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Abstract

The inference of positive selection in genomes is a problem of great interest in evolutionary
genomics. By identifying putative regions of the genome that contain adaptive mutations,
we are able to learn about the biology of organisms and their evolutionary history. Here we
introduce a composite likelihood method that identifies recently completed or ongoing positive
selection by searching for extreme distortions in the spatial distribution of the haplotype fre-
quency spectrum relative to the genome-wide expectation taken as neutrality. Furthermore,
the method simultaneously infers two parameters of the sweep: the number of sweeping hap-
lotypes and the “width” of the sweep, which is related to the strength and timing of selection.
We demonstrate that this method outperforms the leading haplotype-based selection statistics.
Then, as a positive control, we apply it to two well-studied human populations from the 1000
Genomes Project and examine haplotype frequency spectrum patterns at the LCT and MHC
loci. To facilitate use of this method, we have implemented it in user-friendly open source
software.
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Introduction

The identification and classification of genomic regions undergoing positive selection in populations has
been of long standing interest for studying organisms across the tree of life. By investigating regions
containing putative adaptive variation, one can begin to shed light on a population’s evolutionary history
and the biological changes well-suited to cope with various selection pressures.

The genomic footprint of positive selection is generally characterized by long high-frequency haplotypes
and low nucleotide diversity in the vicinity of the adaptive locus, the result of linked genetic material
“sweeping” to high frequency faster than mutation and recombination can introduce novel variation. These
selective sweeps are often described by two paradigms—“hard sweeps” and “soft sweeps”. Whereas a hard
sweep is the result of a beneficial mutation that brings a single haplotype to high frequency [Przeworski,
2002], soft sweeps are the result of selection on multiple haplotype backgrounds, often the result of selection
on standing variation or a high adaptive mutation rate. Soft sweeps are thus characterized by multiple
sweeping haplotypes rising to high frequency [Hermisson and Pennings, 2005, Pennings and Hermisson,
2006a].

Many statistics have been proposed to capture these haplotype patterns to make inferences about
recent or ongoing positive selection [Sabeti et al., 2002, Voight et al., 2006, Sabeti et al., 2007, Ferrer-
Admetlla et al., 2014, Garud et al., 2015, Harris et al., 2018, Torres et al., 2018, Harris and DeGiorgio,
2020, Szpiech et al., 2020], most of which focus on summarizing patterns of haplotype homozygosity in
a local genomic region. A particularly novel approach, the T statistic implemented in LASSI [Harris and
DeGiorgio, 2020], employs a likelihood model based on distortions of the haplotype frequency spectrum
(HFS). In this framework, Harris and DeGiorgio [2020] model a shift in the HFS toward one or several
high-frequency haplotypes as the result of a hard or soft sweep in a local region of the genome. In addition
to the likelihood test statistic T , for which larger values suggest more support for a sweep, LASSI also
infers the parameter m̂. This parameter estimates the number of sweeping haplotypes in a genomic region,
and m̂ > 1 indicates support for a soft sweep.

A drawback of the original formulation of the T statistic implemented in LASSI is that it does not
account for or make use of the genomic spatial distribution of haplotypic variation expected from a sweep.
Specifically, Harris and DeGiorgio [2020] demonstrated that if the spatial distribution of T was directly
accounted for in the machine learning approach (Trendsetter) of Mughal and DeGiorgio [2019], the power
for detecting sweeps was greatly enhanced. Indeed, modern statistical learning machinery to detect sweeps
has been greatly enhanced by incorporating spatial distributions of summary statistics [Lin et al., 2011,
Schrider and Kern, 2016, Sheehan and Song, 2016, Kern and Schrider, 2018, Mughal and DeGiorgio, 2019,
Mughal et al., 2020]. However, these machine learning methods need extensive simulations under an
accurate and explicit demographic model to train the classifier. An alternative approach is to directly
integrate this spatial distribution into the likelihood model, as has been performed for site frequency
spectrum (SFS) composite likelihood methods to detect sweeps [Kim and Stephan, 2002, Nielsen et al.,
2005, Chen et al., 2010, Huber et al., 2015, Vy and Kim, 2015, DeGiorgio et al., 2016, Racimo, 2016, Lee and
Coop, 2017, Setter et al., 2020]. Here we incorporate the spatial distribution of HFS variation into the LASSI
framework and introduce the Spatially Aware Likelihood Test for Improving LASSI, or saltiLASSI. For
easy application to genomic datasets, we implement saltiLASSI in the open source program lassip along
with LASSI [Harris and DeGiorgio, 2020], and other HFS-based statistics H12, H2/H1, G123, and G2/G1
[Garud et al., 2015, Harris et al., 2018]. lassip is available at https://www.github.com/szpiech/lassip.

After validating saltiLASSI through simulations and comparing it to other popular haplotype-based
selection scans, we apply saltiLASSI to two well-studied populations from the 1000 Genomes Project [The
1000 Genomes Project Consortium, 2015] as a positive control in an empirical data set. We reproduce
several well-known signals of selection in the European CEU population and the African YRI population,
including the LCT (CEU), MHC (CEU and YRI), and APOL1 (YRI) loci, demonstrating that this method
works well in real data.
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Results

In this section we begin by developing a new likelihood ratio test statistic, termed Λ, that evaluates spatial
patterns in the distortion of the HFS as evidence for sweeps. We then demonstrate that Λ has substantially
higher power than competing single-population haplotype-based approaches, across a number of model
parameters related to the underlying demographic and adaptive processes. Similar to the T statistic
implemented in the LASSI framework of Harris and DeGiorgio [2020], we also show that Λ is capable of
approximating the softness of a sweep by estimating the current number of high-frequency haplotypes m̂.
We then apply the Λ statistic to whole-genome sequencing data from two human populations from the
1000 Genomes Project [The 1000 Genomes Project Consortium, 2015].

Definition of the statistic

Here we extend the LASSI maximum likelihood framework for detecting sweeps based on haplotype data
[Harris and DeGiorgio, 2020], by incorporating the spatial pattern of haplotype frequency distortion in a
statistical model of a sweep. Recall that Harris and DeGiorgio [2020] defined a genome-wide background
K-haplotype truncated frequency spectrum vector

p = (p1, p2, . . . , pK),

which they assume represents the neutral distribution of the K most-frequent haplotypes, with p1 ≥ p2 ≥
· · · ≥ pK ≥ 0 and normalization such that

∑K
k=1 pk = 1. Harris and DeGiorgio [2020] then define the

vector
q(m) =

(
q
(m)
1 , q

(m)
2 , . . . , q

(m)
K

)
,

with q
(m)
1 ≥ q

(m)
2 ≥ · · · ≥ q

(m)
K and

∑K
k=1 q

(m)
k = 1. This represents a distorted K-haplotype truncated

frequency spectrum vector in a particular genomic region with a distortion consistent with m sweeping
haplotypes. To create the these distorted haplotype spectra, Harris and DeGiorgio [2020] used the equation

q
(m)
k =

{
pk + fk

∑K
j=m+1(pj − q

(m)
j ) k = 1, 2, . . . ,m

U − k−m−1
K−m−1(U − ε) k = m+ 1,m+ 2, . . . ,K

where fk ≥ 0 for k ∈ {1, 2, . . . ,m} and
∑m

k=1 fk = 1, defines the way at which mass is distributed to the
m “sweeping” haplotypes from the K −m non-sweeping haplotypes with frequencies pm+1, pm+2, . . . , pK .
Harris and DeGiorgio [2020] propose several reasonable choices of fk, and for all computations here we use
fk = ek/

∑m
j=1 e

−j . The variables U and ε are associated with the amount of mass from non-sweeping hap-
lotypes that are converted to the m sweeping haplotypes [see Harris and DeGiorgio, 2020]. The schematic
in Figure 1A illustrates the LASSI framework of generating the distorted haplotype spectra.

