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Abstract

Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have

been associated with cell fate changes in multiple contexts, including development and cancer.

Single cell live imaging of protein expression with endogenous reporters is widely used to observe

such gene expression dynamics. However, the experimental investigation of regulatory mecha-

nisms underlying the observed dynamics is challenging, since these mechanisms include complex

interactions of multiple processes, including transcription, translation, and protein degradation.

Here, we present a Bayesian method to infer kinetic parameters of oscillatory gene expression

regulation using an auto-negative feedback motif with delay. Specifically, we use a delay-adapted

nonlinear Kalman filter within a Metropolis-adjusted Langevin algorithm to identify posterior

probability distributions. Our method can be applied to time series data on gene expression from

single cells and is able to infer multiple parameters simultaneously. We apply it to published
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data on murine neural progenitor cells and show that it outperforms alternative methods. We

further analyse how parameter uncertainty depends on the duration and time resolution of an

imaging experiment, to make experimental design recommendations. This work demonstrates

the utility of parameter inference on time course data from single cells and enables new studies

on cell fate changes and population heterogeneity.

Keywords: Parameter inference, Bayesian methods, Gene expression oscillations, MCMC,

Kalman filters, Stem cell differentiation

[This document includes the Supplementary Information, starting on page 38]

1 Introduction

The identification of regulatory mechanisms that control gene expression may have important im-

plications in biological systems. Cell state transitions are a key contributor to many processes in

healthy and diseased tissue, and as such they play a major role in development, regeneration, and

cancer. There is an increasing amount of literature uncovering the relationship between gene ex-

pression dynamics, i.e. dynamic changes in protein copy numbers from a single gene, and cell state

transitions [1–7]. For example, Imayoshi et al. (2013) [1] used optogenetics to show that oscillatory

expression of the transcription factor ASCL1 promotes cell proliferation of mouse neural progen-

itor cells, whereas sustained expression promotes differentiation. Manning et al. (2019) [2] linked

aperiodic HES5 protein expression dynamics to murine neural progenitors, and declining oscilla-

tory dynamics to differentiating neurons. Further evidence by Soto et. al. and Phillips et. al. [3;8]

demonstrates the contribution of gene expression noise to dynamically driven cell state transitions.

Experimentally, the dynamics of gene expression can be studied using a variety of approaches.

Accurate measurements of protein dynamics are made through live-imaging of transcription factors

in single cells, which provides real-time information on gene regulation and identifies cell-to-cell

heterogeneity. This can be achieved through fluorescent fusion reporters [9], where endogenously

expressed proteins are attached to fluorescent reporter molecules. Fluorescence microscopy can then

be used to obtain time series data that quantifies protein expression levels over time (Figure 1A

and B). It may further be possible to translate the fluorescence intensity into exact protein copy
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numbers [2;3]. Fluorescent protein reporters are widely used to research the role of transcription factor

dynamics in cell differentiation events, and have provided dynamic data on gene expression in various

contexts, such as neural differentiation, circadian regulation, and cell cycle regulation [1;2;10–13].

Mechanistically, dynamic gene expression is controlled by multiple processes, including tran-

scriptional pulsing (transcription occurring in pulses or bursts), stochastic fluctuations (due to a

limited number of molecules), and gene regulatory interactions. In order to understand how these

processes interact to modulate gene expression dynamics it is necessary to use mathematical models.

Within systems biology, mathematical models are often represented as a collection of gene regu-

latory motifs [14;15]. One very common motif is the delay-mediated, auto-repressive negative feedback

loop (Figure 1C), which gives rise to oscillations and other dynamic patterns of gene expression that

have been observed in somitogenesis, neurogenesis, and in cancer cell lines [2;3;7;10;16]. In this motif,

a protein represses the transcription of its own gene. In combination with delays that are intrinsic

to biological systems, this admits a range of dynamic behaviours, most notably oscillations at the

mRNA and protein level. Regulation of gene expression through the auto-negative feedback motif

contributes to cell state changes in multiple systems, including neural differentiation [2;17;18].

Despite great advances in the collection of dynamic data on gene expression, and the modelling of

these data, challenges remain when calibrating models to data. Even simple mathematical models,

such as the auto-negative feedback motif (Figure 1C), employ multiple model parameters that

correspond to biophysical quantities. For example, the auto-negative feedback motif uses rates

of transcription, translation, degradation, and other parameters to predict protein and mRNA

expression dynamics. Each of these parameters can take a large range of values (Figure 1D). For

many application areas, parameter inference, i.e. identifying which parameters correspond to a

given experimentally obtained data set, remains an open problem, since it requires the ‘inverse’ of

the model, which typically cannot be computed directly. However, solving this problem bears great

potential for the research of gene expression dynamics and its links to cell fate. Identifying which

parameter changes correspond to observed differences in gene expression dynamics may illuminate

the molecular pathways that contribute to cell fate control, and identify new sources of heterogeneity

within a cell population.
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Figure 1: Time series data of protein expression can be modelled with an auto-negative
feedback motif. A. Stills from a movie of a single cortical neural progenitor in vitro with
Venus::HES5 knock-in reporter. Colour bar shows Venus::HES5 intensity. Stills taken at time
points 1.75h (1), 4.5h (2), 6h (3), 7h (4), 9.5h (5), 10.75h, (6), 15.5h (7), 17.25h (8). Scale bar
5µm. B. Venus::HES5 intensity time series of cell in A. C. Graphical representation of the auto-
negative feedback motif. D. Model parameter values taken from previously published experiments
and theoretical considerations. [2;8;19–23].

The need for parameter estimation in biological systems has motivated extensive research in

recent years, with a variety of approaches being developed for different types of data [24–27]. Tech-

niques using Bayesian inference have emerged as a preferred approach due to their ability to deal

with noisy data, a common feature of biological experiments [28], and their characterisation of param-

eters as distributions, rather than point estimates [20;29–35]. Placing probability distributions over

our parameters, rather than treating them as point estimates, allows us not only to determine the

most likely values for each of the parameters, given some data, but also to quantify our uncertainty
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in them.

