
1 

 

Title: Functional plasticity coupled with structural predispositions in auditory cortex shape 1 

successful music category learning 2 

 3 

 4 

 5 

Author(s):  Kelsey Mankel1,2, Utsav Shrestha3, Aaryani Tipirneni-Sajja3, and Gavin M. 6 

Bidelman1,2,4 7 

1Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA 8 

2School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA 9 

3Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA 10 

4University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, 11 

Memphis, TN, USA 12 

 13 

 14 

 15 

Address for editorial correspondence: 16 

Kelsey Mankel 17 

School of Communication Sciences & Disorders 18 

University of Memphis 19 

4055 North Park Loop 20 

Memphis, TN, 38152 21 

TEL: (901) 678-5826 22 

FAX: (901) 525-1282 23 

EMAIL: kmankel@memphis.edu  24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443818doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443818
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

ABSTRACT   25 

Categorizing sounds into meaningful groups helps listeners more efficiently process the 26 

auditory scene and is a foundational skill for speech perception and language development. Yet, 27 

how auditory categories develop in the brain through learning, particularly for nonspeech 28 

sounds, is not well understood. Here, we asked musically naïve listeners to complete a brief 29 

(~20 min) training session where they learned to identify sounds from a nonspeech continuum 30 

(minor-major 3rd musical intervals). We used multichannel EEG to track behaviorally relevant 31 

neuroplastic changes in the auditory event-related potentials (ERPs) pre- to post-training. To 32 

rule out mere exposure-induced changes, neural effects were evaluated against a control group 33 

of 14 nonmusicians who did not undergo training. We also compared individual categorization 34 

performance with structural volumetrics of bilateral primary auditory cortex (PAC) from MRI to 35 

evaluate neuroanatomical substrates of learning.  Behavioral performance revealed steeper 36 

(i.e., more categorical) identification functions in the posttest that correlated with better training 37 

accuracy. At the neural level, improvement in learners’ behavioral identification was 38 

characterized by smaller P2 amplitudes at posttest, particularly over right hemisphere. Critically, 39 

learning-related changes in the ERPs were not observed in control listeners, ruling out mere 40 

exposure effects. Learners also showed smaller and thinner PAC bilaterally, indicating superior 41 

categorization was associated with structural differences in primary auditory brain regions. 42 

Collectively, our data suggest successful auditory categorical learning of nonspeech sounds is 43 

characterized by short-term functional changes (i.e., greater post-training efficiency) in sensory 44 

coding processes superimposed on preexisting structural differences in bilateral auditory cortex. 45 

 46 

Keywords: auditory learning, EEG, auditory event related potentials (ERPs), morphometry, 47 

music perception, individual differences, categorical perception (CP) 48 

  49 
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INTRODUCTION  50 

 Classifying continuously varying sounds into meaningful categories like phonemes or 51 

musical intervals enables more efficient processing of an auditory scene (Bidelman et al., 2020). 52 

Categorization of auditory stimuli is also a foundational skill for language development and is 53 

believed to arise from both learned and innate factors (Livingston et al., 1998; Mankel, Barber, 54 

et al., 2020; Mankel, Pavlik Jr, et al., 2020; Perez-Gay Juarez et al., 2019; Rosen & Howell, 55 

1987). Auditory categories are further shaped by experiences such as speaking a second 56 

language (Escudero et al., 2011; Lively et al., 1993; Perrachione et al., 2011) or musical training 57 

(Bidelman & Walker, 2019; Bidelman et al., 2014; Wu et al., 2015), suggesting flexibility in 58 

categorical perception with learning. While the behavioral aspects of category acquisition are 59 

well documented, the underlying neural mechanisms and the influence of individual differences 60 

in shaping this process are poorly understood. 61 

Characterizing the neurobiology of category acquisition is typically confounded by prior 62 

language experience and the overlearned nature of speech (Liu & Holt, 2011). For example, 63 

perceptual interference from native-language categories can impede the learning of foreign 64 

speech sounds (Flege & MacKay, 2004; Francis et al., 2008; Guion et al., 2000). Instead, 65 

nonspeech stimuli (e.g., music) offers the ability to probe the neural mechanisms of nascent 66 

category learning without the potential confounds of language background or automaticity that 67 

stems from using speech materials (Goudbeek et al., 2009; Guenther et al., 1999; Liu & Holt, 68 

2011; Smits et al., 2006; Yi & Chandrasekaran, 2016). In this regard, musical categories (i.e., 69 

intervals, chords) offer a fresh window into tabula rasa category acquisition. Indeed, 70 

nonmusicians are unable to adequately categorize musical stimuli despite their exposure to 71 

music in daily life (Bidelman & Walker, 2019; Howard et al., 1992; Klein & Zatorre, 2011; Locke 72 

& Kellar, 1973; Siegel & Siegel, 1977). While several studies have assessed category learning 73 

of musical intervals, they either used highly trained listeners (Burns & Ward, 1978) or focused 74 

on different training methods that maximize learning gains (Little et al., 2019; Pavlik Jr et al., 75 
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2013). To our knowledge, no study has assessed the neural changes associated with category 76 

learning in music.  77 

Speech categorization is believed to emerge in the brain by around N1 of the cortical 78 

event-related potentials (ERPs) and fully manifests by P2 (i.e., ~150-200 ms; Alho et al., 2016; 79 

Bidelman & Lee, 2015; Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; Mankel, 80 