To incorporate the spatial distribution haplotypic variation into the LASSI framework, consider an
index set W = {1, 2, . . . , I} of I ∈ Z+ contiguous (potentially overlapping) windows such that window
i ∈ W has position along a chromosome denoted zi. This position could be in physical units (such as
bases), in genetic map units (such as centiMorgans), in number of polymorphic sites [such as employed by
nSL in Ferrer-Admetlla et al., 2014], or in window number. We model the relative contribution of a sweep
with m sweeping haplotypes at target window with index i? ∈ W by a parameter αi ∈ [0, 1] on window
i ∈ W and the relative contribution of neutrality by 1− αi.

Following a similar powerful framework introduced by Cheng and DeGiorgio [2020] for modeling bal-
ancing selection, we employ a mixture model to model the K-haplotype truncated frequency spectrum in
window i, with a proportion

αi(A) = exp
(
−A|zi − zi? |

)
deriving from a sweep model and a proportion 1 − αi(A) deriving from the genome-wide background
haplotype spectrum to represent neutrality. Here, A is a parameter that we optimize over, describing the
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rate of decay of the effect of the sweep at target window i? on the flanking windows a certain distance
away. Specifically, we model the K-truncated haplotype spectrum in window i as the vector

g
(m,A)
i =

(
g
(m,A)
i1 , g

(m,A)
i2 , . . . , g

(m,A)
iK

)
,

where
g
(m,A)
ik = αi(A)q

(m)
k + [1− αi(A)]pk

for k = 1, 2, . . . ,K and i ∈ W. Note here that for target window i?, αi?(A) = 1, and hence g
(m,A)
i? = q

(m)
i? —

i.e., the target window is on top of the sweep, and so it is entirely determined by the distorted m-sweeping
haplotype spectrum. However given a fixed A value, for windows i far enough away from the central

window i?, we have the αi(A) = 0, and therefore g
(m,A)
i = p—i.e., the expectation of a neutral window.

Based on these trends, windows far from the putatively selected target window are modeled as neutral, and
windows close to the target window are heavily distorted due to the sweep. Moreover, because αi(A) tends
to zero for windows far enough away for the central window, the model of neutrality is nested within our
proposed sweep model. The schematic in Figure 1B illustrates the saltiLASSI framework of generating
the spatially-distorted haplotype spectra.

Assume that in window i ∈ W, there is a K-truncated vector of counts

xi = (xi1, xi2, . . . , xiK),

which are the observed counts of the K most-frequent haplotypes, with xi1 ≥ xi2 ≥ · · · ≥ xiK ≥ 0 and
normalized such that

∑K
k=1 xik = ni, where ni is the total number of sampled haplotypes in window i.

Following Cheng and DeGiorgio [2020] and Harris and DeGiorgio [2020], we then compute the log composite
likelihood ratios for null hypothesis of neutrality at target window i? as

logL0
(
p,K; i?, {xi}i∈W

)
=
∑
i∈W

K∑
k=1

xik log(pk)

and for the alternative hypothesis of m sweeping haplotypes at target window i? as

logL1
(
p,K, ε,m,A; i?, {xi, zi}i∈W

)
=
∑
i∈W

K∑
k=1

xik log
(
g
(m,A)
ik

)
.

Using these log likelihoods, we follow Harris and DeGiorgio [2020] and construct a log likelihood ratio test
statistic of a sweep at target window i? as

Λ = 2
[

logL1
(
p,K, ε̂, m̂, Â; i?, {xi, zi}i∈W

)
− logL0

(
p,K; i?, {xi}i∈W

)]
,

where (
m̂, Â, ε̂

)
=

argmax

(m,A, ε)
logL1

(
p,K, ε,m,A; i?, {xi, zi}i∈W

)
.

Power to detect sweeps

The power to detect sweeps will depend on a number of factors, including window size used to compute
a statistic, whether phasing information for genotypes is used, the selection strength of the beneficial
mutation s, the age of the sweep t, the number of selected haplotypes ν, and the underlying demographic
history. To explore the power of Λ, we evaluate its power to detect sweeps of varying strengths, softness,
and ages. Under each setting, we interrogated its robustness to demographic history, both through idealized
constant-size histories and histories with recent severe bottlenecks. Moreover we gauged whether Λ yields
false sweep signals under settings of background selection. Furthermore, for each setting described, we
investigated the power and robustness of using unphased multilocus genotypes as input to Λ instead of
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phased haplotypes. Finally, we compared Λ to competing contemporary methods that use the same type
of input data, using the T statistic of Harris and DeGiorgio [2020] for phased and unphased input data,
and also considered the H12 [Garud et al., 2015], nSL [Ferrer-Admetlla et al., 2014], and iHS [Voight
et al., 2006] statistics for phased data and the G123 statistic [Harris et al., 2018] for unphased data. The
simulation protocol for all settings is described in the Methods section.

To begin, we compare the performance of Λ to T , H12, nSL, and iHS under a constant-size demographic
history with diploid effective size of N = 104 diploid individuals. The Λ, T , and H12 statistics were
computed for different window sizes, consisting of 51, 101, or 201 SNPs per window. Figures 2A and S1
show that across sweeps of varying degrees of softness (beneficial mutation on ν ∈ {1, 2, 4, 8, 16} distinct
haplotypes) and for both moderate (per-generation selection coefficient s = 0.01) and strong (s = 0.1)
sweeps, the method with highest power regardless of time of selection (t ∈ {500, 100, 1500, 2000, 2500, 3000}
generations prior to sampling) is Λ, thereby outperforming the competing methods. Interestingly, Λ applied
to 51 SNP windows has generally higher power than with 101 and 201 SNP windows. Furthermore,
smaller window sizes enable Λ to achieve high power even for old sweeps—with this elevated power often
substantially higher than the closest competing method. This result recapitulates a finding of Harris and
DeGiorgio [2020], where they observed that if the spatial distribution of the T statistic was used within a
machine learning framework, computing the T statistic in a greater number of small windows yielded higher
power for ancient sweeps than when a smaller number of large windows was used. This is an intriguing
result, because smaller windows have poorer estimates of the distortion of the HFS, yet it appears that
for detecting ancient sweeps what matters is capturing the overall spatial trend of the distortion of the
HFS. That is, when using too large of windows, Λ is averaging the HFS across too large of a region, which
has likely been broken up over time due to recombination for ancient sweeps. Instead, smaller windows
focus on genomic segments with less shuffling of haplotype variation due to recombination events, such
that distortions in the HFS are due to the effect of a sweep at a nearby selected site.