To achieve parameter estimation with uncertainty quantification, Bayesian inference aims to

identify the posterior distribution of the model under consideration, denoted π(θ | y), where θ and

y are the model parameters and observed data respectively. The posterior distribution describes

the probability of the model parameters given observed data, and can be calculated using Bayes’

rule

π(θ | y) =
π(y | θ)π(θ)

π(y)

∝ π(θ)π(y | θ). (1)

Here, π(y | θ) is referred to as the likelihood, and is a measure of the fit of a statistical model to

the observed data, given specific values of the model parameters. The prior probability, π(θ), is

a distribution which outlines one’s beliefs in the parameters θ before any new data is taken into

account. These prior distributions can be informed using published data (Figure 1D), as well as

physical constraints (e.g. rate constants must be positive). To visualise the posterior distribution

and use it in further analysis it is common to work with computationally generated samples from

this distribution. Posterior probabilities may be difficult to compute directly, hindering the efficient

generation of these samples [36;37].

Specifically, it may not be possible to calculate posterior probabilities if the likelihood of the

model is not available. In these cases, Approximate Bayesian Computation (ABC) can be used.

However, ABC reduces the data to a small number of summary statistics, which inevitably decreases

the accuracy of inference [38]. If an expression for the likelihood is available and can be calculated

at given parameter points, the calculation of the marginal likelihood π(y) often poses a further

challenge in Bayesian inference, since it may require the numerical integration of the likelihood and

prior probability. To overcome this challenge, sampling from the exact posterior distribution can

be achieved using Markov chain Monte Carlo (MCMC) techniques, such as the Metropolis-Hastings

random walk [39].

MCMC methods can produce samples from the posterior distribution π(θ | y) even if the
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integration factor π(y) is unknown. In many scenarios, the reconstruction of a posterior distribution

using MCMC sampling can be slow, in particular if the parameter space is high-dimensional, if the

calculations of the likelihood are computationally expensive, or if parameters are highly correlated

within the posterior distribution [40]. In these scenarios, more efficient Hamiltonian Monte Carlo

(HMC) or Metropolis-adjusted Langevin algorithm (MALA) methods are preferable [41–43]. HMC

and MALA algorithms additionally require the gradient of the posterior probability with respect to

the model parameters and can result in orders-of-magnitude faster convergence of the sampled

distribution to the posterior distribution, especially for high-dimensional distributions or when

parameter correlations are present [42;44].

For time series data specifically, a common approach to calculating the likelihood is the Kalman

filter. The Kalman filter is an algorithm which calculates the likelihood of the data at each time

point, given a Markovian dynamics model and an observation noise model. It is a powerful method

to calculate posterior probabilities if delays are not present in the model [45], and can be extended

to estimate the gradient of the likelihood function, making gradient-based sampling of the posterior

distribution possible [46].

A number of recent methods focus specifically on time series of gene expression [2;26;47–51]. For

the study of oscillatory gene expression, a wide array of studies discuss time series data of protein

concentrations, such as in Figure 1A,B, as well as the description of these data through the auto-

negative feedback motif (Figure 1C). Despite this, a reliable Bayesian inference method for this

popular combination of data and model is still missing. Since the model includes delays, the

widely-used Kalman filter approaches are not applicable. Recently, Calderazzo et al. (2018) have

addressed this problem by identifying a method to introduce delays into the Kalman filter [52],

indicating that accurate Bayesian inference for the auto-negative feedback motif on time series data

of gene expression may be possible. However, this approach lacks the ability to calculate gradients

of the posterior probability distribution, thus preventing the use of efficient gradient-based sampling

methods. Furthermore, the method by Calderazzo et al. (2018) has not yet been applied to the

auto-negative feedback motif (Figure 1C).

Here, we present a Bayesian inference pipeline that can be used as a non-invasive method to
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measure kinetic parameters of gene expression emerging from the auto-negative feedback motif

using protein expression time course data. We extend the Kalman filtering method presented by

Calderazzo et al. (2018) by introducing a recursive implementation to calculate the gradient of the

likelihood. This enables us to embed the non-linear delay-adapted Kalman filter into a state-of-the-

art MALA sampling algorithm. This extension enhances the robustness of the inference, making it

more suitable for use in typical experimental settings.

Our method is able to capture multiple kinetic parameters of gene expression simultaneously

using time course data from single cells, and outperforms previous approaches. We demonstrate

the accuracy of our method on in silico data, provide an example on how the method can be

applied to experimental data, and show how the method can be used to obtain experimental design

recommendations. This work is paving the way for the use of Bayesian inference methods for the

investigation of gene expression dynamics and their links to cell fate.

2 Methods

In this section we give an overview of the key components of our method. First, we introduce

the mathematical model for the auto-negative feedback motif. Then, we discuss how we use a

delay-adapted non-linear Kalman filter to approximate the likelihood function. We briefly describe

our implementation of two MCMC methods, Metropolis-Hastings random walk (MH) and MALA.

Lastly, we provide all relevant details on the data collection and processing. Descriptions of our

method that require longer derivations are provided in the Supplementary Information. This in-

cludes our proposed algorithm to compute the gradient of the likelihood function, which is a major

technical advancement in this paper. The availability of this gradient enables the use of a wider

range of MCMC samplers, such as MALA, which we use throughout the paper.

2.1 The negative feedback chemical reaction network

Here we consider a widely used model of gene expression, that incorporates knowledge of the auto-

repressive negative feedback loop (Figure 1C). Our model describes both protein and mRNA expres-

sion dynamics over time at the level of a single cell, accounting for transcription and translation,
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as well as degradation. We include a delay in the model, representing the time taken from the

initiation of transcription until the production of a transcript and its removal from the nucleus.

We further account for the effect of transcriptional auto-repression, where a high abundance of the

target protein inhibits transcription of the mRNA [22;23;53].

Let p(t) and m(t) define the number of protein and mRNA molecules, respectively, at time t

for a gene of interest. Gene expression is often subject to stochastic effects due to finite molecule

numbers. To reflect this we model the system with delayed Chemical Langevin Equations [54–56],

dm

dt
= αmf(p(t− τ))− µmm+

√
αmf(p(t− τ)) + µmmξm, (2)

dp

dt
= αpm− µpp+

√
αpm+ µppξp, (3)

where ξm, ξp denote Gaussian white noise, i.e.

〈ξm(t1)ξm(t2)〉 = δ(t1 − t2),

〈ξp(t1)ξp(t2)〉 = δ(t1 − t2),

〈ξm(t1)ξp(t2)〉 = 0,

where δ(·) is the Dirac-delta function.

