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1 Abstract

The surge of single-cell RNA sequencing technologies gives rise to the abundance of large single-cell RNA-seq

datasets at the scale of hundreds of thousands of single cells. Integrative analysis of large-scale scRNA-seq

datasets has the potential of revealing de novo cell types as well as aggregating biological information. How-

ever, most existing methods fail to integrate multiple large-scale scRNA-seq datasets in a computational

and memory efficient way. We hereby propose OCAT, One Cell At a Time, a graph-based method that

sparsely encodes single-cell gene expressions to integrate data from multiple sources without most variable

gene selection or explicit batch effect correction. We demonstrate that OCAT efficiently integrates multi-

ple scRNA-seq datasets and achieves the state-of-the-art performance in cell type clustering, especially in

challenging scenarios of non-overlapping cell types. In addition, OCAT efficaciously facilitates a variety of

downstream analyses, such as differential gene analysis, trajectory inference, pseudotime inference and cell

inference. OCAT is a unifying tool to simplify and expedite the analysis of large-scale scRNA-seq data from

heterogeneous sources.

2 Introduction

The rapid advancement of transcriptome sequencing technologies in single cells (scRNA-seq) has witnessed

the exponential growth in the number of large-scale scRNA-seq datasets. Integration of multiple scRNA-seq

datasets from different studies has the great potential to facilitate the identification of both common and

rare cell types, as well as de novo cell groups. Data heterogeneity, or batch effect, is one of the biggest

challenges when integrating multiple scRNA-seq datasets. Batch effect is the perturbation in measured gene

expressions, often introduced by factors such as library preparation, sequencing technologies and sample

origins (donors). Batch effect is therefore likely to confound with true biological signals representing cell
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identities, resulting in misclassification of cells by experiment rather than by their true biological identities.

Batch effect removal has thus become a mandatory step prior to data integration, introducing additional

computational challenges. Most existing batch effect removal procedures assume that the biological effect is

orthogonal to the batch effect, which is unlikely to be true in real life. Moreover, as the scale of the datasets

increases, integrating multiple large-scale scRNA-seq datasets can induce heavy, or sometimes unbearable,

computational and memory storage burden.

Most of the existing scRNA-seq integration methods require explicit batch removal steps. One of the most

commonly used approach is mutual nearest neighbors (MNNs) [Haghverdi et al., 2018], which requires paired

cells (or MNNs) to align the datasets into a shared space. However, this approach demands for large run-time

memory and long computation time to search for MNNs in the high dimensional space of gene expressions.

Though some derivatives of the MNN method [Hie et al., 2019, Polański et al., 2020] attempted to improve

the memory efficiency by performing dimension reduction in the gene expression space, the memory usage

is still demanding when the number of single cells is large. Another common approach, Seurat v3 [Stuart

et al., 2019], projects scRNA-seq data to a canonical correlation analysis (CCA) subspace, and then computes

MNNs in the CCA subspace to correct the batch effect. On the other hand, Harmony [Korsunsky et al., 2019]

iteratively removes batch effects after projecting scRNA-seq data to a principal component analysis (PCA)

subspace. However, Harmony can also consume large memory when the sample size is large. To reduce the

computational burden of batch effect correction on scRNA-seq integration, we hereby propose OCAT (One

Cell At a Time), a fast and memory-efficient machine learning-based method that does not require explicit

batch effect removal in integrating multiple scRNA-seq datasets. OCAT utilizes sparse encoding to integrate

multiple heterogeneous scRNA-seq datasets, achieving state-of-the-art or comparable performance compared

to existing methods.

OCAT offers three major advantages over existing methods. First, OCAT identifies hypothetical “ghost”

cells of each datasets and constructs a sparse bipartite graph between each cell with the “ghost” cells,

generating a sparsified encoding of each cell optimized for computational efficiency (O(N)). Second, by

connecting each individual cell to the “ghost” cell collection from all datasets, OCAT manages to capture the

global similarity structure between single cells, and thus does not require any batch removal step. Thirdly,

the OCAT sparse graph encoding can be effectively transformed into cell feature representations that readily

tackle a wide range of downstream analysis tasks, providing a unified solution to common single-cell problems

such as differential gene analysis, trajectory inference, psuedotime inference and cell inference.