Barber, et al., 2020; Ross et al., 2013). Fewer studies have examined the electrophysiological 81 

underpinnings of music categorization, but evidence from musicians suggests a similar neural 82 

time course (Bidelman & Walker, 2019). Functional magnetic resonance imaging suggests that 83 

categorization training leads to a decrease in perceptual sensitivity for within-category stimuli in 84 

auditory cortex while learning to discriminate categorical sounds shows the opposite effect—85 

greater sensitivity to differences between stimuli (Guenther et al., 2004). Still, the majority of 86 

studies on category learning have involved speech. Although there are probably some parallels 87 

(Liu & Holt, 2011), it remains unclear whether the neuroplastic changes that arise when rapidly 88 

learning nonspeech categories (e.g., music) parallels that of speech. 89 

More generally, auditory perceptual learning studies have reported changes in both early 90 

sensory-evoked (i.e., N1, P2) and late slow-wave ERP responses following training (Alain et al., 91 

2010; Alain et al., 2007; Atienza et al., 2002; Ben-David et al., 2011; Bosnyak et al., 2004; 92 

Carcagno & Plack, 2011; Tong et al., 2009; Tremblay et al., 2001; Tremblay & Kraus, 2002; 93 

Tremblay et al., 2009; Wisniewski et al., 2020). A true biomarker of learning, however, should 94 

vary with learning performance (Tremblay et al., 2014). Because modulations in P2 amplitudes 95 

can occur with mere passive stimulus exposure in the absence of training improvements, some 96 

posit P2 reflects aspects of the task acquisition process rather than training or perceptual 97 

learning, per se (Ross et al., 2013; Ross & Tremblay, 2009; Tremblay et al., 2014). Given the 98 

equivocal role of P2 in relation to auditory learning, we aimed to re-adjudicate whether changes 99 

in P2 scale with individual behavioral outcomes as listeners rapidly acquire novel music 100 

categories.  101 
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There is also significant variability in the acquisition of auditory categories (e.g., 102 

Golestani & Zatorre, 2009; Howard et al., 1992; Mankel, Pavlik Jr, et al., 2020; Silva et al., 103 

2020), especially for speech (Díaz et al., 2008; Fuhrmeister & Myers, 2021; Kajiura et al., 2021; 104 

Mankel, Barber, et al., 2020; Wong et al., 2007). More successful learners show greater neural 105 

activation, particularly in auditory cortex (Díaz et al., 2008; Kajiura et al., 2021; Wong et al., 106 

2007). Such variability might be attributable to differences in the creation or retrieval of long-107 

term memories for prototypical vs. non-prototypical sounds during learning (Golestani & Zatorre, 108 

2009). However, we have previously shown better categorizers show efficiencies even in early 109 

sensory processing (~150-200 ms), suggesting stimulus representations themselves are tuned 110 

at the individual level rather than later memory-related processes, per se (Mankel, Barber, et al., 111 

2020).  112 

In addition to differences in functional processing, individual categorization abilities may 113 

be partially driven by preexisting structural advantages within the brain (Fuhrmeister & Myers, 114 

2021). Paralleling the left hemisphere bias for speech (Binder et al., 2004; Bouton et al., 2018; 115 

Lee et al., 2012; Myers et al., 2009), categorization of musical sounds is believed to involve a 116 

frontotemporal network in the right hemisphere, including key brain regions such as the primary 117 

auditory cortex (PAC), superior temporal gyrus (STG), and inferior frontal gyrus (IFG) (Bidelman 118 

& Walker, 2019; Klein & Zatorre, 2011, 2015; Mankel, Barber, et al., 2020). PAC/STG size 119 

(primarily right hemisphere) has also been associated with perception of relative pitch and 120 

musical transformation judgments (Foster & Zatorre, 2010), melodic interval perception (Li et al., 121 

2014), spectral processing (Schneider et al., 2005), and even musical aptitude (Schneider et al., 122 

2002). To our knowledge, few studies have examined the structural correlates of categorization 123 

differences on the individual level. In the domain of speech, faster, more successful learners of 124 

nonnative phonemes exhibit larger left Heschl’s gyrus (Golestani et al., 2007; Wong et al., 2008) 125 

and parietal lobe volumes (Golestani et al., 2002). Additionally, better and more consistent 126 

speech categorizers show increased right middle frontal gyrus surface area and reduced 127 
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gyrification in bilateral temporal cortex (Fuhrmeister & Myers, 2021). We thus hypothesized that 128 

successful category learning in music would be predicted by neuroanatomical differences (e.g., 129 

gray matter volume, cortical thickness), with perhaps effects favoring right PAC. 130 

 The aim of this study was to examine the functional and structural neural correlates of 131 

auditory category learning following short-term identification training of music sound categories. 132 

Musical intervals allowed us to track sound-to-label learning without the potential lexical-133 

semantic confounds inherent to using speech materials (Liu & Holt, 2011). We measured 134 

learning-related changes in the cortical ERPs in musically naïve listeners against a no-contact 135 

control group to determine the specificity of neuroplastic effects. If rapid auditory category 136 

learning is related to enhanced sensory encoding of sound, we predicted changes in early brain 137 

activity manifesting at or before auditory object formation (i.e., prior to ~250 ms; P2). If instead, 138 

short-term learning is associated with later cognitive processes related to decision and/or task 139 

strategy, we expected neural effects to emerge later in the ERP time course (e.g., late slow 140 

waves > 400-500 ms; Alain et al., 2007). Additionally, we anticipated successful learners would 141 

recruit neural resources in right auditory cortices, mirroring the left hemispheric specialization 142 

supporting speech categorization (Bidelman & Walker, 2019; Joanisse et al., 2007; Klein & 143 