The parameters µm, µp, αm, and αp describe the rate of mRNA degradation, protein degra-

dation, basal transcription rate in the absence of protein, and translation rate respectively. The

transcriptional delay is given by τ , and auto-repression is taken into account via the use of a Hill

function

f(p(t− τ)) =
1

1 + [p(t− τ)/P0]h
, (4)

reducing the rate of transcription for increasing amounts of protein p at time t− τ [57]. Here, τ , the

time delay, is the duration of the transcription process. The Hill function (eq. (4)) is close to one

when the protein at time t− τ is much less than the repression threshold P0 and close to zero when

the the protein at time t − τ is much more than the repression threshold. The steepness of the

transition from one to zero can be regulated by the Hill coefficient h. The Hill coefficient reflects
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the extent of cooperativity between ligand binding sites for the gene of interest [58].

We simulate these dynamics using the Euler-Maruyama method with a time step ∆t = 1 min,

which is chosen sufficiently small to ensure numerical accuracy of the scheme.

2.2 The likelihood function can be evaluated through Kalman filtering

The Kalman filter is an algorithm which calculates the likelihood function for linear stochastic dif-

ferential equations describing time-series data [59]. The Kalman filter evaluates the likelihood of each

time-point recording consecutively. The full likelihood is then the product of these individual likeli-

hoods, exploiting the Markov property of the underlying stochastic process. The Kalman filter can

be extended to non-linear dynamical systems by using piecewise-linear Gaussian approximations [60].

Here, we implement a Kalman filter, extended to account for non-linearity and delay, in order

to evaluate the likelihood that our observed data results from the model in eqs. (2) and (3) at

a given parameter combination. This likelihood can then be used to infer model parameters for

a given experimentally observed time series recording of gene expression. The resulting posterior

distribution may then represent testable predictions on the biophysical characteristics of the gene

of interest, such as transcription, translation, and degradation.

Our Kalman filter implementation uses a finer discretisation on the time axis than that given by

the observation interval. Specifically, we introduce z hidden states between consecutive observations.

Introducing such hidden states is common when applying Kalman filters to non-linear stochastic

differential equations. It increases the accuracy of a piece-wise linear Gaussian approximation. In

the following, the time variable t will assume integer values numbering all discretisation time points,

i.e. t = 0, 1, ..., nz, where n is the total number of observations.

It is possible to show that the likelihood of a set of observations given specific model parameters

can be expressed as [52]

π(y | θ) =
n−1∏
i=0

φ(yi·z;Fρi·z, FPi·zF
T + Σε), (5)

where the subscript i · z denotes multiplication of i and z and

φ(x;µ,Σ) =
1√

det(2πΣ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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is the multivariate Normal distribution. The true, unobserved state of the system at time t is

given by X(t) = xt = [m(t), p(t)]T, and the relationship between xt and the observed data yt is

given by yt = Fxt + εt, where εt ∼ N (0,Σε) and F is a 1× 2 matrix. Thus, F and ε represent our

measurement model. The value Σε is called the measurement variance, and describes the observation

noise introduced through the experimental measurement process. The variables ρ and P represent

the state space mean and state space variance respectively. We define y0:t = [y0, yz, y2z, . . . , yt]
T ,

and write ρt = E[X(t) | y0:t−1] and Pt = Cov(X(t),X(t) | y0:t−1).

The Kalman filter caclulates ρt, and Pt in eq. (5) using an iterative process with two main steps.

At iteration k, the first k observations have been used to infer a probability distribution over the true

state of the system X(t) for all discretisation time points up to t = kz. This probability distribution

is characterised by it’s mean ρ∗kz = E[X(t) | y0:kz] and covariance P ∗kz = Cov(X(t),X(t) | y0:kz).

In the Kalman filter prediction step we then use the model to calculate the predicted probability

distribution for protein and mRNA copy numbers at the next observation time point, X((k+ 1)z).

We use this prediction to evaluate the likelihood of the observed data at the k + 1 observation

time point. Before the prediction for the next observation is made, the Kalman filter update step is

applied, in which the probability distribution of the state space up to observation k + 1 is updated

to take the measurement at t = (k + 1)z into account.

For our update step we derive an expression for the mean and variance of the state space

distribution π(xt−τ :t | y0:t), denoted ρ∗t−τ :t and P ∗t−τ :t respectively. That is, the likelihood of our

state space estimates from the past time t − τ to the current time, t, given all of our current

observations. This is necessary in order to accurately predict the state space distribution at the

next observation time point, π(xt+∆t | y0:t), as past states can affect future states due to the presence

of delays. We provide detailed derivations of our Kalman filter prediction and update steps in the

Supplementary Information Section S.1.

2.3 Implementation of MCMC sampling algorithms

The aim of our inference algorithm is to generate independent samples from the posterior distribu-

tion, π(θ | y). In this paper, we compare results from two different sampling methods, MH and
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MALA. The MH algorithm and MALA are two of the most widely used MCMC methods for draw-

ing random samples from a probability distribution. For completeness, we provide their algorithms

in the Supplementary Information Sections S.2 and S.3.

Drawing proposals using MALA requires the calculation of the gradient of the log-posterior

U(θ), which we outline in Section S.4. This is achieved by iteratively computing the derivatives of

state space mean, ρt, and state space variance, Pt, with respect to each parameter, as detailed in

Section S.5.

2.4 Trends in the data are identified by Gaussian processes

Before applying our inference method we detrend protein expression time series using Gaussian

process regression, in order to identify and exclude data that show significant long-term trends [61;62]

(see Section 3.3 for further motivation). Specifically, we make use of a scaled squared exponential

Gaussian process combined with white noise, whose kernel is given by

k(t, t′) = γ exp

(
−‖x(t)− x(t′)‖2

2l2

)
+ ηδ(t− t′), (6)

where ‖x(t) − x(t′)‖ is the Euclidean distance between x(t) and x(t′), l is the lengthscale, and

γ, η ∈ R. In the Gaussian process regression the hyperparameters γ, l, and η are found using

constrained optimisation.