3 Results

3.1 The OCAT framework overview

OCAT integrates multiple large-scale scRNA-seq datasets using sparse encoding as the latent representation

of the single-cell gene expressions. Given multiple scRNA-seq gene expression matrices as input, OCAT first

identifies hypothetical “ghost” cells, the centers of local neighbourhoods, from each dataset. OCAT then

constructs a bipartite graph between all single cells to the “ghost” cell set using similarities as edge weights.

OCAT further amplifies the strong connections and trims down the weak edges with the “ghost” cell set, by

staying connected to the s most similar “ghost” cells only. We employ the Local Anchor Embedding (LAE)

algorithm [Liu et al., 2010] to further optimize the edge weights from each single cell to the remaining s

“ghost” cells, such that they can most effectively reconstruct the gene expression features of the single cell.

These weights are then treated as the OCAT sparsified encoding of each single cell.

OCAT lastly captures the global cell-to-cell similarities through message passing between the “ghost”

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.05.12.443814doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443814


Figure 1: Schematic workflow of OCAT. For each individual scRNA-seq dataset, OCAT identifies “ghost”

cells in each dataset, and encodes the gene expression of all single cells by their similarities to the “ghost”

cell collection. This sparse encoding can effectively facilitate various downstream analysis tasks, such as cell

clustering, differential gene analysis, trajectory inference and spatial scRNA-seq clustering.

cells, which maps the sparsified weights of all single cells to the same global latent space. The sparsified

weights are treated as the sparse encoding of each single cell.

As the number of the most similar “ghost” cells s is much smaller than the number of genes, the OCAT

latent representation is very sparse. We show that this sparse encoding can effectively facilitate downstream

analyses, such as cell type clustering, differential gene analysis, trajectory and pseudotime inference, as well

as cell type inference. Moreover, OCAT sparse encoding is also capable of clustering spatial transcriptomics.

Figure 1 outlines the workflow of the OCAT integration procedures as well as various downstream analysis

functionalities.

3.2 Sparse encoding of single-cell transcriptomics effectively corrects batch ef-

fect and integrates multiple scRNA-seq datasets

When integrating multiple heterogeneous scRNA-seq datasets, most existing integration methods require

iterations of explicit batch effect correction steps between every pair of datasets. Another common assumption

in scRNA-seq data integration is that cell types are shared across all datasets, which is rarely true in real

life. Such requirements and assumptions pose major challenges in the performance as well as computational

efficiency to most existing integration methods. OCAT captures the global cell-to-cell similarity across

datasets by connecting each single cell to the “ghost” cell set. OCAT thus does not require any explicit

batch effect correction step and proves to be robust in identifying non-overlapping cell types unique to some

datasets. The sparsified encoding also greatly accelerates the computational speed and considerably reduces

the memory usage when integrating multiple large-scale datasets.

One common assumption of existing integration methods is that any cell type present in one dataset must

also be present in all the other datasets. However, if some non-overlapping cell types exist, such methods can

falsely cluster cells of the non-overlapping cell types. We here demonstrate how this assumption introduces

misclassification in the presence of non-overlapping cell types. The human dendritic dataset [Villani et al.,
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Figure 2: Integrating multiple scRNA-seq datasets with OCAT. A: UMAP projection of five integrated

human pancreatic scRNA-seq datasets from heterogeneous sequencing platforms by OCAT, Seurat v3, Harmony, and

Scanorama. The top panel is colored by the annotated cell types and the bottom panel is colored by the dataset. B:

UMAP projection of two integrated human dendritic datasets with non-overlapping cell types by OCAT, Seurat v3,

Harmony, and Scanorama. The top panel is colored by the annotated cell types and the bottom panel is colored by

the dataset. C: UMAP projection of two integrated PBMC scRNA-seq datasets by OCAT; see Supplementary Figure

S1 for a full comparison with Seurat v3, Harmony and Scanorama. D: Memory usage and runtime of OCAT, Seurat

v3, Harmony and Scanorama on five scRNA-seq integration tasks.