Zatorre, 2011; Liebenthal et al., 2005). Our findings show that successful auditory category 144 

learning is characterized by both structural and functional differences in right auditory cortex. 145 

The presence of anatomical differences along with ERP changes specific to learning suggest 146 

that the acquisition of auditory categories depend on a layering of preexisting and short-term 147 

plastic changes in brain function.  148 

 149 

MATERIALS & METHODS  150 

Participants 151 

Our sample included N=33 participants. Nineteen young adults (16 females) participated 152 

in the training task. An additional fourteen (7 females) served as a control group (data from 153 
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Mankel, Barber, et al., 2020). All had normal hearing (thresholds ≤25 dB SPL, 250-8000 Hz), 154 

were right-handed (Oldfield, 1971), and had no history of neurological disorders. Participants 155 

completed questionnaires that assessed education level, socioeconomic status (SES) 156 

(Entwislea & Astone, 1994), language history (Li et al., 2006), and music experience. Groups 157 

were comparable in age (learners: µ = 24.9 ± 4.0 yrs, controls: µ = 24.9 ± 1.7 yrs; p = 0.5492), 158 

education (learners: µ = 18.5 ± 3.3 yrs, controls: µ = 17.3 ± 3.0 yrs; p = 0.3211), and SES 159 

(rating scale of average parental education from 1 [some high school education] to 6 [PhD or 160 

equivalent]; learners: µ = 4.6 ± 1.3, controls: µ = 4.1 ± 0.6; p = 0.1085). All were fluent in 161 

English though six reported a native language other than English. We excluded tone language 162 

speakers as these languages improve musical pitch perception (Bidelman, Hutka, et al., 2013). 163 

To ensure participants were naïve to the music-theoretic labels for pitch intervals, we required 164 

participants have no more than three years total of formal music training on any combination of 165 

instruments and none within the past five years. Critically, groups did not differ in prior music 166 

training (learners: µ = 1.1 ± 1.0 yrs, controls: µ=0.6 ± 0.8 yrs; p=0.1446). All participants gave 167 

written informed consent according to protocol approved by the University of Memphis 168 

Institutional Review Board and were compensated monetarily for their time.  169 

 170 

Stimuli  171 

 We used a five-step musical interval continuum to assess category learning of non-172 

speech sounds continuum (Bidelman & Walker, 2017; Mankel, Pavlik Jr, et al., 2020). Individual 173 

notes of each dyad were constructed of complex tones consisting of 10 equal amplitude 174 

harmonics added in cosine phase. Each token was 100 ms in duration with a 10 ms rise/fall time 175 

to reduce spectral splatter. The bass note was fixed at a fundamental frequency (F0) of 150 Hz 176 

while the upper note’s F0 ranged from 180 to 188 Hz (2 Hz spacing between adjacent tokens). 177 

Thus, the musical interval continuum spanned a minor (token 1) to major third (token 5). The 178 

minor-major third continuum was selected because these intervals occur frequently in Western 179 
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tonal music and connote typical valence of “sadness” and “happiness”, respectively, and are 180 

therefore easily described to participants unfamiliar with music-theoretic labels (Bidelman & 181 

Walker, 2017). Moreover, without training, nonmusicians perceive musical intervals in a 182 

continuous mode indicating they are initially heard non-categorically (Bidelman & Walker, 2017, 183 

2019; Burns & Ward, 1978; Howard et al., 1992; Locke & Kellar, 1973; Siegel & Siegel, 1977; 184 

Zatorre & Halpern, 1979). 185 

 186 

Procedure  187 

 Participants were seated comfortably in an electroacoustically shielded booth. Stimuli 188 

were presented binaurally through ER-2 insert earphones (Etymotic Research) at ~81±1 dB 189 

SPL. Stimulus presentation was controlled by MATLAB routed through a TDT RP2 interface 190 

(Tucker Davis Technologies). Categorization was assessed in a pre- and post-test phase. 191 

Following brief task orientation (~2-3 exemplars), tokens of the continuum were randomly 192 

presented on each trial. Participants were instructed to label the sound they heard as either 193 

“minor” or “major” via keyboard button press as fast and accurately as possible. The 194 

interstimulus interval was 400-600 ms (jittered in 20 ms steps) following the listener’s response. 195 

No feedback was provided during the pre- or post-test. To reduce fatigue, participants were 196 

offered a break before and after the training phase. 197 

  198 

Training paradigm 199 

 Participants in the learning group underwent a 20-min identification training between the 200 

pre- and post-test phases (all performed in a single ~3 hr period). Training consisted of 500 201 

trials, 250 presentations each of the minor and major 3rd exemplars (i.e., tokens 1 and 5), 202 

spread evenly across 10 blocks1. Feedback was provided to improve accuracy and efficiency of 203 

 
1 Two pilot subjects received 6 and 15 blocks of training, respectively, before settling on the final 10 block training 

regimen. 
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auditory category learning (Yi & Chandrasekaran, 2016). The training procedure was conducted 204 

using E-Prime 2.0 (PST, Inc.). 205 

 206 

EEG acquisition and preprocessing 207 

 EEG data were recorded using a Synamps RT amplifier (Compumedics Neuroscan) 208 

from 64 sintered Ag/AgCl electrodes at 10-10 scalp locations and referenced online to a sensor 209 

placed ~1 cm posterior to Cz. Impedances were <10 kΩ. Recordings were digitized at a 210 

sampling rate of 500 Hz. Preprocessing was completed in BESA Research (v7.1; BESA GmbH). 211 

Continuous data were re-referenced offline to the common average reference, epoched from -212 