The initial value of the lengthscale is 1000 minutes, and is bounded uniformly in the range (1000

min, 2000 min). The lower bound of this range, 1000 minutes, was chosen to ensure that detrending

does not perturb ultradian dynamics in the data. The upper bound, 2000 minutes, was chosen

sufficiently large to ensure that detrending is not affected by it. The initial value of the parameter

γ is the variance of the data, σ2
data, and is restricted by a uniform prior to (0.1σ2

data, 2σ
2
data). The

parameter η has initial value 100, and is restricted by a uniform prior to (10−5, σ2
data). Here,

x(t) and x(t′) represent our protein expression time course data at time t and t′ respectively. We

identified data without a significant long term trend manually by visual inspection (see Section 3.3,

Figure 4) and removed any residual trend before applying our inference method.
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2.5 Oscillation quality is quantified by the coherence measure

In the presence of noise, time series can exhibit oscillations of varying quality. Here we introduce a

measure to quantify the oscillatory properties of a time series, the coherence. We define coherence as

the area under the power spectrum, f(ω), within a 20% band around the peak frequency, divided by

the total area under the curve, following previous approaches [8;63]. The power spectrum is defined

by

f(ω) = 〈p̂(w)p̂∗(w)〉,

where p̂(ω) is the Fourier transform of the individual protein expression time course data, and ∗

denotes complex conjugation. Values of the coherence around zero suggest a lack of any periodic

behaviour, and values around one suggest sine-wave-like behaviour. For in silico data we estimate

coherence by averaging the power spectra from 200 traces, which individually were simulated for

8500 minutes. The initial 1000 minutes of the simulation were discarded, and not used in the

averaging, to minimise any influence from the initial conditions.

2.6 Data collection and analysis

2.6.1 Imaging of Primary NS cells

To generate data in Figure 1A, primary NS cells were isolated from the dissected cortex of E12.5

Venus::HES5 embryos [1] and cultured as previously described [64]. 200,000 cells up to passage 15 were

plated on laminin (Sigma, UK) coated 35mm glass-bottom dishes (Greiner-Bio One) and imaged in

NS proliferation media at 37°C in 5% CO2 using a Plan Fluor 40x 1.3NA oil objective on an Nikon

A1-R inverted confocal microscope. A 25µm z-range was used to ensure cells maintained in focus.

Maximum projections in z direction were generated before manual cell tracking using Imaris spot

function (Bitplane).

2.6.2 Conversion of Venus::HES5 intensity to molecule number

Here, we briefly describe how we translate time series of fluorescent intensity fromManning et al. (2019)

into time series of molecule numbers. Throughout our analysis, we use time series data of fluores-
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cent intensity that were published by Manning et al. (2019) and which have been corrected for (i)

photobleaching and (ii) for weaker intensity signals at deeper z-positions of the imaged nuclei. A

quantile-quantile plot was generated between the distribution of tracked Venus::HES5 intensities and

the distribution of nuclear Venus::Hes5 concentrations across the tissue. The distribution of tracked

Venus::Hes5 intensities was generated from cells in tissues with heterozygous Venus::Hes5 reporter.

All recorded single cells at all time points were used. The distribution of nuclear Venus::HES5 con-

centrations was generated using fluorescent correlation spectroscopy (FCS) on cells in tissue slices

from the same domain of the E10.5 spinal cord and with a homozygous Venus::Hes5 reporter. Data

from from multiple tissue slices and multiple experiments was used. The required FCS data was

also published by Manning et al. (2019). Linear regression on the quantile-quantile plot was used

to generate a calibration curve between Venus::HES5 intensity and Venus::HES5 concentration over

the middle 90% of the range. The gradient of the line was used as a scaling factor and applied to the

intensity values in the Venus::HES5 expression time-series to transform intensity to concentrations.

Finally, the average nuclear volume from Manning et al. (2019) was taken into account to convert

concentrations into nuclear molecule numbers.

3 Results

Single cells in a seemingly homogeneous population can change cell fate based on gene expression

dynamics. The control of gene expression dynamics can be understood with the help of mathematical

models, and by fitting these models to experimentally measured data. Here, we analyse our new

method for parameter inference on the widely used auto-negative feedback motif, which can be

used to perform inference on single-cell time series data of gene expression. We first validate our

method by showing the performance of our algorithm on in silico data sets. We then demonstrate

the utility of our method by applying it to experimentally measured data and, finally, use our

method to analyse how parameter uncertainty may depend on properties of the data, as well as the

experimental design.
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3.1 Sampled posterior distributions agree with analytical derivations for one-

dimensional parameter inference.

We first test our inference method on in silico data from the forward model of the auto-negative

feedback motif (Figure 1C). This is done using Chemical Langevin Equations, as detailed in Sec-

tion 2.1. Specifically, we emulate an in silico imaging experiment by selecting simulated data in

sparse intervals of ∆tobs mins and mimic measurement noise by adding random perturbations to

each observation time point (Figure 2A). These perturbations are drawn from a Gaussian distribu-

tion with variance Σε. Testing the method on in silico data first is beneficial, since ground truth

parameter values are known a priori for the generated in silico data sets, and can be compared to

the obtained posterior distributions.

We start by applying our inference method to simple test cases, where the true values of all but

one parameter are known, and only the remaining, unknown, parameter value is inferred (Figure 2).

This allows us to compare our sampled posterior distributions to the exact likelihood, which can

be calculated in these one-dimensional examples using equation eq. (5). If our inference method is

accurate, the sampled posterior distribution should closely match the exact likelihood if the Markov

chain has converged (see Section S.7). We find that this is indeed the case for example in silico

data sets (Hill coefficient, transcription rate and transcriptional delay in Figure 2B–D, repression

threshold and translation rate in Figure S1). Additionally, ground truth parameter values lie well

within the support of the posterior distribution (Figure 2B–D, supplementary Figure S1, vertical

black lines).

Our proposed inference method uses the MALA sampler, which relies on calculating likelihood

gradients (see Section S.4). The comparison with exact calculations in Figure 2B–D and supple-

mentary Figure S1 validates our implementation of MALA, and the associated computations of

the likelihood gradient. In order to further test our implementation of MALA, and the associated

computations of the likelihood gradients, we compare our results to posterior distributions sam-

pled using the MH algorithm, which does not require gradient calculations. Despite the known

slower convergence of the MH algorithm, this comparison is feasible for one-dimensional posterior

distributions, which typically can be well approximated with a few thousand samples. The sam-
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Figure 2: Our algorithm accurately samples posterior distributions. A. Simulated exper-
imental data. Protein copy numbers are simulated using the Chemical Langevin Equation (see
Section 2, blue dots). Experimental observations are emulated every five minutes by adding Gaus-
sian noise to the protein copy number (pink). The parameter values used were P0 = 3407.99, h =
5.17, µm = log(2)/30, µp = log(2)/90, αm = 15.86, αp = 1.27, τ = 30, and the simulated mRNA
copy numbers are also included (green dots). B, C, D. Posterior distribution for one-dimensional
inference. For individual model parameters, posterior distributions were inferred while keeping all
other parameters fixed, respectively. Shown above are the inferred marginal posteriors for the Hill
coefficient (B), transcription rate (C), and transcriptional delay (D) respectively as histograms, us-
ing MALA as the underlying sampling algorithm (see Section S.2) for 2500 iterations. The blue
lines are the exact likelihood calculations. The sampled and exact distributions coincide. E, F.
Histograms for both MALA and MH on the 1-dimensional problem for the Hill coefficient (E) and
repression threshold (F).
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pled means have a relative difference below 0.03%, and the standard deviations fall within 4% of

each other (Table 1, supplementary Table S2). This comparison reveals that posterior distributions

from both samplers agree well with each other (Figure 2E–F, Figure S2), and further validates the

implementation of the individual likelihood gradients.