2017] consists of human blood dendritic cell (DC), namely, CD1C DC, CD141 DC, plasmacytoid DC (pDC),
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Dataset ncells ngenes Metric OCAT Seurat Harmony Scanorama

Human dendritic 576 16,594
NMIcluster 0.7718 0.7375 0.7653 0.7212

1-NMIbatch 0.9999 0.9999 1.0000 0.9999

Mouse atlas 6,954 5,558
NMIcluster 0.8006 0.6981 0.7625 0.6960

1-NMIbatch 0.9999 0.9970 0.9959 0.9905

Human pancreas 14,767 15,558
NMIcluster 0.7949 0.7947 0.7302 0.7249

1-NMIbatch 0.9650 0.9762 0.9600 0.9538

PBMC 15,476 17,430
NMIcluster 0.7424 0.7932 0.7851 0.7141

1-NMIbatch 0.9934 0.9943 0.9944 0.9939

Mouse hematopoietic 4,649 3,467
NMIcluster 0.5019 0.4606 0.4111 0.5160

1-NMIbatch 0.9648 0.9673 0.9734 0.9674

Table 1: Cell type clustering and batch correction performance on integrating multiple scRNA-

seq datasets. The clustering performance is measured by the Normalized Mutual Information (NMI),

where NMIcluster = 1 implies correct clustering by cell type annotations. (1 − NMIbatch) = 1 implies no

batch effect present after integration; see Supplementary Material 2.2.2-2.2.3 for more details on NMIcluster

and NMIbatch, and Supplementary Table S1 for additional evaluation metrics.

and double negative cells. Tran et al. [2020] further processed and manually split the data into two batches:

batch 1 contains 96 pDC, 96 double negative and 96 CD141 cells, while batch 2 has 96 pDC, 96 double

negative and 96 CD1C cells. CD141 cells are only present in batch 1, while CD1C cells are only present

in batch 2. The visualization of cell type clustering in Figure 2A shows that Seurat v3, Harmony and

Scanorama all falsely group CD141 and CD1C together. On the other hand, OCAT manages to distinguish

CD141 and CD1C as two separate cell clusters. This verifies that by constructing the single cell to “ghost” cell

bipartite graph, the OCAT sparse encoding successfully recovers global cell-to-cell similarity across batches

and captures true cell type identities. The cell type clustering metrics also reflect the same result, where

OCAT has NMIcell type = 0.7718, higher than all the other benchmarked methods; see Table 1 for a detailed

comparison.

We then demonstrate the performance and efficiency of OCAT on integrating more than two heterogeneous

scRNA-seq datasets. The pancreatic dataset consists of five human pancreatic scRNA-seq datasets sequenced

with four different technologies (inDrop [Baron et al., 2016], CEL-Seq2 [Muraro et al., 2016], Smart-Seq2

[Segerstolpe et al., 2016], SMARTer [Wang et al., 2016, Xin et al., 2016]). Datasets generated by different

sequencing platforms and technologies have inherent technical differences [Hicks et al., 2018, Tung et al., 2017],

posing greater challenge to the integration task as the distributions of gene expressions vary significantly

across the five datasets. Another challenge lies in the computational cost and memory consumption of

integrating five datasets, caused by the iterative batch correction process for large number of cells with high

dimensional gene expressions. Nevertheless, OCAT outperforms the other methods in correctly identifying

the cell types without any most variable gene selection or batch removal steps. Following the data pre-

processing procedures outlined in Tran et al. [2020], we integrate the five pancreatic datasets using OCAT,

and benchmark with three existing integration methods, Seurat v3 [Stuart et al., 2019], Harmony [Korsunsky

et al., 2019] and Scanorama [Hie et al., 2019]. The UMAP projection in Figure 2A demonstrates that

OCAT outperforms the other methods in identifying the cell types (NMIcell type = 0.8037), while achieving

comparable batch correction performance (1 − NMIbatch = 0.9638); see Table 1 for details. We show in
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Figure 3: OCAT on individual scRNA-seq datasets. A: UMAP projection of the OCAT sparsified

embeddings for Romanov, Zeisel, Retina and PBMC 68k datasets, colored by the annotated cell types. B:

Differential gene analysis with OCAT on the Zeisel dataset. C-D: OCAT trajectory inference and pseudotime

inference on the HSMM dataset. E: Spatial scRNA-seq clustering using the OCAT sparsified embeddings.

Figure 2D that OCAT is more computationally and memory efficient than the other benchmarked methods.

Notably, OCAT takes less than half of the runtime of Seurat v3 and Scanorama. Though Harmony runs

slightly faster than OCAT, it consumes four times more memory than OCAT. Seurat v3 and Scanorama both

require more than 8 times memory of OCAT.