Figure S1 also highlights a key distinction between moderate and strong sweeps. Specifically, regardless
of method considered, each achieves its highest power when strong sweeps are recent, whereas for moderate
sweeps, highest power for each method is shifted farther in the past toward more ancient sweep. This
pattern was also found previously for H12 [Harris et al., 2018] and T [Harris and DeGiorgio, 2020]. The
likely reason for this result is that moderate sweeps require more time for the beneficial allele to reach
high frequency and leave a conspicuous genomic footprint. In contrast, strong sweeps create an immediate
selection signature to appear in the genome due to the rapid rise in frequency of a beneficial mutation,
but traces of this sweep pattern erode over time due to recombination, mutation, and drift. However,
regardless, the Λ statistic paired with a small window size yields uniformly better or comparable sweep
detection ability than the other approaches we examined.

During a scan with Λ, the composite likelihood ratio is optimized over the number of high frequency
(sweeping) haplotypes m and the footprint size of the sweep A, leading to respective estimates m̂ and
Â. Therefore, at a genomic location with evidence for a sweep (high Λ value), we may better understand
properties of the putative sweep by evaluating its softness through m̂ and its strength or age through Â.
Figure S2 shows that for moderate sweeps, the estimated number of sweeping haplotypes m̂ is considerably
different from the actual number of initially-selected haplotypes ν, regardless of window size used or age of
the sweep. In contrast, Figures 2A and S2 reveal that for strong hard sweeps (ν = 1), the estimate of the
number of sweeping haplotypes when using 51 SNP windows is often consistent with hard sweeps (m̂ = 1)
provided that the sweep is recent enough (within the last 500 generations). Similarly, under these same
settings but with soft sweeps of ν ∈ {2, 4} selected haplotypes (Figures 2A and S2), the estimated number
of sweeping haplotypes tends to be consistent with sweeps of the same level of softness (m̂ ≈ ν). Moreover,
for softer sweeps (ν ∈ {8, 16}) the number of sweeping haplotypes tends to be underestimated (m̂ < ν) but
is still consistent with a soft sweep (m̂ > 1). Therefore, provided that a sweep is recent enough, when using
51 SNP windows the value of the estimated number of sweeping haplotypes can be used to lend evidence
of a hard (m̂ = 1) or a soft (m̂ > 1) sweep.

Similarly, the other parameter estimate Â may also help characterize identified sweeps. Specifically,
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Figures 2A and S3 show that the footprint size of the sweep (measured as log10 Â) is substantially elevated
compared to expectation for neutral simulations for sweep times at which there is high power to detect
sweeps (Figures 2A and S1). Interestingly, the shape of the curves relating the mean sweep footprint
size over time mirror the power of the Λ statistic with corresponding window size as a function of sweep
initiation time (t), sweep softness (ν), and sweep strength (s). These results suggest that the estimate
of the sweep footprint size (log10 Â) can be used to learn about the age or strength of a candidate sweep
(the signatures of which appear to be confounded between the two parameters). Coupled with an estimate
of the sweep softness (m̂), our saltiLASSI framework provides a means to not only detect sweeps with
high power, but to also learn the underlying parameters that may have shaped the adaptive evolution of
candidate sweep regions.

Obtaining phased haplotypes for input to Λ represents an error-prone step that, without sufficient
reference panels or high-enough quality genotypes, may make identification of sweeps difficult or potentially
impossible for a number of diverse study systems. It is therefore beneficial if the favorable performance of
Λ transfers to datasets that have not been phased. Similar to prior studies [e.g., Harris et al., 2018, Kern
and Schrider, 2018, Harris and DeGiorgio, 2020, Harpak et al., 2021], we sought to evaluate the power of Λ
when applied to unphased multilocus genotype data, and to compare its performance with the T statistic
and G123 [analogue of H12 for use with unphased data; Harris et al., 2018], both of which are also applied
to unphased multilocus genotypes. Figure S4 shows that Λ maintains high power to detect sweeps of
differing ages, strengths, and softness. Consistent with the results on haplotype data (Figures 2A and S1),
Λ generally displays higher power than, or comparable power to, T and G123, with the best performance
deriving from Λ with a small window size of 51 SNPs, and with substantially higher power for old sweeps
compared to other approaches. An exception is that for recent (t ≤ 1000 generations) and highly soft
(ν = 16) sweeps, using a window size of 101 SNPs for Λ had substantially higher power than using the
smaller 51 SNP window. Moreover, for strong (s = 0.1) highly soft (ν = 16) and ancient (t ≥ 2000)
sweeps, the power of Λ is much lower with unphased multilocus genotypes compared to phased haplotypes
(compare Figures S1 and S4). Interpretation of m̂ is more difficult for multilocus genotypes compared to
haplotypes. However, consistent with the results for haplotypes (Figure S2), Figure S5 shows that when
using 51 SNP windows, Λ tends to estimate a small number of sweeping multilocus genotypes (smaller m̂)
for harder sweeps (smaller ν) than for softer sweeps (larger ν).

While adaptive processes generally affect variation locally in the genome, neutral processes such as
demographic history influence overall levels of genome diversity. Specifically, it is common to consider that
demographic processes impact the mean value of genetic diversity, and numerous likelihood approaches for
detecting sweeps [Kim and Stephan, 2002, Nielsen et al., 2005, Chen et al., 2010, Huber et al., 2015, Vy
and Kim, 2015, DeGiorgio et al., 2016, Racimo, 2016, Lee and Coop, 2017, Harris and DeGiorgio, 2020,
Setter et al., 2020] and other forms of natural selection [DeGiorgio et al., 2014, Cheng and DeGiorgio, 2019,
2020] have been created to specifically account for this average effect of demographic history on genome
diversity. However, demographic processes, such as recent severe bottlenecks, not only alter mean diversity
but also influence higher-order moments of diversity, potentially making it insufficient to account solely
for the mean effect of diversity [Barton, 1998, Jensen et al., 2005, Pavlidis et al., 2008]. Given that Λ does
not account for higher moments than the mean effect of demographic history on the HFS, we sought to
evaluate its properties under recent strong bottlenecks—a setting that has proven challenging for other
sweep statistics in the past.