Parameter True Value µ (MALA) µ (MH) σ (MALA) σ (MH)
Repression threshold, P0 3408 3422 3423 37.51 36.65

Hill Coefficient, h 5.17 5.113 5.112 0.100 0.104

Table 1: The true values for the parameters which were used to generate the data in Figure 3A,
alongside the means, µ, and standard deviations, σ of the corresponding one-dimensional posterior
distributions, from both the MALA and MH algorithms (Figure 2E,F).

3.2 Our method allows for simultaneous inference of multiple model parameters

Having validated the method on one-dimensional posterior distributions, we further test the per-

formance of the method by simultaneously inferring multiple model parameters from a single in

silico data set and comparing the resulting posterior distribution to the ground truth parameter

combination (Figure 3A,B). Since we cannot measure convergence of the sampled posterior through

comparison to the true posterior distribution in the multi-dimensional case, we rely on typical

MCMC convergence diagnostics (Section S.7).

We choose a data set that shares characteristics with typically collected time course data from

single cells. Specifically, our in silico data set is of similar length and observation intervals as

previously analysed by Manning et al. (2019). In this paper, the degradation rates of protein

and mRNA have been measured, so we assume these measurements as known values, leaving five

unknown parameter values to infer. The prior distributions were uniform, defined by the range of

values given in Table S1, and log-uniform for αm and αp (see Section S.6 for details).

We find that the marginal posterior means, i.e. values of largest probability, all lie within

maximally half a standard deviation of the ground truth values (Table 2). This indicates that a

high degree of accuracy in the inference can be achieved with the amount of data typically gathered

from a single cell.

Simultaneous inference of multiple parameters further allows for the investigation of pairwise
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Figure 3: MCMC sampling enables simultaneous inference of multiple parameters A.
An in silico data set generated using parameter values P0 = 47515, h = 4.77, µm = log(2)/30, µp =
log(2)/90, αm = 2.65, αp = 17.61, τ = 38.0. B. Our method is applied to the data set in (A)
to sample the joint posterior distribution over five parameters. The marginal posteriors for each
parameter are shown. All marginal posterior means are within half a standard deviation of the
true value. C. A (symmetric) correlation matrix which shows the correlation coefficient, ν, between
samples for each pair of parameters. Diagonal entries are, by definition, perfectly correlated (ν = 1),
and off diagonal entries take values in the range [−1, 1]. D,E,F. Joint posterior distributions showing
the relationship between different pairs of parameters. D shows the repression threshold, P0 is not
correlated with the protein translation rate, αp. E shows a correlation of ν = 0.6 between the
repression threshold and the Hill coefficient, h. In other words, for this data set, a higher Hill
coefficient indicates a higher repression threshold (and vice-versa). Finally, F shows the strong
negative correlation between P0 and αm.

Parameter True Value Mode SD
Repression threshold, P0 47515 44915 12434

Hill Coefficient, h 4.77 4.41 0.80
Log basal transcription rate, log(αm) 0.975 1.45 1.24

Log translation rate, log(αp) 2.869 2.808 0.288
Transcriptional delay, τ 38.0 39.87 4.39

Table 2: The true values for the parameters which were used to generate the data in Figure 2A,
alongside the means, µ, and standard deviations, σ, from the MALA.

parameter correlations, using correlation coefficient ν (Figure 3C). Pairwise correlations provide

crucial information on how posterior distributions can be constrained further. Specifically, the strong
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correlation between the repression threshold, P0, and the logarithm of the basal transcription rate,

log(αm) (Figure 3E), highlights that the data in Figure 3A is consistent with either high repression

thresholds and low transcription, or vice versa. Such strong pairwise correlations (Figure 3E,F)

imply that gaining new information on one of the two parameters would constrain the other. This is

not the case when parameters are uncorrelated, such as the transcriptional delay and the translation

rate (Figure 3D), and experimentally measured values on either of these parameters would not inform

the other.

3.3 Parameter inference on single cell data outperforms previous approaches

and may reveal underlying mechanisms for population heterogeneity

Next, we seek to evaluate the performance and utility of our method by applying it to experimen-

tally measured data. Specifically, we investigate data on gene expression oscillations in mouse spinal

cord neural progenitor cells [2], and compare our method to results on parameter inference from ABC

(Figure 4A). In this previous approach, inference was performed using population-level summary

statistics of the collected time-course data. This resulted in posterior distributions with high pa-

rameter uncertainty. Specifically, the marginal posterior distributions for the Hill coefficient and

the transcriptional delay were close to uniform, illustrating that the provided summary statistics

did not contain sufficient information to constrain the uniform prior distribution. The remaining

parameters had distinct modes. Nonetheless, parameter uncertainty was high since the spread of the

posterior distribution was comparable to that of the prior [2]. Importantly, this previous approach

did not allow for comparison of posterior distributions between single cells.

When applying our method to time series data from fluorescence microscopy experiments, it

is necessary to address that our model of the auto-negative feedback motif cannot describe long-

term trends in data. Specifically, the model of the auto-negative feedback loop considered here is

designed to describe ultradian oscillations that typically have periods shorter than 10 hours [21;22;55],

and cannot describe variations in protein numbers on longer timescales, such as one would expect

from a slow up- or down-regulation of the gene in the tissue. Hence, we only apply our algorithm

to protein expression time series that we expect to be accurately modelled by eqs. (2) and (3) by
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excluding data that show significant long-term trends. In order to identify such time series, we

first remove trends from the time series that vary on lengthscales longer than 10 hours by using
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Figure 4: Parameter inference on single cell data outperforms previous approaches. A.
Marginal posterior distributions for each parameter are obtained from the ABC algorithm using
summary statistics in place of likelihood evaluations. B. Detrending of in vivo single cell protein
expression data (black line). The mean is subtracted from the data and a squared exponential
Gaussian process determines the long term trend (pink line). This trend is removed from the data
and the mean is added back in (green line). C. Marginal posteriors from MALA for the detrended
single cell data shown in panel B. D,E. Marginal posterior distributions for every cell in cluster 1
and 2 respectively.