We also validate the performance of OCAT on integrating mouse cell atlas [Han et al., 2018], human

peripheral blood mononuclear cell (PBMC) [Xin et al., 2016] and mouse hematopoietic stem and progenitor

cell [Nestorowa et al., 2016] datasets. OCAT achieves state-of-the-art or comparable performance with the

other benchmarked methods; see Table 1, Figure 2C and Supplementary Figure S1-3 for details. Notably,

when integrating the two PBMC datasets with a total of 15,476 single cells and 33,694 genes, OCAT is twice

faster than Seurat v3 and three times faster than Scanorama. In addition, Harmony and Seurat v3 consume

more than 29 times of OCAT’s memory usage, while Scanorama consumes more than 24 times of OCAT’s

memory usage (Figure 2D).

3.3 OCAT unifies various downstream biological inferences

The OCAT sparse encoding framework can readily extract the latent representations of single cells from indi-

vidual scRNA-seq datasets. We show in this section that the OCAT sparse encoding can effectively facilitate

various downstream analyses with important biological implications, such as cell inference, differential gene

analysis, as well as trajectory inference and psuedotime inference. We further show that OCAT can also

extract sparse latent representation of spatial scRNA-seq datasets.
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Dataset ncells ngenes OCAT scVI Seurat SIMLR

Romanov 2,881 24,341 0.6443 0.5436 0.6343 0.4234

Zeisel 3,005 19,972 0.7884 0.7126 0.6724 0.7373

Retina 19,829 13,166 0.8742 0.7572 0.7865 0.6337

PBMC 68k 68,579 1,000 0.5750 0.4638 0.4899 0.5344

Table 2: Clustering performance of OCAT on four individual scRNA-seq datasets: Romanov, Zeisel,

Retina and PBMC 68k, benchmarked with scVI, Seurat v3 and SIMLR. The clustering performance is

measured by the Normalized Mutual Information (NMI), where NMI = 1 implies correctly clustering all the

cells with the same cell types while NMI = 0 indicates random guessing; see Supplementary Table S5 for

additional evaluation metrics.

3.3.1 Sparse encoding of individual scRNA-seq dataset

We first demonstrate with four large-scale scRNA-seq datasets, Romanov [Romanov et al., 2017], Zeisel

[Zeisel et al., 2015], Retina [Shekhar et al., 2016], and PBMC 68k [Zheng et al., 2017]. We show in Table 2

that OCAT consistently outperforms existing methods in cell type clustering [Wang et al., 2017, Stuart

et al., 2019, Lopez et al., 2018]; see Figure 3 for the UMAP visualizations. OCAT is also capable of sparsely

encoding spatial scRNA-seq data by treating the spatial coordinates as additional feature representations

of single cells. We show in Figure 3E the identification of cell types using the OCAT sparse encoding on a

sagital mouse brain spatial scRNA-seq dataset [Stuart et al., 2019].

3.3.2 Cell type inference

OCAT supports immediate and accurate cell type inference of incoming data, without repeating feature

extraction procedures combining the incoming data with the existing database. We denote the existing

scRNA-seq datasets as the “reference” dataset, and the incoming unlabelled data as the “inference” dataset.

For the reference dataset, OCAT first identifies a set of “ghost” cells and extracts the sparse features to

train a Support Vector Machine (SVM) [Noble, 2006] with the annotated cell types. For the inference cells,

OCAT computes their sparse encoding using the pre-identified reference “ghost” cell set and transfers cell

type labels to the incoming inference cells using the pre-trained SVM.

We first demonstrate OCAT’s cell type inference performance on four individual scRNA-seq datasets,

Romanov [Romanov et al., 2017], Zeisel [Zeisel et al., 2015], Retina [Shekhar et al., 2016] and PBMC 68k

[Zheng et al., 2017]. Each dataset is randomly split into 90% reference set and 10% inference set. The

OCAT-extracted features of the inference cells based on the reference “ghost” cells yield high accuracy in

cell type assignment; see Supplementary Table S5 and Supplementary Figure S5. We further demonstrate

that OCAT can infer cell types in a more challenging scenario across two heterogeneous scRNA-seq datasets.