The Λ statistic generally exhibits superior power to T , H12, nSL, and iHS when applied to haplotype
data (Figures 2B and S7) or to T and G123 when applied to unphased multilocus genotype data (Fig-
ure S10). Moreover, the general trends in method power as a function sweep strength, softness, and age
observed for the constant-size history (Figures 2A, S1, and S4) hold for this complex demographic setting
(Figures 2B, S7, and S10), with the caveat that, as expected, power for all methods is generally lower under
the bottleneck compared to the constant-size history. A clear difference between these two demography
settings is that, whereas Λ had exhibited uniformly superior or comparable power with smaller 51 SNP
windows compared to larger 101 or 201 SNP windows (Figures 2A and S1), under the bottleneck model the
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best window size depends on age of the sweep (Figures 2B and S7). In particular, recent sweeps often had
highest power with 201 SNP windows, sweeps of intermediate age with 101 SNPs, and ancient sweeps with
51 SNPs. Therefore, under complex demographic histories, choice of window size for Λ is more nuanced
than with constant-size histories. This result is consistent with those of Harris and DeGiorgio [2020] who
demonstrated that, when accounting for the spatial distribution of the T statistic in a machine learning
framework (referred to as T -Trendsetter), power to detect recent sweeps is higher for larger windows and
power to detect ancient sweeps is higher for smaller windows under the bottleneck history considered here.

In addition to demographic history, a pervasive force acting to reduce variation across the genome
is background selection [McVicker et al., 2009, Lohmueller et al., 2011, Comeron, 2014, Wilson Sayres
et al., 2014], which is the loss of genetic diversity at neutral sites due to negative selection at nearby loci
[Charlesworth et al., 1993, Hudson and Kaplan, 1995a, Charlesworth, 2012]. Background selection has been
demonstrated to alter the neutral SFS [Charlesworth et al., 1993, 1995, Seger et al., 2010, Nicolaisen and
Desai, 2013], and masquerade as false signals of positive selection [Charlesworth et al., 1993, 1995, Hudson
and Kaplan, 1995a,b, Nordborg et al., 1996, McVean and Charlesworth, 2000, Boyko et al., 2008, Akashi
et al., 2012, Charlesworth, 2012, Huber et al., 2015]. However, because this process does not generally
lead to haplotypic variation consistent with sweeps [Enard et al., 2014, Fagny et al., 2014, Schrider, 2020],
like prior studies developing haplotype approaches for detecting sweeps [Harris et al., 2018, Harris and
DeGiorgio, 2020] we sought to evaluate the robustness of Λ to background selection. We find that under
both simple and complex demographic histories, using either phased haplotype or unphased multilocus
genotype data, all methods considered here demonstrate robustness to background selection by not falsely
attributing genomic regions evolving under background selection as sweeps (Figure S13).

Application to empirical data

We next apply the Λ statistic to empirical data representing a European (CEU) and an African (YRI)
population from the 1000 Genomes Project Phase 3 [The 1000 Genomes Project Consortium, 2015] to
demonstrate its use and check that it identifies sensible results.

We plot the genome-wide Λ statistics for the CEU population in Figure 3A and the YRI population
in Figure 3B. We find several conspicuous peaks of notably large Λ values, which indicates strong support
for a highly distorted HFS in these regions compared to the genome-wide mean HFS. Using a conservative
threshold for determining significance (maximum observed Λ from genome-wide neutral simulations; see
Methods), we identify several regions in both populations with scores consistently above this threshold,
including five regions in the CEU population (Table 1) and 14 in the YRI population (Table 2). Among
these regions, we find several well-studied genes that are known to have been under selection in these
populations. These include the lactase gene [LCT ; Tishkoff et al., 2007, Field et al., 2016, Ségurel and
Bon, 2017, Taliun et al., 2021], the major histocompatibility complex [MHC; Field et al., 2016, Pierini and
Lenz, 2018, Taliun et al., 2021], and the apolipoprotein L1 [APOL1 ; Ko et al., 2013].

We next explore two peaks in detail, the LCT and MHC loci in each population (Figure 4). The LCT
locus has been previously identified as under selection in some northern European populations and eastern
African populations [Tishkoff et al., 2007]. As the CEU population has largely northern European ancestry
and the YRI population is from western Africa, we expect to find a peak near LCT in CEU but not in
YRI. Indeed, this is what we see in Figure 4A, which plots Λ statistics in the vicinity of the LCT locus
on Chromosome 2. Furthermore, we examine the truncated HFS among eleven windows spanning LCT
in both YRI (Figure 4B) and CEU (Figure 4C). We see in Figure 4B that YRI has haplotype frequencies
similar to the genome-wide mean (plotted and highlighted on the left), whereas Figure 4C shows that the
CEU population is dominated largely by a single haplotype near 80% frequency. Indeed, the saltiLASSI

method also infers a m̂ = 1 in this region (Table 1), indicating a single sweeping haplotype (i.e., a hard
sweep). Furthermore, we can see the HFS in this region trending toward the genome-wide mean as the
windows move farther from the sweep’s focal point, illustrating the pattern that the saltiLASSI method
was designed to capture.
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Figures 4D-F illustrate the Λ statistics and HFS patterns in the vicinity of the MHC locus. This
locus contains a large cluster of immune system genes, and selection at this locus is distinguished from
LCT in that high diversity is preferred in order for the body to be able to mount a robust response
to unknown pathogen exposure. As expected, both populations have extreme Λ values (Figure 4D) and
a greatly distorted HFS in this region (Figures 4E and F). However, we note that the HFS is clearly
distorted in favor of multiple haplotypes, in contrast to LCT, which we expect at a locus that favors
diversity. Indeed, the saltiLASSI method infers m̂ to be between seven and nine in the CEU population
and between eight and 11 for YRI (variance due to multiple regions within the MHC being separately
identified; Tables 1 and 2).

Finally, we repeated our analyses of these two populations and two loci using the unphased multilocus-
genotype approach (Figures S14 and S15; Tables S2 and S3), and we find good concordance with the
phased haplotype approach.

Discussion

In this study, we developed a new likelihood ratio test statistic Λ that examines the spatial distribution
of the HFS for evidence of sweeps. We demonstrated that this statistic has high power to detect both
hard and soft sweeps, with performance substantially better than competing haplotype-based approaches
for the same task. Moreover, while optimizing the model parameters of Λ we obtain estimates of sweep
softness m and footprint size A, which is correlated with age and strength of the sweep. These additional
parameters have the potential to further characterize well-supported sweep signals from large Λ values.

In addition to lending exceptional performance on simulated data, application of Λ to whole-genome
variant calls from central European and sub-Saharan African individuals recapitulated the well-established
signal at the LCT gene in Europeans due to lactase persistence [Bersaglieri et al., 2004], as well as sweep
footprints at the MHC locus in both populations related to immunity, which have previously been detected
with other sweep statistics [Albrechtsen et al., 2010, Goeury et al., 2018, Harris and DeGiorgio, 2020].
Though not novel findings, the clear (Figure 4) and strong (Figure 3) signals at these two loci serve as
positive controls to highlight the efficacy of Λ. Furthermore, these findings were similarly recapitulated
with unphased multilocus genotype data (Figures S14 and S15), lending support for the utility of Λ when
applied to study systems for which obtaining phased haplotypes data is challenging.