Gaussian process regression (see Section 2.4). Then, we manually identify all time series for which

the detrended and raw time series visually agree (Figure 4B).

In order to identify a suitable value for the measurement variance Σε we rely on previous esti-

mates [2]. Manning et al. (2019) decomposed the measured time series into two contributions, one

from a time-varying signal with finite auto-correlation time, and one from a time-varying signal for

which consecutive observations are uncorrelated [2]. This second contribution follows an identical

distribution as the measurement error in our model, and was estimated to contribute 10% of the

total variance across all detrended time series. Hence, we set

Σε =
0.1

Nc

Nc∑
i=1

σ2
i , (7)

where Nc is the number of considered traces, and σ2
i is the variance for the ith detrended data set.

We find that our method can identify more accurate posterior distributions than the previous

ABC-based approach by using single cell time series of gene expression only (Figure 4C vs. Fig-

ure 4A.). For the single-cell gene expression time course in Figure 4B, we find that there is still

comparatively high uncertainty on the basal transcription rate (αm in Figure 4C), as the support of

the marginal posterior distribution reflects that of the uniform prior distribution . However, for all

other model parameters that are inferred from this time course, the marginal posterior distributions

are narrower than the prior, and than previously identified marginal posterior distributions from

ABC (Figure 4C).

Having investigated marginal posterior distributions from a single cell we proceed to analyse to

what extent these posterior distributions can vary across multiple cells in the population. Among

the experimental data considered here, hierarchical clustering has previously identified two sub-
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populations (denoted as clusters 1 and 2) which have distinct gene expression dynamics and which

also do not have strong long-term trends [2], such as down-regulation of gene expression. For clusters

1 and 2 there are 19 and 22 cells respectively which we have selected for negligible trends (see

Section 2.4).

We find that the posterior distributions inferred from multiple cells share features that are

conserved across all cells and both populations (Figure 4D,E). Specifically, the marginal posterior

distributions of the translation rate αp are all larger than exp(2)/min, and biased to larger values.

Similarly, the marginal posterior distributions for the delay τ cover the entire range of considered

values, and are biased towards smaller values, with most likely values below 10 minutes. In contrast,

for the basal transcription rates αm and the Hill coefficient h, marginal posterior distributions vary

between individual cells, suggesting that there is an underlying heterogeneity of these parameters

across the cell population. These observations appear to hold true for both clusters considered here.

3.4 Longer time course data improves accuracy of inference more effectively

than more frequent sampling

Typically, longer imaging time series can only be collected at the cost of a lower imaging frequency.

When designing experiments, it may be desirable to choose an imaging protocol that optimises the

parameter inference towards high accuracy and low uncertainty. However, parameter uncertainty

may not only be influenced by the imaging protocol, but also by the bifurcation structure of the

underlying dynamical system [65]. Hence, we next analyse how posterior distributions depend on the

frequency of sampling, on the length of the imaging interval, as well as the oscillation coherence of

the data. The oscillation coherence is a measure for the quality of observed oscillations (Figure 5A,

Section 2.5), and can be expected to reflect the position of the unknown parameter combination

within the bifurcation structure of the auto-negative feedback loop [55;66;67]. To evaluate the per-

formance of our inference, we investigate the uncertainty using the coefficient of variation, CVθ

(eq. (33)), which quantifies the spread of the posterior distribution. We use this metric to quantify

the performance of our inference method on a number of synthetic data sets with different lengths,

sampling frequencies, and locations in parameter space.
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First, we investigate the dependence of our inference on oscillation coherence. To do so, we

identified parameter combinations that predict different values of oscillation coherence [2]. We then

performed parameter inference on multiple in silico data sets for each chosen parameter combi-

nation. We find that uncertainty can vary between different data sets generated from the same

ground-truth parameter combination (Figure 5B). On average, uncertainty is highest for low co-
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Figure 5: Increasing the length of time course data improves inference more than in-
creased sampling frequency. A. Two examples of in silico protein observations, one which has
low coherence (pink) and another with high coherence (purple). B. Values of the CVθ (see eq. (33))
for data sets spanning multiple coherence values. The grey shaded region spans one standard de-
viation from the mean over all datasets for each coherence value. The pink and purple triangles
correspond to the low and high coherence data sets in A. C. CVθ for low coherence data sets sam-
pled with different lengths, from 12 hours to 60 hours. As length increases from 12 hours to 36
hours, both the mean and standard deviation decreases by an order of magnitude. D. Same as C
with the high coherence data sets. Whilst the trend is the same, note the different y-axis range. E.
CVθ for low coherence data sets sampled with different frequencies. As frequency increases from 15
minutes to 5 minutes, both the mean and standard deviation decreases by an order of magnitude.
F. Same as E with the high coherence data sets. Again, note the y-axis range.

herence values below 0.15. As coherence is increased above 0.15, parameter uncertainty decreases,

as well as the variability between posterior distributions from different data sets. This suggests

that higher oscillation coherence improves parameter identifiability. Intriguingly, as coherence is

increased beyond 0.3, uncertainty slightly increases. We propose that this effect may reflect that

highly oscillatory data may have a repetitive structure, and thus contain less information per added

time interval.

We next analyse to what extent collecting data for a longer sampling duration may reduce pa-

rameter uncertainty. Since we have already found that coherence may strongly influence parameter

uncertainty, we perform this analysis on two data sets that represent low and high coherence values,

corresponding to high and low uncertainty, respectively (Figure 5C,D). We find that a longer sam-

pling duration can strongly decrease parameter uncertainty. Doubling the length of the time series

reduces the coefficient of variation by half on average for low coherence data and by 13% on average

for high coherence data. A tripling of the available data lead to further reductions in uncertainty.