With two PMBC scRNA-seq datasets [Polański et al., 2020], we split each dataset into 90% reference set

and 10% inference set. OCAT assigns cell types to the 10% inference set from dataset 2 based on the 90%

reference set from dataset 1, and vice versa, achieving F1 score of 0.8907 and 0.7719 respectively. We also

conducted cell inference experiments on two mouse atlas datasets [Han et al., 2018, Consortium et al., 2018]

and two human dendritic datasets [Villani et al., 2017, Tran et al., 2020], both achieving high accuracy in

cell type assignment; see Supplementary Figure S5 for details.
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3.3.3 Differential gene analysis

Differential gene analysis is one of the most common approaches to facilitate cell type annotations. OCAT

effectively selects the marker genes for each cell group based on the raw gene expression data. We demonstrate

the efficacy of OCAT in differential gene analysis using the Zeisel dataset [Zeisel et al., 2015] that classifies

9 cell types in the mouse somatosensory cortex and hippocampal CA1 region. Figure 3B plots the top 5

marker genes for each cell type. OCAT manages to replicate the marker gene findings reported by [Zeisel

et al., 2015], for example, Gad1 and Gad2 genes for Interneuron cells, and Acta2 gene for mural cells. We

further compare the top selected differential genes by OCAT with those identified by Seurat v3, and show

that the top selected genes are highly consistent between the two methods. For example, for the CA1 cell

population, OCAT identifies Crym, Cpne6, Neurod6, Gria1 and Wipf3 as the top five differential genes, and

four of them are also in the top five differential genes selected by Seurat v3. We further show that the top

features are highly consistent for all other cell populations in Supplementary Table S6 and Supplementary

Figure S6.

3.3.4 Trajectory and pseudotime inference

OCAT is able to reconstruct the developmental trajectory and pseudotime of cells from their transcriptomic

profiles. In most cell populations, there exists a gradient of differentiation underlying the process of cell

renewal, from progenitor cells to the terminally differentiated cell types. Based on the similarities in gene

expressions, trajectory and pseudotime analyses infer the differentiation status of the cell types as well as

individual cells. Trajectory inference first maps out the developmental lineages from the least differentiated

to most differentiated cell types. Pseudotime analysis then orders the individual cells along the predicted

lineages and assigns each cell a pseudotime, indicating its time stamp in the process of differentiation.

OCAT extracts a reduced “ghost” neighbourhood graph between cell types by aggregating cell-to-cell sim-

ilarities in each cluster. OCAT then infers the lineages by constructing the minimal spanning tree [Kruskal,

1956] over the aggregated “ghost” neighbourhood graph that connects all the cell types. The least differen-

tiated cell type is considered as the root cluster, which determines the unique directionality of the inferred

lineages; see Section 5 for details. Lastly, to compute the pseudotime of each cell, OCAT appoints the least

differentiated cell in each “ghost” neighbourhood as the root cell. Traversing down the lineages, OCAT uses

the root cell as the point of reference in each local neighbourhood to assign pseudotime to individual cells.

We validate the performance of OCAT trajectory and pseudotime inference using the human skeletal

muscle myoblast (HSMM) dataset [Trapnell et al., 2014]. The HSMM dataset contains time-series scRNA-seq

data outlining the early stages of myogenesis. The 271 myoblast cells were collected at 0, 24, 48 and 72 hours of

differentiation, with gold-standard annotations based on known gene markers [Tran and Bader, 2020, Trapnell

et al., 2014]. OCAT infers the differentiation trajectory from myoblast to intermediate cells, followed by three

separate branches into myotubes, fibroblasts and undifferentiated cells. Fibroblasts and undifferentiated cells

represent the two cell groups that exit the differentiation cycle prior to myotube formation. The inferred

trajectory is consistent with the known biology of myotube formation as well as the original findings in Tran

and Bader [2020]. The pseudotime assigned by OCAT is highly correlated with the collection time stamps,

with a Pearson correlation of 0.8743 by annotated cell type group. Additionally, following the procedures

in Saelens et al. [2019], we compare OCAT with Slingshot [Street et al., 2018], PAGA Tree [Wolf et al.,

2019] and Monocle ICA [Qiu et al., 2017] on trajectory and pseudotime inference with 28 gold-standard real

datasets using the dynverse R package [Saelens et al., 2019]. OCAT is competitive in accurately assigning

cell positions along the lineages as well as assisting downstream tasks of identifying important genes specific

to the trajectory; see Supplementary Material 6.6.3, Supplementary Figure S7, and Supplementary Table S7
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for details.

4 Discussion

In this work, we present OCAT, a unifying framework for analyzing large-scale scRNA-seq datasets, which

synergizes a wide range of downstream tasks crucial to biological discoveries. OCAT utilizes sparse encoding

as the latent representation of single cells to amplify the true biological signals. Through the hypothetical

“ghost” cells, the OCAT sparse encoding captures the global cell-to-cell similarity across multiple datasets.