200-800 ms, filtered from 1-30 Hz (4th-order Butterworth filter), baselined to the prestimulus 213 

interval, and averaged across trials to compute ERPs for each token per electrode. 214 

 215 

MRI segmentation and volumetrics 216 

12 out of 19 learning group participants returned on a separate day for structural MRI 217 

scanning. 3D T1-weighted anatomical volumes were acquired on a Siemens 1.5T Symphony 218 

TIM scanner (tfl3d1 GR/IR sequence; TR = 2000 ms, TE = 3.26 ms, inversion time = 900 ms, 219 

phase encoding steps = 341, flip angle = 8°, FOV = 256 x 256 acquisition matrix, 1.0 mm axial 220 

slices). Scanning was conducted at the Semmes Murphey Neurology Clinic (Memphis, TN). All 221 

MRI T1-weighted images were initially registered to MNI ICBM 152 T1 weighted atlas with 1 x 1 222 

x 1 mm3 isometric voxel size using affine transformation. The inverse transformation matrix was 223 

computed and applied to the brain mask in atlas space to create brain mask specific for each 224 

subject for skull removal (Evans et al., 1993). An LPBA40 T1 weighted atlas with 2 x 2 x 2 mm3 225 

voxel size was then used to register the images and remove the cerebellum using the atlas 226 

cerebrum mask and following the same process as above (Shattuck et al., 2008). After skull 227 

removal and cerebrum extraction, an AAL3 T1 weighted atlas with 1 x 1 x 1 mm3 voxel size that 228 
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provides parcellation of a large number of brain regions was used for extracting gray matter 229 

volume in certain regions of interest (ROIs) for each participant (Rolls et al., 2020).  230 

 231 

Data analysis 232 

Behavioral data 233 

 Identification curves were fit with a two-parameter sigmoid function P = 1/[1 + e-β1(x-β0)], 234 

where P describes the proportion of trials identified as major, x is the step number along the 235 

stimulus continuum, β0 is the locus of transition along the sigmoid (i.e., categorical boundary), 236 

and β1 is the slope of the logistic fit. Larger β1 values reflect steeper psychometric functions and 237 

therefore better musical interval categorization performance. β1 slopes were square root 238 

transformed improve normality and homogeneity of variance. Reaction times (RTs) were 239 

computed as the listeners’ median response latency for the ambiguous (i.e., token 3) and 240 

prototypical tokens (i.e., mean[tokens  1 & 5]; see ERP data), after excluding outliers outside 241 

250-2500 ms (Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; Mankel, Barber, et al., 242 

2020). As an index of training success, accuracy was calculated in the learning group as the 243 

average percent correct identification across all training trials. 244 

 245 

ERP data 246 

 We analyzed a subset of electrodes from a frontocentral cluster (mean of F1, Fz, F2, 247 

FC1, FCz, FC2) where categorical effects in the auditory ERPs are most prominent at the scalp 248 

(Bidelman & Lee, 2015; Bidelman, Moreno, et al., 2013; Bidelman & Walker, 2017; Bidelman et 249 

al., 2014). Peak latencies and amplitudes were quantified for P1(40-80 ms), N1 (70-130 ms), 250 

and P2 (140-200 ms). The mean amplitude was also measured for slow wave activity between 251 

300-500 ms, given prior work suggesting rapid auditory learning effects in this later time frame 252 

(Alain et al., 2010; Alain et al., 2007).  253 
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We also quantified neural responses at T7 and T8 to assess hemispheric lateralization. 254 

For these analyses, we computed difference waves derived between the ambiguous and 255 

prototypical tokens (ΔERP = mean[tokens 1 & 5] – token 3) for both the pre- and post-test 256 

(Bidelman, 2015; Bidelman & Walker, 2017; Mankel, Barber, et al., 2020). Larger ΔERP values 257 

indicate stronger differentiation of category ambiguous from category prototype sounds and thus 258 

reflect the degree of “neural categorization” in each hemisphere. 259 

 260 

MRI data 261 

Each participant’s MRI images were registered to the AAL3 atlas, ROI masks were 262 

transformed to subject space, and ROI volumes were then calculated (cm3). Atlas registration 263 

was confirmed using SPM12 toolbox in MATLAB (Penny et al., 2011). Cortical thickness was 264 

examined using a diffeomorphic registration based cortical thickness (DiReCT) measure (Das et 265 

al., 2009). We used the OASIS atlas (Marcus et al., 2009) for the computation of cortical 266 

thickness because it provides four brain segmentation priors for parcellating cerebrospinal fluid 267 

(CSF), cortical gray matter, white matter, and deep gray matter. 3D cortical thickness maps for 268 

each subject were computed based on these priors. Thickness maps were then multiplied with 269 

the AAL3 atlas (converted to subject space) to compute the cortical thickness of each brain 270 

region mapped to their corresponding labels. Finally, the mean, standard deviation, and range 271 

of the cortical thickness measurements along with the surface area and volume of the cortical 272 

regions were computed for each ROI. Volumetrics were normalized to each participant’s total 273 

intracranial brain volume to control for artificial differences across individuals (e.g., head size; 274 

Whitwell et al., 2001). To test for hemispheric differences specific to auditory neuroanatomic 275 

measures, we restricted ROI analysis to bilateral Heschl’s gyrus (PAC; Brodmann 41). MRI 276 

post-processing was performed using in-house scripts coded in Python (http://www.python.org).  277 

  278 

Statistical analysis 279 
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 ERPs were analyzed using GLME mixed-effects regression models in SAS (Proc 280 