A key parameter that must be chosen when applying Λ is the number of SNPs per window. Specifically,
we found that larger windows had greatest power for more recent sweeps, and smaller windows for more
ancient sweeps (Figures 2, S1, and S7), mirroring the window size results observed in Figures S8 and S9
of Harris and DeGiorgio [2020] for the spatial distribution of the T statistic using a different modeling
approach. Therefore, choice of window size may be informed by the time frame of selective events that
is being investigated. As highlighted in Figures 2B and S7, the Λ statistic computed within windows of
201 SNPs had highest power of all other tested window sizes within the past 2000 generations under the
central European demographic history. Because selective events within this time frame are consistent with
adaptive events in recent evolution of modern humans [Gravel et al., 2011, Gronau et al., 2011, Schiffels
and Durbin, 2014], we selected this size so that we could recapitulate expected well-established sweeps—
e.g., Figures 3 and 4 highlighting the sweep signal at LCT. In addition to using simulation results to aid
in selecting appropriate window sizes, an alternate method such as choosing sizes based on the expected
decay of linkage disequilibrium in the genome has been demonstrated to also work well in practice [e.g.,
Garud et al., 2015, Harris and DeGiorgio, 2020].

The T statistic of Harris and DeGiorgio [2020] presented the first likelihood approach that evaluated
distortions in the HFS to detect selective sweeps, importantly because neutrality and soft sweeps leave
similar signatures in the SFS but different within the HFS [Pennings and Hermisson, 2006b]. As demon-
strated by Harris and DeGiorgio [2020], using the spatial distribution of the T statistic within a machine
learning framework enhanced it’s detection ability, specifically for ancient sweeps. However, machine learn-
ing frameworks require extensive simulations to train [e.g., Schrider and Kern, 2016, Sheehan and Song,
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2016, Mughal and DeGiorgio, 2019], and these simulations must be based on a set of critical assumptions,
such as demographic, mutation rate, and recombination rate parameters. Yet, accurate inferences of these
parameters is not always possible, or can be highly error prone, and prior studies have found that these
machine learning methods can make highly incorrect predictions if the distribution of training data is
different from that of the test or empirical data [Mughal and DeGiorgio, 2019, Mughal et al., 2020]. Fur-
thermore, generation of these training datasets and training the models on them often requires substantial
computational time and resources. Instead, our Λ statistic is the first likelihood method to model the
spatial distribution of the HFS, providing the power of modeling the spatial distribution of T afforded by
current machine learning frameworks (e.g., compare Figures S1 and S7 with Figures S8 and S9 of Harris
and DeGiorgio [2020]), yet with massive savings in computational speed and with predictions not hinging
on accurate estimates of genetic and evolutionary model parameters to generate training sets.

While optimizing the Λ statistic, we also obtain estimates of the number of presently-sweeping haplo-
types m and the footprint size A. For recent strong sweeps, estimates of m correlate well with the number
of initially-selected haplotypes ν. For older and less strong sweeps, mutation and recombination events
accumulate leading to more distinct haplotypes, thereby inflating m estimates. Moreover, estimates of the
footprint size A correlate with power of Λ, suggesting that the estimated footprint size will be large under
scenarios in which sweeps are highly supported. The relationship between A and power of Λ is related to
prominence of the distortions in the HFS, which also erode due mutation and recombination rates. There-
fore, though we found that estimates of m and A were not highly accurate under non-ideal sweeps settings,
they may still be useful. Specifically, though not directly associated with population-genetic parameters
such as ν or the strength s and time t of a sweep, estimated Λ, µ, and A values can be used as input
features to machine learning regression algorithms to predict underlying evolutionary model parameters
of ν, s, and t [Hastie et al., 2009]. Such strategies are typically computationally expensive, but may be
required for accurate characterization of sweep footprints, even though they are unnecessary for detecting
sweeps due to the already high power of Λ.

The Λ statistic developed here represents an important step in advancing methodology for sweep de-
tection by interrogating the spatial distribution of distortions in the HFS. Prior studies focused either on
spatial distributions of the SFS, which cannot distinguish between hard and soft sweeps, or only local
distortions in the HFS. Specifically, methods that explore the skews in the SFS typically do so with an
explicit analytical population-genetic model [Kim and Stephan, 2002, Nielsen et al., 2005, Huber et al.,
2015, Vy and Kim, 2015, DeGiorgio et al., 2016], which can be underpowered if the assumed model is
incorrect and are unable to detect soft sweeps [Pennings and Hermisson, 2006b]. In contrast, analytical
population-genetic modeling of distortions in the HFS is difficult, and alternative statistical models that
capture relevant features of sweeps are often used, focusing either on local distortions in the HFS [Harris
and DeGiorgio, 2020] or haplotype length distributions [Voight et al., 2006, Ferrer-Admetlla et al., 2014].
Instead, our Λ statistic represents a compromise of these two extremes, permitting simultaneous interroga-
tions of haplotype frequency distributions and correlates of their length distributions in a computationally
efficient framework that leads to expected patterns that are informed by theoretical results. Our method-
ological framework therefore provides a foundation for developing tools that can identify other evolutionary
processes that may act locally in the genome, enhancing future investigations of sweeps and other forces
across a variety of study systems.

Methods

In this section we outline the methods used to assess the power of a diversity of sweep statistics using
simulations. These simulations examine an array of model parameters, including sweep strength, age, and
softness as well as the confounding effects of demographic history, background selection, and haplotype
phasing. We also describe pre- and post-analysis processing for the application of the Λ statistic to phased
haplotype and unphased multiloucs genotype data from a pair of human populations.
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Power Analysis

To assess the ability of Λ to detect sweeps, we conducted forward-time simulations using SLiMv3.2 [Haller
and Messer, 2019] for sweeps of varying strength, age, and softness under a constant-size demographic
history as well as under a realistic non-equilibrium demographic history inspired by human studies. Specif-
ically, for each simulation scenario, we generated 1000 independent replicates of length 500 kb, so that Λ
was able to interrogate the spatial distribution of variation across a large genomic segment. We employed a
mutation rate of µ = 2.5× 10−8 per site per generation [Nachman and Crowell, 2000] and a recombination
rate of r = 10−8 per site per generation [Payseur and Nachman, 2000]. For the constant-size demographic
history, we considered a population size of N = 104 diploid individuals [Takahata, 1993], and to investigate
complex non-equilibrium demographic histories, we also employed the model inferred in Terhorst et al.
[2017] of central European humans (CEU), which incorporates a recent bottleneck with a severe popula-
tion collapse followed by rapid population expansion. In particular, we used this non-equilibrium model
as it was inferred by the contemporary method SMC++ [Terhorst et al., 2017], which attempts to fit model
parameters that can both recapitulate haplotype diversity and allele frequency distributions [Beichman
et al., 2017] observed in genomic data from the CEU population of the 1000 Genomes Project dataset [The
1000 Genomes Project Consortium, 2015].