We demonstrate that, without any batch effect correction, the sparse encoding of OCAT effectively separates

the true biological differences among the cells from batch effects, achieving state-of-the-art performance with

existing methods in cell type itentification.

Unlike most existing methods, OCAT does not rely on most variable gene selection to discriminate

biological cell groups, which preserves the identities of non-overlapping cell types unqiue to some datasets and

has the potential to facilitate the discovery of de novo cell groups. Furthermore, OCAT successfully leverages

the high demand for computational resources in integrating large-scale scRNA-seq datasets. Through its

sparse encoding of gene expressions, OCAT can scale up to integrate multiple scRNA-seq datasets with large

number of cells and large number of genes, in a computational and memory efficient way.

OCAT effectively facilitates a variety of downstream analyses with important biological implications. For

example, OCAT is readily applicable to analyzing individual scRNA-seq dataset as well as spatial scRNA-seq

data, outperforming existing methods in cell type clustering. Moreover, OCAT can undertake challenging

tasks such as differential gene analysis, trajectory inference, pseudotime inference and cell inference. With

additional biological priors, OCAT has the great potential to better facilitate downstream analyses and

extend to tackle more complex tasks such as cell-to-cell communication network inference, which we will

explore as future work.

OCAT is freely available at https://github.com/bowang-lab/OCAT.

5 Online methods

5.1 The OCAT framework overview

OCAT endorses sparse encoding of the latent representations of the single-cell transcriptomics. Given N

single cells each with M gene expressions, OCAT first identifies m � M “ghost” cells and connects each

individual cell with the ghost cells through a bipartite graph where the weights of the edges are treated as the

encoding. As m�M , the OCAT encoding is very sparse and computationally fast for large-scale datasets.

The sparse encoding can then be deployed to find the similarities between cells within the same datasets as

well as across multiple datasets. The similarities between cells can facilitate downstream analyses such as cell

clustering, trajectory inference, gene prioritization. Moreover, the OCAT sparse encoding is also capable of

clustering spatial transcriptomics. Figure 1 depicts the sparse encoding procedures of OCAT and the latent

representations for various downstream tasks given two input scRNA-seq datasets. In the next sections, we

will outline the OCAT algorithms in details.
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5.2 Data pre-processing

Given an N ×M gene expression matrix, R, where N is the number of single cells and M is the number of

genes, OCAT first pre-processes the raw gene expression data by log-transforming each entry rij in R

r′ij = log10(rij + 1),

and normalizes the log-transformed expression to

xij =
r′ij√∑M
j=1 r

′
ij

, (1)

for i = 1, . . . , N and j = 1, . . . ,M . The normalized gene expression matrix is denoted as X = {xi}Ni=1, where

xi = (xi1, xi2, . . . , xiM )T is the M × 1 normalized gene expression vector of cell i.

5.3 Dimension reduction of gene expression matrix

To efficiently encode the transcriptomics of the single cells, OCAT further reduces the dimension of the

normalized gene expression matrix X. OCAT adopts the online Fast Similarity Matching (FSM) algorithm

[Giovannucci et al., 2018] that projects each xi from RM to Rd such that

min
yi∈Rd

N∑
k=1

N∑
i=1

(xT
k xk − yT

i yi)
2, (2)

where yi is the d × 1 feature vector for cell i. OCAT adopts Y = {yi}Ni=1 as the transcriptomic feature

representation that will facilitate the construction of the sparsified bipartite graph.

Note that though a vast collection of methods is available for dimension reduction, online FSM is much

more efficient with a complexity of O(NMd) than the traditional principal component analysis (PCA) whose

complexity is O(M2N + M3), which is offered as an alternative option in the OCAT software package.

5.4 Sparsified bipartite graph for single-cell transcriptomics

5.4.1 Identifying “ghost” cells

We introduce the idea of “ghost” cells which are imaginary cells that characterize the transcriptomics of the

real single cells. OCAT identifies m ghost cells that are the K-Means cluster centers of Y , and denotes their

features as uj , for j = 1, 2, . . . ,m. We then construct a sparsified bipartite graph G = (V,U,E) between the

single cells and the ghost cells, where each node vi represents the feature yi of the ith single cell.

5.4.2 Construct sparsified bipartite graph

Our next goal is to construct the sparsified bipartite graph between the single cells and the ghost cells. For

single cell i, the weights zi = (Zi1, Zi2, . . . , Zim)T is a m× 1 vector such that

m∑
k=1

Zik = 1, and Zik ≥ 0 for k = 1, 2, . . . ,m.