Similarly, an increase in sampling frequency also leads to a decrease in parameter uncertainty

on average (Figure 5E,F). Notably, this effect is weaker than the decrease of uncertainty for longer

measurement durations. Specifically, doubling the amount of data only leads to a decrease of 30%

in the case of low coherence, and 5% in the case of high coherence. We find that the impact

of increasing the available data either through higher sampling frequency or longer measurement

duration was lower for high coherence values. This is unsurprising, given the already very low values

for parameter uncertainty for high coherence data.
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We find that analogous conclusions hold true if inference accuracy (MEθ, eq. (34)) is analysed,

instead of uncertainty (Figure S3). Accuracy increases with oscillation coherence, longer sampling

durations, and shorter imaging intervals, and longer sampling durations have a stronger effect than

shorter imaging intervals.

4 Discussion

The aim of this work was to develop a statistical tool that can be used to infer kinetic parameters

of the auto-negative feedback motif, based on typically collected protein expression time series data

from single cells. Importantly, the stochastic nature of the involved processes demanded a method

that enables uncertainty quantification. We have achieved our aim by embedding a non-linear delay-

adapted Kalman filter into the MALA sampling algorithm. Our method can generate accurate

posterior distributions for the simultaneous inference of multiple parameters of the auto-negative

feedback motif. The produced posterior distributions are more informative than those from previous

approaches. Since our method can be applied to data from single cells, it enables the investigation

of cell-to-cell heterogeneity within cell populations. It can further be used to make experimental

design recommendations, which we demonstrated by investigating how parameter uncertainty may

depend on oscillation coherence, the sampling frequency, and the length of the collected time series

data.

Often, new inference algorithms are presented on a single data set, and due to necessary tuning

requirements of the involved sampling methods, further data sets are not considered. However, it

is important to understand the behaviour of a method for a range of data sets if we wish to make

experimental design recommendations. It is an achievement of this paper that we provide a method

that demonstratively can reliably infer parameters, even when the size and structure of the data

are changed significantly.

The mathematical model underlying our method aims to describe the dynamic expression of

a protein which is controlled by auto-negative feedback. The success of our inference relies upon

how well this model approximates reality. Mathematical models for the oscillatory expression of

transcription factors are informed by experimental research [57;68] and have been developed over
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time [3;8;22;23;66]. Existing model extensions include interactions with other genes or microRNAs [21]

and future models could include effects of transcriptional bursting [69]. The simple model used

here provides a starting point for developing inference algorithms for further models including non-

linear, stochastic interactions as well as delays, and future validation of experimental predictions

can be used to guide data-driven model improvements. To this end, our algorithm may enable

model selection to identify gene regulatory network properties, such as interactions between multiple

transcription factors.

Chemical Langevin Equations such as eqs. (2) and (3) approximate the full stochastic dynamics

of the system by assuming Gaussian increments. Further, our Kalman filter assumes that measure-

ment errors follow a Gaussian distribution, and are not correlated between consecutive time points.

The likelihood calculations within the Kalman filter assume that distributions of protein copy num-

bers, which are predicted by eqs. (2) and (3), can be approximated by Gaussian distributions.

The Gaussian approximation within the Chemical Langevin Equation can break down when

molecule concentrations are very low, resulting in an inaccurate simulation of the dynamics. We

do not expect this to be a problem for data analysed in this paper, since protein copy numbers

throughout our analysis are around 50,000 protein molecules per nucleus. In other applications,

the validity of the Chemical Langevin Equation may be explicitly tested on samples from the

posterior distribution by directly comparing simulated expression time series with those obtained

from an exact sampling algorithm, such as the Gillespie algorithm [70]. Similarly, simulations of the

Chemical Langevin Equation can be used to test assumptions on the Gaussianity of the state space

made within the Kalman filter. In cases where these assumptions do not hold, alternative inference

algorithms, such as particle filter methods, may need to be developed.

For Bayesian inference problems it is common to use MCMC samplers, such as MH or MALA.

We have found that combining a delay-adapted non-linear Kalman filter and MALA can allow us

to infer parameters of the auto-negative feedback motif. This builds on previous approaches which

applied a Kalman filter in the context of a different transcriptional feedback motif with delay [52].

MCMC algorithms typically require tuning which may be data specific. We have taken steps to

reduce additional input from the user by using MALA, which proposes new samples based on the
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gradient of the target posterior, hence accounting for geometric properties of parameter space, and

which can result in faster, more robust performance [44]. We further incorporate adaptation into our

algorithm [71]. More efficient MCMC algorithms can eliminate the problem of tuning entirely [44].

These methods rely on the computation of the Hessian, i.e. the second derivative of the likelihood

function. Deriving expressions for the Hessian and investigating the efficiency of the resulting

algorithm is thus a potential avenue for future work.

In our applications of the algorithm to experimentally measured data, we detrended the data

before applying our inference (Figure 4B). Such detrending is commonly used when analysing time

series of oscillatory signals [2;72;73]. The detrending removes signal fluctuations from the recorded

time series that vary on a much longer time scale than the ultradian oscillations that are being con-

sidered. This is necessary, since our model cannot describe such long-term fluctuations. Specifically,

independently of the model parameter chosen, simulated traces from the Chemical Langevin Equa-

tion (eqs. (2) and (3)) do not include long-term trends. Hence, detrending prevents any bias that

the presence of a long-term trend in the data may introduce to the parameter inference. When the

algorithm will be applied to data from other transcription factors, we recommend to exclude data

that contains trends with timescales that are longer than the fluctuations and oscillations that are

expected to emerge from the auto-negative feedback, in line with previous detrending recommenda-

tions [72;73]. Presumably, variations in the long-term trend of the data stem from a time-dependence

of one or multiple of the model parameters due to regulatory processes that our model does not

account for. Hence, future improvements to our algorithm may be developed where the temporal

variation of model parameters is inferred, instead of one static value.

When applying our inference method to experimental data (Figure 4), we relied on previously

reported values for the measurement variance, Σε, in the data set that we considered [2]. When users

seek to apply our algorithm to other data where previously published values are not available for Σε,

this parameter can be inferred following the same procedure as reported in Manning et al. (2019).

Our algorithm opens up the investigation of research problems, such as cell-to-cell heterogeneity

in dynamic gene expression, which would previously not have been accessible. In future applications,

our algorithm may provide a non-invasive method to measure the kinetic parameters of the gene
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of interest, such as the translation and transcription rates, or properties of the gene’s promoter,

which are described by the repression threshold and Hill coefficient parameters in our model. On

experimental data sets where multiple, qualitatively different dynamics are observed [74–76], our

algorithm may provide insights into the mechanistic origin of these different dynamics. To this

end, it may for example be combined with clustering algorithms on the time series data, such as

Gaussian mixture modelling. Since different dynamic patterns of gene expression have been observed

in multiple studies of auto-repressing transcription factors [2;3], we anticipate that these approaches

will spark new scientific investigations.