In addition to these genetic and demographic parameters, for selection simulations, we modeled sweeps
on ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes, where each of these haplotypes harbored a beneficial
allele in the center of the simulated genomic segment with strength s ∈ {0.01, 0.1} per generation that
immediately appeared and became beneficial at time t ∈ {500, 1000, 1500, 2000, 2500, 3000} generation prior
to sampling. To ensure that a sweep signature had the potential to be uncovered (especially under settings
with s = 0.01), we required that the beneficial allele established in the population by reaching a frequency
of 0.1 in the population. Simulation replicates for which the beneficial allele did not reach a frequency of
0.1 in the population were repeated until the beneficial allele established in the population. All neutral and
selection simulations were run for 11N generations, where the first 10N generations were used as burn-in
and n = 50 diploid individuals were sampled from the population after 11N generations (i.e., the present).
Because forward-time simulations are computationally intensive, as is commonly-practiced [Yuan et al.,
2012, Ruths and Nakhleh, 2013] we scaled all constant-size demographic history simulations by a factor
λ = 10 and the European human history history by λ = 20, such that the selection coefficient, mutation
rate, and recombination rate were multiplied by λ and the population size at each generation and the total
number of simulated generations was divided by λ. This scaling leads to a speedup of approximately λ2 in
computing time, such that the constant-size simulations run roughly 100 times faster than without scaling
and the CEU model simulations run approximately 400 times faster, making a large-scale simulation study
feasible.

When analyzing each simulated replicate, we examined the performance of Λ with the likelihood T
statistic [Harris and DeGiorgio, 2020] that does not account for the spatial distribution of genomic variation,
the summary statistic H12 [Garud et al., 2015] that was developed to detect hard and soft sweeps with
similar power, and the standardized iHS [Voight et al., 2006] and nSL Ferrer-Admetlla et al. [2014] methods
that summarize the lengths of haplotypes centered on core SNPs. To investigate the effect of window size on
the relative powers of Λ, T , and H12, we considered their applications in central windows of 51, 101, and 201
SNPs, and analyzed windows every 25 SNPs across a simulated sequence. We chose SNP-delimited windows
rather than windows based on physical length as they should be more robust to variation in recombination
and mutation rate across the genome, as well as random missing genomic segments due to poor mappability,
alignability, or sequence quality. That is, we expect SNP-delimited to be more conservative than windows
based on the physical length of an analyzed genomic segment. We also examined the application of Λ, T ,
and G123 [Harris et al., 2018, analogue of H12] to unphased multilocus genotype input data to evaluate
the relative powers of these three approaches when applied on study systems for which obtaining phased
haplotypes is difficult, unreliable, or impossible [Mallick et al., 2009]. We applied the lassip software
released with this article for application of the saltiLASSI Λ statistic, the LASSI T statistic, and H12
(and G123), and the selscan software [Szpiech and Hernandez, 2014] to compute standardized iHS and
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nSL.

Analysis of 1000 Genomes Data

We extracted the phased genomes of CEU (99 diploids) and YRI (108 diploids) populations, separately, from
the full 1000 Genomes Project Phase 3 dataset (2504 diploids) [The 1000 Genomes Project Consortium,
2015]. For each population, we retained only autosomal biallelic SNPs that were polymorphic in the sample.
In order to avoid potentially spurious signals, we also filtered any regions with poor mapability as indicated
by mean CRG100 < 0.9 [Derrien et al., 2012, Huber et al., 2015]. This left 12,400,078 SNPs in CEU and
20,417,698 SNPs in YRI.

We compute saltiLASSI Λ statistics for both phased (haplotype-based) and unphased (multilocus-
genotype-based) analyses with lassip. We set --winsize 201 and --winstep 100, and we choose --k

20 to use the ranked HFS for the top 20 most frequent haplotypes. By default lassip assumes phased
data and computes haplotype-based statistics, when the --unphased flag is set, all statistics are computed
using multilocus genotypes.

To determine significance thresholds, we simulated neutral whole genomes with a realistic recombi-
nation map and demographic history using stdpopsim [Adrion et al., 2020] and msprime [Kelleher et al.,
2016]. Using the OutOfAfrica 2T12 demographic history [Tennessen et al., 2012] and the HapMapII GRCh37

genetic map [Consortium, 2007] in stdpopsim, we simulate 100 replicates of all 22 autosomes for each pop-
ulation separately, sampling 99 diploid individuals for CEU simulations and 108 diploid individuals for
YRI simulations. For each replicate, we then compute saltiLASSI Λ statistics for both phased and un-
phased analyses with lassip, setting --winsize 201, --winstep 100, and --k 20. We then compute
the max Λ, the top-0.1% Λ, and the top-1% Λ across all replicates for each population and each analysis
(phased/unphased), which are given in Table S1. Putatively selected regions were identified by concatenat-
ing consecutive windows with Λ greater than the max observed across all simulations for a given population
and analysis (phased/unphased).
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Chromosome Start (bp) Stop (bp) m̂ log10(Â) Max Λ Genes
2 135,517,106 136,318,189 1 7.817 1889.370 ACMSD, MIR5590, CCNT2-

AS1, CCNT2, MAP3K19,
RAB3GAP1, ZRANB3,
R3HDM1

2 136,524,766 136,816,336 1 7.817 2250.050 UBXN4, LCT,
LOC100507600, MCM6,
DARS, DARS-AS1

4 34,296,435 34,400,578 1 8.252 1296.390 –
6 29,782,470 29,984,591 9 7.817 1366.550 HLA-G, HLA-H, HCG4B,

HLA-A, HCG9, ZNRD1-AS1,
HLA-J, HCG8

6 32,384,933 32,723,916 7 7.817 4565.340 HLA-DRA, HLA-DRB5,
HLA-DRB6, HLA-DRB1,
HLA-DQA1, HLA-DQB1,
HLA-DQB1-AS1, HLA-
DQA2, MIR3135B, HLA-
DQB2

Table 1: Regions of extreme Λ values in the CEU population and the genes contained therein. m̂
is the inferred number of sweeping haplotypes, and log10(Â) is the estimated sweep width.
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Chromosome Start (bp) Stop (bp) m̂ log10(Â) Max Λ Genes
3 46,125,575 46,360,655 6 8.252 839.195 CCR1, CCR3
3 87,273,225 87,311,124 6 8.252 665.802 MIR4795, CHMP2B,

POU1F1
3 162,552,546 162,631,343 6 8.252 711.747 –
3 162,640,076 162,659,093 8 8.252 619.686 –
6 31,210,058 31,382,135 11 7.817 918.650 HLA-C, HLA-B, MIR6891,

MICA
6 32,374,191 32,743,860 8 7.817 5385.050 BTNL2, HLA-DRA, HLA-

DRB5, HLA-DRB6, HLA-
DRB1, HLA-DQA1, HLA-
DQB1, HLA-DQB1-AS1,
HLA-DQA2, MIR3135B,
HLA-DQB2

6 32,983,818 33,185,400 8 7.817 1196.890 HLA-DPA1, HLA-DPB1,
HLA-DPB2, COL11A2,
RXRB, SLC39A7, HSD17B8,
MIR219A1, RING1

8 50,077,099 50,205,908 6 7.817 672.218 –
10 102,184,232 102,282,125 5 8.252 717.760 WNT8B, SEC31B
12 79,578,861 79,785,498 6 8.252 917.585 SYT1
15 55,148,217 55,267,961 7 8.252 730.824 –
17 3,529,529 3,672,429 6 8.252 911.490 SHPK, CTNS, TAX1BP3,

