.368 < 10−38 6.59 RFXAP
STU 1 2.315 2.315 < 10−38 5.87 TSNAX
STU 20 0.235 0.236 < 10−38 5.76 CST9L
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