For single cell i, OCAT first identifies its s closest ghost cells with the top s cosine similarity values and

denote their indices as 〈i〉 ∈ [1 : m]. OCAT then optimizes the edge weights cell i and its s neighbor ghost

cells, z〈i〉, using Local Anchor Embedding (LAE) [Liu et al., 2010] by

min
zi∈Rs

1

2
||yi − U〈i〉z〈i〉||2, such that 1Tz〈i〉 = 1 and z〈i〉 ≥ 0, (3)
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and U〈i〉 = {uk}k∈〈i〉 are the features of the s neighbor ghost cells. The edge weights of cell i to all the ghost

cells are thus denoted as as Zi,〈i〉 = zT
〈i〉 and Z

i,〈i〉 = 0, and the collection of all the edge weights connecting

N single cells to m ghost cells is denoted as Z = {zi}Ni=1 ∈ RN×m.

5.4.3 Message passing between single cells

To infer the transcriptomic similarity between single cells, a common approach is to compute the adjacency

matrix W between the cells. However, when the number of single cells, N , is large, storing a N×N adjacency

matrix consumes significant memory. OCAT, instead of computing cell-to-cell similarity directly, infers it

through single cell to ghost cell edge weights, Z, and the similarities between ghost cells, ZG ∈ Rm×m. The

similarity between ghost cells is defined as,

Zghost = ZTZ. (4)

We then standardize Zghost by

ZG = D−
1
2ZghostD−

1
2 , (5)

where D is a diagonal matrix with

Dkk =
m∑
i=1

Zghost
ik , for k = 1, . . . ,m.

The normalized ghost cell to ghost cell similarity, ZG, is an m ×m combined ghost cell set that transmits

messages between single cells. Lastly, we obtain refined sparse embeddings for the single cells through message

passing ZW by

ZW = ZZG. (6)

5.5 Integration of multiple scRNA-seq datasets

OCAT can easily integrate multiple gene expression datasets thanks to the design of sparsified bipartite

graph. Without loss of generality, suppose we have two scRNA-seq datasets to integrate, each with N1

and N2 single cells and M common genes. Each individual dataset first undergoes the same pre-processing

and dimension reduction steps outlined in Section 5.2 and 5.3, and yields X1 ∈ RN1×d for dataset 1 and

X2 ∈ RN2×d for dataset 2.

OCAT then identifies m1 ghost cells from X1 with features {uk}m1

k=1, and m2 ghost cells from X2 with

features {ul}m1

l=1. For the ith individual cell, OCAT identifies s1 closest ghost cells with indices 〈i1〉 from the

first ghost cell set and s2 closest ghost cells with indices 〈i2〉 from the second set. Within the first ghost cell

set, OCAT obtains the optimized weights z〈i1〉 such that

m1∑
k=1

Zik = 1, and Zik ≥ 0 for k = 1, 2, . . . ,m1.

Similarly, the optimized weights for the second ghost cell set, OCAT obtains the optimized weights z〈i2〉.

The weights of the edges connecting the ith single cell to all the ghost cells are then denoted as Zi,〈i〉 =

(z〈i1〉, z〈i2〉)
T and Z

i,〈i〉 = 0. The collection of all the edge weights of (N1 + N2) single cells connecting to

(m1 + m2) ghost cells is denoted as Z = {zi}Ni=1 ∈ RN×m where N = N1 + N2 and m = m1 + m2.

Following (4) and (5), we obtain the re-fined embeddings, Zcomb
W , for each single cell through message

passing between the combined ghost cells. We lastly normalize Zcomb
W by

Zcomb, norm
W =

Zcomb
W

||Zcomb
W ||

. (7)
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5.6 Differential gene analysis

OCAT offers the functionality to find the differential genes for each cell type clusters. Denote the normalized

gene expression matrix as X = {xij}, where i = 1, . . . , N and j = 1, . . . ,M . For cell type cluster C, we

compares the gene expression of cell type cluster C with all the other types, and we rank the top differential

genes by the magnitude of

TC
j =

(
1
nC

∑
i∈C

xij − 1
N−nC

∑
i 6∈C

xij

)2

1
N

N∑
i=1

(xij − x̄j)2
, (8)

where x̄j =
∑N

i=1 xij/N .