GLIMMIX; v9.4, SAS Institute, Inc.) with subjects as a random factor and fixed effects of training 281 

phase (two levels: pretest vs. posttest), token (two levels: tokens 1&5 vs. 3) and behavioral 282 

performance (identification slopes or training accuracy; continuous measures). We also included 283 

the interaction of phase and behavioral performance to investigate whether brain-behavior 284 

correspondences change after training. Similar models were used to analyze the behavioral and 285 

MRI data. Analyses on the individual groups alone included main and interaction effects of 286 

identification slopes or training accuracy (learning group only), training phase, and stimulus 287 

token. We used a backward selection procedure to remove nonsignificant variables and report 288 

final model results throughout. Post hoc multiple comparisons were corrected using Tukey 289 

adjustments. Identification function slopes were square-root transformed to reduce right 290 

skewness. Demographic variables were analyzed using Wilcoxon-Mann-Whitney and Fischer’s 291 

exact tests due to non-normality. An a priori significance level was set at α = 0.05. Conditional 292 

studentized residuals, Cook’s D, and covariance ratios were used to identify and exclude 293 

influential outliers. 294 

 295 

RESULTS 296 

Training results 297 

 Behavioral training outcomes are plotted in Figure 1. On average, participants in the 298 

learning group improved 10-15% in accuracy (Fig. 1A; F9,158 = 2.05, p = 0.038) and exhibited 299 

faster RTs (Fig. 1B; F9,149 = 3.22, p = 0.001) over the course of training. Training was highly 300 

effective; most individuals averaged >80-90% identification accuracy across the 10 blocks (i.e., 301 

the approximate performance of a musician on the same task; data not shown). N=5 302 

“nonlearners” had training accuracies that remained near chance performance; these individuals 303 

were removed for subsequent analysis. Post hoc analyses revealed RTs became faster 304 

following the second training block (all p’s < 0.05; block 1 vs. 2 p = 0.052). Similarly, listeners’ 305 
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identification was more accurate starting at the 9th training block compared to the first block 306 

(block 9 vs. 1: t158 = 3.44, p = 0.025; block 10 vs.1: t158 = 3.40, p = 0.028). 307 

 308 

[INSERT FIGURE 1 HERE] 309 

 310 

Behavioral categorization following training 311 

 We then assessed training training-related improvements in categorization via listeners’ 312 

identification of the musical interval continuum. We found a group x session interaction for 313 

identification slopes (F1,26 = 4.93, p = 0.035). Importantly, control and learning groups did not 314 

differ at pretest (Fig. 1C; t26 = -0.14, p = 0.48), suggesting common baseline categorization. 315 

Figure 1: Behavioral categorization improves following rapid auditory training. Brief major/minor 

categorization training yields an increase in accuracy (A) and decrease in reaction time (B) across 

blocks. Pretest (C) and posttest (D) psychometric identification functions show stronger 

categorization for musical intervals after training for the learning group (excluding data from n=5 

nonlearners); performance was identical pre- to post-test for control listeners (E). Error 

bars/shading  = +/- 1 SE. *p < 0.05. 
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Critically, post hoc analyses revealed that identification slopes were steeper at posttest for 316 

successful learners (Fig. 1D-E; t26 = 4.42, p < 0.001), whereas performance remain static in the 317 

control group (t26 = 4.42, p = 0.21). For learners, in addition to training gains (main effect of 318 

phase: F1,13 = 11.65, p = 0.005), achieving better accuracy during training was associated with 319 

steeper identification functions overall (F1,13 = 8.58, p = 0.012). Similarly, RTs showed a group x 320 

phase interaction (F1,78 = 3.98, p = 0.050). Whereas the control group achieved faster RTs at 321 

posttest (t78 = -3.64, p < 0.001), RTs remained constant in the learning group (t78 = -0.73, p = 322 

0.47).  323 

 324 

Electrophysiological results 325 

 ERP waveforms are shown per group and experimental phase in Figure 2 (pooling all 326 

tokens). For the learning group, we found a training accuracy x phase interaction in P2 (F1,39 = 327 

5.77, p = 0.021) and P1 amplitudes (F1,39 = 11.29, p = 0.002); better performance during training 328 

was associated with decreased amplitudes in the posttest but not the pretest (P2 posttest: t39 = -329 

3.41, p = 0.010; P1 posttest: t39 = -2.32, p = 0.010). All other ERP comparisons with training 330 

accuracy were not significant. 331 

 In learners, we found an identification slopes x phase interaction for P2 amplitudes (F1,38 332 

= 4.16, p = 0.048); steeper (i.e., more categorical) posttest identification slopes were associated 333 

with a decrease in neural activity after training (Fig. 3A). Main effects of slope (F1,39 = 8.46, p = 334 

0.006) and phase (F1,39 = 6.26, p=0.017) were also found for the slow wave (300-500 ms). 335 

Critically, these brain-behavior relationships were specific to learners and were not observed in 336 

the control group (Fig. 3B; all p’s > 0.05).  337 

 338 

[INSERT FIGURE 2 HERE] 339 
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 340 

[INSERT FIGURE 3 HERE] 341 

 342 

Hemispheric asymmetries were assessed via difference waveforms (i.e., mean[tokens 1 343 

& 5] vs. 3) indexing the degree of categorization contained in neural responses. This analysis 344 

focused on electrodes T7 and T8 located over the left and right temporal lobes, respectively. We 345 

used a running paired t-test to evaluate training effects in a point-by-point manner across the 346 

ERP time courses (BESA Statistics, v2; Fig. 4). This revealed that in learners, category 347 

Figure 2: Grand average ERP waveforms collapsed across all tokens from the frontocentral electrode cluster (mean F1, Fz, F2, 

FC1, FCz, FC2). The learning group (left) underwent brief identification training whereas the control group (right) did not. The 

tick mark represents t=0 (stimulus onset). 