P2RX5-TAX1BP3, EMC6,
P2RX5, ITGAE, GSG2

20 37,432,116 37,470,174 5 8.686 613.034 PPP1R16B
22 36,584,162 36,727,622 6 8.252 796.478 APOL4, APOL2, APOL1,

MYH9, MIR6819

Table 2: Regions of extreme Λ values in the YRI population and the genes contained therein. m̂ is
the inferred number of sweeping haplotypes, and log10(Â) is the estimated sweep width.
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Genome-wide Distorted (m=1) Distorted (m=2) Distorted (m=4)

A

B

αi(A) = 1 αi(A) = 3/4 αi(A) = 1/2 αi(A) = 1/4 αi(A) = 0

Figure 1: Schematic of the saltiLASSI mixture model framework. (A) Generation of distorted
haplotype frequency spectra (HFS) for m = 1 (red), 2 (blue), and 4 (purple) sweeping haplotypes
from a genome-wide (gray) neutral HFS under the LASSI framework of Harris and DeGiorgio [2020].
(B) Generation of spatially-distorted HFS under the saltiLASSI framework for a window i (white
circles) with increasing distance from the sweep location (yellow star). When the window is on
top of the sweep location, the HFS is identical to the distorted LASSI HFS, and αi(A) = 1. When
a window is far from the sweep location, the HFS is identical to the genome-wide (neutral) HFS,
and αi(A) = 0. For windows at intermediate distances from the sweep location, the HFS is a
mixture of the distorted and genome-wide HFS, with the distorted HFS contributing αi(A) and the
genome-wide HFS contributing 1− αi(A).
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Figure 2: Performance of detecting and characterizing sweeps for applications of Λ, T , and H12
with windows of size 51, 101, and 201 SNPs, as well nSL and iHS under simulations of (A) a
constant-size demographic history or (B) the human central European (CEU) demographic history
of Terhorst et al. [2017]. (Top row) Power at a 1% false positive rate as a function of selection start
time. (Middle row) Estimated sweep width illustrated by mean estimated genomic size influenced

by the sweep (log10 Â) as a function of selection start time. (Bottom row) Estimated sweep softness
illustrated by mean estimated number of sweeping haplotypes (m̂) as a function of selection start
time. Sweep scenarios consist of hard (ν = 1) and soft (ν ∈ {2, 4}) sweeps with per-generation
selection coefficient of s = 0.1 that started at t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations
prior to sampling. Results expanded across wider range of simulation settings can be found in
Figures S1-S3 and S7-S9.
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A

B

Figure 3: Manhattan plot of Λ-statistics for the (A) CEU and (B) YRI populations from the 1000
Genomes Project. Each point represents a single 201-SNP window along the genome. Horizontal
lines represent the top 1%, top 0.1%, and maximum observed Λ statistic in demography-matched
neutral simulations.
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Figure 4: Detailed illustration of Λ statistics and haplotype frequency spectra in CEU and YRI.
(A) Λ plotted in the LCT region, vertical dotted lines indicate zoomed region shown in (B) and
(C). (B) YRI empirical HFS for 11 windows in the LCT region. (C) CEU empirical HFS for 11
windows in the LCT region. (D) Λ plotted in the MHC region, vertical dotted lines indicate zoomed
region shown in (E) and (F). (E) YRI empirical HFS for 11 windows in the MHC region. (F) CEU
empirical HFS for 11 windows in the MHC region. In (B), (C), (E), and (F), numbers above HFS
are Λ values for the window rounded to the nearest whole number, and the genome-wide average
HFS is highlighted in grey. q20i is the frequency of the ith most common haplotype truncated to
K = 20.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443825
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary material

Population Phased Top-1% Λ Top-0.1% Λ Max Λ
CEU Yes 148.817 318.419 1025.690
CEU No 66.933 142.547 488.995
YRI Yes 60.457 134.969 594.606
YRI No 26.925 54.072 220.665

Table S1: Λ statistic thresholds as calculated from demography-matched neutral simulations.
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Chromosome Start (bp) Stop (bp) m̂ log10(Â) Max Λ Genes
2 136,052,012 136,271,543 1 8.686 677.751 ZRANB3
2 136,494,985 136,788,904 1 8.686 890.887 UBXN4, LCT,

LOC100507600, MCM6,
DARS, DARS-AS1

6 32,500,928 32,666,396 7 7.817 699.735 HLA-DRB6, HLA-DRB1,
HLA-DQA1, HLA-DQB1,
HLA-DQB1-AS1

Table S2: Regions of extreme Λ values (unphased analysis) in the CEU population and the genes

contained therein. m̂ is the inferred number of sweeping haplotypes, and log10(Â) is the estimated
sweep width.
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Chromosome Start (bp) Stop (bp) m̂ log10(Â) Max Λ Genes
3 46,105,118 46,308,665 6 8.252 348.033 CCR1, CCR3
3 162,501,324 162,524,925 8 8.252 221.017 –
3 162,524,926 162,661,235 8 8.252 296.913 –
6 31,191,709 31,385,508 9 7.817 352.419 HLA-C, HLA-B, MIR6891,

MICA
6 32,545,459 32,571,159 9 7.817 248.927 HLA-DRB1
6 32,593,356 32,605,370 10 7.817 240.087 HLA-DQA1
6 32,995,608 33,173,606 7 7.817 324.768 HLA-DPA1, HLA-DPB1,

HLA-DPB2, COL11A2,
RXRB, SLC39A7, HSD17B8

6 130,583,306 130,635,803 7 7.817 244.991 SAMD3
8 50,064,801 50,172,664 8 7.817 275.713 –
10 102,081,939 102,106,184 6 8.252 232.238 PKD2L1
10 102,173,525 102,287,281 6 8.252 327.657 WNT8B, SEC31B, NDUFB8
12 79,589,655 79,779,306 6 8.252 334.766 SYT1
15 55,139,290 55,335,782 7 8.252 302.699 –
17 3,545,315 3,651,534 6 8.252 294.719 CTNS, TAX1BP3, P2RX5-