5.7 Cell inference

OCAT supports immediate cell type inference of incoming data based on existing databases, without re-

computing the latent representations by combining the new incoming (“inference”) dataset and the existing

(“reference”) dataset.

Given an incoming “inference” set, OCAT first projects the normalized gene expression X infer to the

same RN×D subspace as the “reference” set, obtaining the reduced cell representation Y infer. OCAT then

constructs a bipartite graph that connects these new “inference” cells to the “ghost” cells identified in the

“reference” set following (3), and obtains the edge weights, Z infer, for the “inference” cells. The edge weights

then go through the same message-passing procedures as the “reference” cells, resulting in Z infer
W , the sparse

representation of the new “inference” cells mapped to the same global subspace as the “reference” cells.

To assign cell type labels to the “inference” cells, OCAT “trains” a Support Vector Machine (SVM)

[Noble, 2006] based on the sparse representations of the “reference” cells, Zrefer
W , and the cell type labels for

the “reference” cells. Based on the estimated coefficients from SVM, OCAT infers the cell type labels of the

new incoming cells using Z infer
W .

5.8 Trajectory inference

Trajectory inference aims to computationally reconstruct the developmental trajectory of cells based on gene

expressions. It outlines the temporal transition from the the least differentiated to the most differentiated

cell types. OCAT infers the developmental lineages by connecting the similarity graph between cell types

with a minimum spanning tree [Kruskal, 1956].

Suppose we have an N ×m dimensional gene expression embedding for the cells, for example, the sparse

embedding by OCAT, Zcomb, norm
W . The cells are clustered into c cell types based on the embedding. OCAT

computes the similarity score between cell type p and cell type q, Ap,q, by averaging the pair-wise cell-to-cell

cosine similarities between cell types p and q.

Ap,q =

np∑
u=1

nq∑
v=1

au,v/npnq, where au,v =
zp
uz

q
v

‖zp
u‖‖zq

v‖
, (9)

zp
u is the embedding vector for the uth cell in cell type p, zq

v is the embedding vector for the vth cell in cell

type q, and np, nq are the number of cells in cell type p and q, respectively. ‖ · ‖ denotes the l2-norm.

Let A = {Ap,q} ∈ Rc×c denote the matrix of pair-wise similarity scores between c cell types. OCAT

constructs an undirected graph GC from A, where each node represents a unique cell type, and the edge

weight between two nodes (two cell types) is their similarity score. OCAT then obtains the minimum spanning
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tree T that connects all the nodes while minimizing the total sum of edge weights in the tree T . OCAT

lastly adds directionality to the tree by taking the least differentiated cell type, namely, the root cell type, as

the starting point of differentiation. Once the root cell type is determined, we obtain a unique directionality

within the tree T .

5.9 Pseudotime Inference

Pseudotime analysis assigns each cell a time stamp along the lineages: less differentiated cells have earlier

time stamps; more differentiated cells have later time stamps. It thus provides more granularity to individual

cells than the lineage ordering of cell types. OCAT defines a root cell in the root cluster, r1, to serve as a

reference to quantify differentiation. Biologically, r1 represents the most primitive in the entire differentiation

trajectory. OCAT identifies r1 computationally by locating the cell whose spatial distances with other cells

have the best accordance with the lineage ordering of cell types identified. OCAT then infers the extent to

which a particular cell differentiates using its distance to the most primitive r1, where less differentiated cells

are closer to r1, and vice versa.

To calculate the distance of the uth cell of type p to the first cell r1, OCAT considers both the position

of cluster p along the cell type lineages and the position of cell u in cluster p. We then define a root cell

in every non-root cluster to serve as landmarks to connect the cell types along the lineages, denoted as

r2, . . . , rc ∈ R1×m. In a non-root cluster p, the cell with the closest average Euclidean distance with all cells

in the previous cluster p− 1 on the same lineage is assigned to be the root cell, rp. OCAT defines a distance

Di for each cell in the dataset, where D ∈ R1×N . The distance for the uth cell in cluster p is defined as

the sum of Euclidean distance between zp
u and the current root cell cluster rp, and the length of cell type

lineages up to cluster p:

Di = dis(zp
u, r1) =

√
‖zp

u − rp‖2 +

p∑
l=2

√
‖rl − rl−1‖2. (10)

OCAT uses the normalized distance Dnorm as the pseudotime measure:

Dnorm =
D −min(D)

max(D)−min(D)
. (11)
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