Figure 3: Neural amplitudes scale with behavioral outcomes in the 

learning group (A) but not the control group (B). Better posttest 

categorization (i.e., steeper identification slopes) is associated with 

a decrease in P2 amplitudes. Data points indicate individual 

subjects (collapsed across tokens 1 & 5 and 3). Arrows/values 

mark outliers (which did not alter results). Shading = 95% CI. 
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differentiation was modulated by learning 112-356 ms after stimulus onset. Training effects were 348 

most prominent over electrode T8 (right hemisphere; Fig. 4B). Guided by these results, we then 349 

extracted average amplitudes within this time window and ran a three-way mixed model ANOVA 350 

(group, identification slopes, training phase). The group x slope interaction was significant for 351 

electrode T8 (F1,23 = 7.86, p = 0.010). Post hoc analyses revealed that for learners, steeper 352 

identification slopes predicted larger (i.e., more categorical) responses over the right 353 

hemisphere (t23 = 0.59, p = 0.021). This brain-behavior relationship was not observed in controls 354 

nor over the left hemisphere (p’s > 0.05). These data reveal a right hemisphere bias in neural 355 

mechanisms supporting category learning of musical sounds.  356 

 357 

[INSERT FIGURE 4 HERE] 358 

 359 

Neuroanatomical results 360 

 Having established that musical interval learning leads to functional lateralization, we 361 

next assessed whether preexisting structural asymmetries (i.e., gray matter volume, cortical 362 

thickness) of primary auditory cortex were also associated with successful category learning. 363 

Volumetric analyses revealed that gray matter volumes were larger on average in the right 364 

Figure 4: Neuroplastic changes following auditory categorical 

learning of music intervals is biased toward right hemisphere. Only 

data for the learning group is shown. (A-B) Difference waves (i.e., 

mean[token 1/5] – token 3) indexing categorical neural coding. An 

increase in neural categorization after training occurs over right (B; 

electrode T8) but not left hemisphere (A; electrode T7). Shaded 

region indicates a significant session effect (p < 0.05). (C) 

Topographic statistical map at t = 336 ms (dotted gray line in A & B) 

where pre- to post-test changes in categorical coding is maximal. 
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compared to left PAC (t11 = 12.36, p < 0.001). The interaction of phase and structural measures 365 

were not significant for identification slopes. However, phase was kept in the models to isolate 366 

the relationship between structural PAC measures and behavior after factoring out training 367 

effects (see section 3.2). Smaller gray matter volumes in right PAC were associated with 368 

stronger categorization overall (F1,11 = 5.80, p = 0.035, after accounting for effects of phase) 369 

(Fig. 5). Meanwhile, thinner cortical thickness of left PAC corresponded to better identification 370 

slopes (F1,11 = 15.07, p = 0.003, after accounting for effects of phase). Cortical thicknesses and 371 

gray matter volumes did not correlate with each other for either right or left PAC suggesting 372 

these volumetrics provided independent measures of the anatomy (all p’s > 0.05). Taken 373 

together, these results indicate that preexisting differences in bilateral PAC structure predict 374 

individual categorization performance. 375 

 376 

[INSERT FIGURE 5 HERE] 377 

 378 

DISCUSSION  379 

 By measuring multichannel EEGs and brain volumetrics during short term auditory 380 

category learning tasks, our data reveal three primary findings: (i) rapid label learning of non-381 

speech sounds emerges very early in the brain (~150-200 ms, P2 wave), (ii) ERP responses 382 

Figure 5: Neuroanatomical measures in primary auditory cortex (PAC) predict behavioral 

categorization performance in the learning group. (Left) In left HG, larger cortical thickness 

is associated with poorer categorization. (Right) Similarly, larger gray matter volumes (cm3) 

in right HG were associated with poorer behavioral categorization. (Center) MRI image from 

a representative subject with left and right HG shown in blue and white, respectively. Data 

points indicate individual subject identification slopes. Shading = 95% CI. 
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decrease with more successful learning suggesting more efficient neural processing (i.e., 383 

reduced amplitudes) after training; (iii) neuroplastic changes in categorizing musical sounds are 384 

stronger in right hemisphere where smaller and thinner auditory cortical regions predicted better 385 

categorization performance. Successful category learning is therefore characterized by 386 

increased functional efficiency of sensory processing layered on preexisting structural 387 

advantages within auditory cortex. 388 

 389 

Functional correlates of auditory category learning 390 

 Our data suggest category acquisition for non-speech sounds is associated with 391 

changes in ERP P2. The functional significance of P2 is still poorly understood (Crowley & 392 

Colrain, 2004). Experience-dependent neuroplasticity in P2 has been interpreted as reflecting 393 

enhanced perceptual encoding and/or auditory object representations (Bidelman & Lee, 2015; 394 

Bidelman et al., 2014; Garcia-Larrea et al., 1992; Ross et al., 2013; Shahin et al., 2003), 395 

improvements in the task acquisition process (Tremblay et al., 2014), reallocation of attentional 396 

resources (Alain et al., 2007), increased inhibition of task-irrelevant signals (Seppanen et al., 397 

2012; Sheehan et al., 2005), or mere stimulus exposure (Ross et al., 2013; Sheehan et al., 398 

2005). Here, we demonstrate early ERP waves including P1 (~40-80 ms) as well as P2 (~150-399 