TAX1BP3, EMC6, P2RX5,
ITGAE, GSG2

Table S3: Regions of extreme Λ values (unphased analysis) in the YRI population and the genes

contained therein. m̂ is the inferred number of sweeping haplotypes, and log10(Â) is the estimated
sweep width.
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Figure S1: Power at a 1% false positive rate (FPR) as a function of selection start time for ap-
plications of Λ, T , and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS
under simulations of a constant-size demographic history for per-generation selection coefficients
of s ∈ {0.01, 0.1} on the rows. Classification ability demonstrated for selection start times of
t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-
selected haplotypes (columns).
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Figure S2: Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes
(m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-size de-
mographic history for per-generation selection coefficients of s ∈ {0.01, 0.1} on the rows. Mean
estimated softness demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000}
generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray
solid, dashed, and dotted horizontal lines are the corresponding mean m̂ values for Λ applied to
neutral simulations.
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Figure S3: Estimated sweep width illustrated by mean estimated genomic size influenced by the
sweep (log10 Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of a constant-
size demographic history for per-generation selection coefficients of s ∈ {0.01, 0.1} on the rows.
Mean estimated genomic size influenced by sweeps demonstrated for selection start times of t ∈
{500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-
selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the corresponding

mean log10 Â values for Λ applied to neutral simulations.
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Figure S4: Power at a 1% false positive rate (FPR) as a function of selection start time for applica-
tions of Λ, T , and G123 with windows of size 51, 101, and 201 SNPs to unphased multilocus genotype
input data under simulations of a constant-size demographic history for per-generation selection co-
efficients of s ∈ {0.01, 0.1} on the rows. Classification ability demonstrated for selection start
times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16}
initially-selected haplotypes (columns).
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Figure S5: Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes
(m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus input data
under simulations of a constant-size demographic history for per-generation selection coefficients
of s ∈ {0.01, 0.1} on the rows. Mean estimated softness demonstrated for selection start times of
t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-
selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the corresponding
mean m̂ values for Λ applied to neutral simulations.
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Figure S6: Estimated sweep width illustrated by mean estimated genomic size influenced by the
sweep (log10 Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus
input data under simulations of a constant-size demographic history for per-generation selection
coefficients of s ∈ {0.01, 0.1} on the rows. Mean estimated genomic size influenced by sweeps
demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior
to sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed,

and dotted horizontal lines are the corresponding mean log10 Â values for Λ applied to neutral
simulations.
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Figure S7: Power at a 1% false positive rate (FPR) as a function of selection start time for ap-
plications of Λ, T , and H12 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS
under simulations of the human central European (CEU) demographic history of Terhorst et al.
[2017] for per-generation selection coefficients of s ∈ {0.01, 0.1} on the rows. Classification ability
demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to
sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns).
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Figure S8: Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes
(m̂) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human central
European (CEU) demographic history of Terhorst et al. [2017] for per-generation selection coef-
ficients of s ∈ {0.01, 0.1} on the rows. Mean estimated softness demonstrated for selection start
times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16}
initially-selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the
corresponding mean m̂ values for Λ applied to neutral simulations.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443825
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time of selection (generations)

M
ea

n 
es

tim
at

e 
of

 s
w

ee
p 

w
id

th
 (l

og
10

A
) ν = 1 ν = 2 ν = 4 ν = 8 ν = 16

s = 0.01
s = 0.1

Λ (201) Λ (101) Λ (51)

1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000

3
4
5
6
7
8

3
4
5
6
7
8

Figure S9: Estimated sweep width illustrated by mean estimated genomic size influenced by the
sweep (log10 Â) in Λ with windows of size 51, 101, and 201 SNPs under simulations of the human
central European (CEU) demographic history of Terhorst et al. [2017] for per-generation selection
coefficients of s ∈ {0.01, 0.1} on the rows. Mean estimated genomic size influenced by sweeps
demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior
to sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed,

and dotted horizontal lines are the corresponding mean log10 Â values for Λ applied to neutral
simulations.
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Figure S10: Power at a 1% false positive rate (FPR) as a function of selection start time for
applications of Λ, T , and G123 with windows of size 51, 101, and 201 SNPs to unphased multilocus
genotype input data under simulations of the human central European (CEU) demographic history
of Terhorst et al. [2017] for per-generation selection coefficients of s ∈ {0.01, 0.1} on the rows.
Classification ability demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000}
generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns).
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Figure S11: Estimated sweep softness illustrated by mean estimated number of sweeping haplotypes
(m̂) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased multilocus input data
under simulations of the human central European (CEU) demographic history of Terhorst et al.
[2017] for per-generation selection coefficients of s ∈ {0.01, 0.1} on the rows. Mean estimated
softness demonstrated for selection start times of t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations
prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-selected haplotypes (columns). Gray solid, dashed,
and dotted horizontal lines are the corresponding mean m̂ values for Λ applied to neutral simulations.
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Figure S12: Estimated sweep width illustrated by mean estimated genomic size influenced by
the sweep (log10 Â) in Λ with windows of size 51, 101, and 201 SNPs applied to unphased mul-
tilocus input data under simulations of the human central European (CEU) demographic his-
tory of Terhorst et al. [2017] for per-generation selection coefficients of s ∈ {0.01, 0.1} on the
rows. Mean estimated genomic size influenced by sweeps demonstrated for selection start times of
t ∈ {500, 1000, 1500, 2000, 2500, 3000} generations prior to sampling for ν ∈ {1, 2, 4, 8, 16} initially-
selected haplotypes (columns). Gray solid, dashed, and dotted horizontal lines are the corresponding

mean log10 Â values for Λ applied to neutral simulations.
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Figure S13: Proportion of false signals as a function of false positive rate for applications of Λ, T ,
H12, and G123 with windows of size 51, 101, and 201 SNPs, as well nSL and iHS under simulations of
a constant-size demographic history and the human central European (CEU) demographic history of
Terhorst et al. [2017] (bottleneck scenario) under background selection using either phased haplotype
input data (Λ, T , H12, nSL, and iHS) or unphased multilocus genotype input data (Λ, T , and G123).
Proportion of false signals is computed as the fraction of background selection simulations in which
the score computed for Λ, T , H12, G123, nSL, or iHS exceeded the corresponding score threshold
defined by a particular false positive rate.
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A

B

Figure S14: Manhattan plot of unphased multi-locus genotype Λ-statistics for the (A) CEU and (B)
YRI populations from the 1000 Genomes Project. Each point represents a single 201-SNP window
along the genome. Horizontal lines represent the top 1%, top 0.1%, and maximum observed Λ
statistic in demography-matched neutral simulations.
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Figure S15: Detailed illustration of Λ statistics and multi-locus genotype frequency spectra in CEU
and YRI. (A) Λ plotted in the LCT region, vertical dotted lines indicate zoomed region shown in
(B) and (C). (B) YRI empirical HFS for 11 windows in the LCT region. (C) CEU empirical HFS
for 11 windows in the LCT region. (D) Λ plotted in the MHC region, vertical dotted lines indicate
zoomed region shown in (E) and (F). (E) YRI empirical HFS for 11 windows in the MHC region.
(F) CEU empirical HFS for 11 windows in the MHC region. In (B), (C), (E), and (F), numbers
above HFS are Λ values for the window rounded to the nearest whole number, and the genome-wide
average HFS is highlighted in grey. q20i is the frequency of the ith most common MLG truncated
to K = 20.
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