200 ms) closely scale with behavioral learning. Moreover, these neuroplastic effects are 400 

surprisingly fast, occurring rapidly within only 20 minutes of training. Our findings parallel visual 401 

category learning where changes in the visual-evoked N1 and late positive component signal 402 

successful learning (Perez-Gay Juarez et al., 2019). Our results also align with previous studies 403 

using various auditory training tasks including speech (Alain et al., 2010; Alain et al., 2007; Ben-404 

David et al., 2011; Tremblay et al., 2001; Tremblay & Kraus, 2002; Tremblay et al., 2009) and 405 

nonspeech sounds (Atienza et al., 2002; Bosnyak et al., 2004; Tong et al., 2009; Wisniewski et 406 

al., 2020) suggesting P2 indexes auditory experience that reflects learning success and is not 407 

simply a product of the task acquisition process (cf. Tremblay et al., 2014) or repeated stimulus 408 
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exposure (Ross et al., 2013; Ross & Tremblay, 2009; Sheehan et al., 2005). The lack of clear 409 

neural effects in control listeners further rules out exposure or repetition effect accounts of our 410 

data. 411 

In this study, successful learning (i.e., both training accuracy and identification function 412 

slopes) was characterized by a reduction in ERP amplitudes after training. The specific direction 413 

of P2 modulations varies across experiments with some reporting an increase in evoked 414 

responses with learning (Atienza et al., 2002; Bosnyak et al., 2004; Carcagno & Plack, 2011; 415 

Ross et al., 2013; Sheehan et al., 2005; Tong et al., 2009; Tremblay et al., 2001; Wisniewski et 416 

al., 2020) and others a decrease (Alain et al., 2010; Ben-David et al., 2011; Zhang et al., 2005). 417 

As suggested by Alain et al. (2010), such discrepancies could be related to the task (e.g., active 418 

task vs. passive recording), the stimuli (e.g., speech vs. non-speech), the rate of learning 419 

among the participants, or even the rigor of training paradigm. Studies reporting enhanced P2 420 

often included multiple days of training or recorded ERPs during passive listening (Atienza et 421 

al., 2002; Bosnyak et al., 2004; Ross et al., 2013; Seppanen et al., 2013; Tremblay et al., 2001; 422 

Wisniewski et al., 2020). Long-term auditory experiences (e.g., music training, tone language 423 

expertise) have also been associated with enhanced P2 during active sound categorization 424 

(Bidelman & Alain, 2015; Bidelman & Lee, 2015; Bidelman et al., 2014) as well as learning 425 

(Seppanen et al., 2012, 2013; Shahin et al., 2003). The ERP decreases we find in successful 426 

learners are highly consistent with single-session, rapid learning experiments demonstrating 427 

greater efficiency of sensory-evoked neural responses during active task engagement (Alain et 428 

al., 2010; Ben-David et al., 2011; Guenther et al., 2004; Perez-Gay Juarez et al., 2019; Sohoglu 429 

& Davis, 2016). Consequently, our results reinforce notions that the P2 is a biomarker of 430 

learning to classify auditory stimuli and map sounds to labels.  431 

On the contrary, decreased neural activity might reflect other aspects of the task, 432 

including arousal and/or fatigue (Crowley & Colrain, 2004; Näätänen & Picton, 1987). However, 433 

decreased neural activity from these factors would have been expected in both groups due to 434 
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the similar task constraints on all participants. If better learners simply sustain arousal more 435 

effectively through posttest, we would have also expected faster RTs. Rather, our data suggest 436 

decreases in activation meaningfully reflect music category learning, paralleling findings with 437 

speech (Guenther et al., 2004). Alternatively, given modulations in both P2 and slow wave 438 

activity, a separate but overlapping processing negativity within this timeframe cannot be ruled 439 

out. Negative processing components have been associated with early auditory selection and 440 

attention (Crowley & Colrain, 2004; Hillyard & Kutas, 1983; Näätänen & Picton, 1987) and may 441 

therefore be another target for learning processes.  442 

 443 

Hemispheric lateralization and music categorization 444 

 Our findings show that acquiring novel categories for musical intervals predominantly 445 

recruits neural resources from the right auditory cortex, complementing the left hemisphere bias 446 

reported for speech categorization (Alho et al., 2016; Chang et al., 2010; Desai et al., 2008; 447 

Golestani & Zatorre, 2004; Liebenthal et al., 2005; Liebenthal et al., 2010; Myers et al., 2009; 448 

Zatorre et al., 1992). Specifically, we observed enhanced neural categorization over the right 449 

hemisphere in more successful learners. Gray matter volumetrics in right PAC also predicted 450 

behavioral categorization abilities. These findings support long-standing notions about 451 

lateralization for speech vs. music categorization in the brain (Alho et al., 2016; Bidelman & 452 

Walker, 2019; Bouton et al., 2018; Chang et al., 2010; Desai et al., 2008; Klein & Zatorre, 2011, 453 

2015; Liebenthal et al., 2010; Mankel, Barber, et al., 2020; Zatorre et al., 1992). Superior music 454 

categorization in both trained musicians (Bidelman & Walker, 2019; Klein & Zatorre, 2011, 455 

2015) as well as musically adept non-musicians (Mankel, Barber, et al., 2020) has been 456 

associated with right temporal lobe functions. We thus provide new evidence that even brief, 20-457 

minute identification training is sufficient to induce neural reorganization in the right hemisphere 458 

circuity that subserves auditory sensory coding and classification of musical stimuli. 459 

 460 
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Neuroanatomical correlates of auditory category learning 461 

 Our MRI results demonstrate that individual variation in structural measures (gray matter 462 

volume, cortical thickness) also predict behavioral categorization performance beyond mere 463 

training effects. Brain structure is influenced by genetic, epigenetic, and experiential factors 464 

(Zatorre et al., 2012). Thus, it is often difficult to know whether anatomical differences are innate 465 

or experience-driven, but structural measures are presumed to be more stable and less plastic 466 

than functional responses (e.g., ERPs) (Golestani, 2012). Anatomical variability in auditory 467 

cortex has been related to learning rate and attainment for foreign speech sounds (Golestani et 468 

al., 2007), linguistic pitch patterns (Wong et al., 2008), and melody discrimination (Foster & 469 

Zatorre, 2010) as well as native speech categorization (Fuhrmeister & Myers, 2021). Consistent 470 

with this prior work on speech, our findings suggest that individual differences in music category 471 

perception and functional plasticity are influenced by anatomical predispositions within auditory 472 

cortex—that is, a layering of both nature and nurture. 473 

It is often assumed larger morphology within a particular brain area yields better 474 

computational efficiency (Kanai & Rees, 2011) (i.e., “bigger is better”). For example, faster, 475 

more successful learners of nonnative speech sounds show more voluminous primary auditory 476 

cortex and adjacent white matter in left hemisphere (Golestani et al., 2007; Golestani et al., 477 

2002; Wong et al., 2008). Relatedly, expert listeners (i.e., musicians) show increased gray 478 

matter volumes and cortical thickness in PAC (Bermudez et al., 2009; de Manzano & Ullen, 479 

2018; Gaser & Schlaug, 2003; Schneider et al., 2002; Seither-Preisler et al., 2014; Wengenroth 480 

et al., 2014). Instead, our data show the opposite pattern with regard to non-speech category 481 

learning. To our knowledge, only one study has shown correspondence between decreased 482 

gyrification in temporal regions and improved consistency in speech categorization behaviors 483 

(Fuhrmeister & Myers, 2021). Similarly, smaller gray matter volume in STG has been linked to 484 

improvements in speech and cognitive training (Maruyama et al., 2018; Takeuchi, Taki, 485 

Hashizume, et al., 2011; Takeuchi, Taki, Sassa, et al., 2011). Thus, it seems “less is more” with 486 
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respect to the expanse of auditory anatomy and certain aspects of listening performance. 487 

However, future research is needed to clarify the relationships between macroscopic gray and 488 

white matter volumes measured by MRI, neuronal microstructures, and their behavioral 489 

correlates. 490 

 491 

Conclusion 492 

 We demonstrate that rapid auditory category learning of musical interval sounds is 493 

characterized by increased efficiency in sensory processing in bilateral, though predominantly 494 

right, auditory cortex. The relationship between better behavioral gains in identification 495 

performance and the ERPs corroborate P2 as an index of auditory experience and a biomarker 496 

for successful perceptual learning. The right hemisphere dominance supporting music category 497 

learning complements left hemisphere networks reported for speech categorization. These 498 

short-term functional changes can be superimposed on preexisting structural differences in 499 

bilateral auditory areas to impact individual categorization performance.  500 
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Figure captions 507 

 508 

Figure 1: Behavioral categorization improves following rapid auditory training. Brief major/minor 509 

categorization training yields an increase in accuracy (A) and decrease in reaction time (B) 510 

across blocks. Pretest (C) and posttest (D) psychometric identification functions show stronger 511 

categorization for musical intervals after training for the learning group (excluding data from n=5 512 

nonlearners); performance was identical pre- to post-test for control listeners (E). Error 513 

bars/shading  = +/- 1 SE. *p < 0.05. 514 

 515 

Figure 2: Grand average ERP waveforms collapsed across all tokens from the frontocentral 516 

electrode cluster (mean F1, Fz, F2, FC1, FCz, FC2). The learning group (left) underwent brief 517 

identification training whereas the control group (right) did not. The tick mark represents t=0 518 

(stimulus onset). 519 

 520 

Figure 3: Neural amplitudes scale with behavioral outcomes in the learning group (A) but not 521 

the control group (B). Better posttest categorization (i.e., steeper identification slopes) is 522 

associated with a decrease in P2 amplitudes. Data points indicate individual subjects (collapsed 523 

across tokens 1 & 5 and 3). Arrows/values mark outliers (which did not alter results). Shading = 524 

95% CI. 525 

 526 

Figure 4: Neuroplastic changes following auditory categorical learning of music intervals is 527 

biased toward right hemisphere. Only data for the learning group is shown. (A-B) Difference 528 

waves (i.e., mean[token 1/5] – token 3) indexing categorical neural coding. An increase in 529 

neural categorization after training occurs over right (B; electrode T8) but not left hemisphere (A; 530 

electrode T7). Shaded region indicates a significant session effect (p < 0.05). (C) Topographic 531 
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statistical map at t = 336 ms (dotted gray line in A & B) where pre- to post-test changes in 532 

categorical coding is maximal. 533 

 534 

Figure 5: Neuroanatomical measures in primary auditory cortex (PAC) predict behavioral 535 

categorization performance in the learning group. (Left) In left HG, larger cortical thickness is 536 

associated with poorer categorization. (Right) Similarly, larger gray matter volumes (cm3) in right 537 

HG were associated with poorer behavioral categorization. (Center) MRI image from a 538 

representative subject with left and right HG shown in blue and white, respectively. Data points 539 

indicate individual subject identification slopes. Shading = 95% CI. 540 

  541 
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