Throughout, we have assumed that measurements in the form of protein copy numbers per nu-

cleus are available over time. To collect such data, it is necessary to combine endogenous fluorescent

reporters with FCS in order to translate reporter intensity values to molecule concentrations. Fu-

ture versions of our algorithm may be applicable to data where FCS is not available, if one extends

our measurement model (F , Section 2.2) to include an unknown, linear scaling parameter between

protein copy numbers and imaged intensity values.

We highlight that the impact of this work is not limited to a single gene in a single model system.

The conceptual framework and derivations described here are applicable to any system which can

be described by delayed stochastic differential equations, although there may be computational

limitations as model sizes increase.
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Supplementary Information

Here we provide full derivations for the prediction and update step in the non-linear, delay-adapted

Kalman filter. We also detail the MCMC sampling algorithms discussed in the main text, as well

as our chosen method for adaptive step size selection within the MCMC. Then, we show how the

gradient of the likelihood can be computed within the Kalman fitler. Finally we detail our process

for choosing prior distributions, and assessing convergence of our Markov chains. Supplementary

figures are provided at the end.

S.1 Kalman filter prediction and update step

In order to predict the probability distribution over the state spaceX at observation k, it is necessary

to calculate ρt and Pt as defined in the main manuscript (Section 2.2). Here, we show how we derive

delay differential equations for both quantities, closely following Calderazzo et al. (2018).

Prediction Step We first rewrite eqs. (2) and (3) in the general form of a vector-valued, delayed

stochastic differential equation:

dX(t) = g(X(t))dt+ f (X(t− τ)) dt

+
√
l(X(t)) + q (X(t− τ))dB(t), (8)

where B(t) is a 2-dimensional Wiener process, and

g(X(t)) =

 −µmm(t)

αpm(t)− µpp(t)

 ,

f(X(t− τ)) =

αmf(p(t− τ))

0

 ,

l(X(t)) =

µmm(t) 0

0 αpm(t) + µpp(t)

 ,

38

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443895doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443895
http://creativecommons.org/licenses/by/4.0/


q(X(t− τ)) =

αmf(p(t− τ)) 0

0 0

 .
Next, we aim to use this definition to derive delay differential equations for ρ and P . To do so,

we employ Taylor expansions. The first order Taylor expansions of g(·) and f(·) about ρt are

g(Xt) ≈ g(ρt) + Jg(ρt) · (Xt − ρt),

and

f(Xt−τ ) ≈ f(ρt−τ ) + Jf (ρt−τ ) · (Xt−τ − ρt−τ ).

We can hence write

Xt+δt = Xt + g(Xt)δt + f(Xt−τ )δt +
√
l(Xt) + q(Xt−τ )N (0, δt) +O(δ2

t ), (9)

where N (0, δt) is a Gaussian distribution with mean zero and variance δt. Inserting this into the

definition of ρt, we find

dρt = g(ρt)dt+ f(ρt−τ )dt. (10)

Similarly, we insert eq. (9) into the definition of P to find

dPt =
[
Jg(ρt)Pt + P Tt Jg(ρt)

T
]
dt

+ [Jf (ρt−τ )Pt−τ,t] dt

+
[
Pt,t−τJf (ρt−τ )T

]
dt

+A (ρt, ρt−τ ) dt, (11)

where A(ρt, ρt−τ ) = l(ρt) + q(ρt−τ ) and Pt,s = Cov(X(t),X(s) | y0:t−1).

Lastly, we have

dPs,t = Ps,tJ
T
g (ρt)dt+ Ps,t−τJ

T
f (ρt−τ )dt. (12)

We can then use a standard forward Euler method with a time step which represents the absolute
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time difference between consecutive hidden states, to numerically integrate these delay differential

equations between observations. Before the first prediction step can be executed, it is necessary

to define initial and past conditions for these delay differential equations. The state space mean is

initialised at negative times with the steady state solutions to the deterministic approximation of

the model, i.e. eqs. (2) and (3) of the main manuscript without their respective noise terms. At

steady state, we have

p∗ =
αmαp
µmµp

f(p∗) (13)

and

m∗ =
µp
αp
p∗. (14)

The state space variance is initialised with a multiple of this mean. Specifically, the variance of the

mRNA is initialised at 20 times its mean value, and the variance of the protein is initialised at 100

times its mean value. These are chosen to reflect the variance of protein and mRNA expression

from the Chemical Langevin Equations. For simplicity, off-diagonal elements of the state space

covariance are initialised at zero. We expect the influence of these initial and past conditions to

diminish after the first update step has been applied and as the number of data points increases.

Update Step For our update step we derive an expression for the mean and variance of the state

space distribution π(xt−τ :t | y0:t), denoted ρ∗t−τ :t and P ∗t−τ :t respectively. That is, the likelihood of

our state space estimates from the past time t − τ to the current time, t, given all of our current

observations. This is necessary in order to accurately predict the state space distribution at the next

observation time point, π(xt+∆t | y0:t), as past states can affect future states due to the presence of

delays.

Assuming approximate Gaussianity of the joint distribution π(xt+∆t, yt+∆t | y0:t), following

Särkkä (2013), we can obtain the following expression for the updated state space mean and variance:

ρ∗t−τ :t = ρt−τ :t +Kt−τ :t (yt − Fρt) , (15)

P ∗t−τ :t = Pt−τ :t −Kt−τ :tStK
T
t−τ :t, (16)
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Kt−τ :t = Pt−τ :t,tF
TS−1

t , (17)

where St = FPtF
T + Σε.

S.2 Markov Chain Monte Carlo sampling algorithms

For completeness, we provide here the algorithms for the Metropolis-Hasting random walk, and the

Metropolis-adjusted Langevin Algorithm.

Metropolis-Hastings Random Walk

We initialise the algorithm with a set of the model parameters, θ0, chosen by minimising the log

likelihood function using Powell’s method [77]. In the case of our model, each parameter vector

is composed as θ = [P0, h, µm, µp, αm, αp, τ ]T . At each iteration, i, we propose a combination of

parameters, θ′, from a symmetric distribution, q(·), centered around the current parameters, θi. In

this paper we use the normal distribution N (θ, εΣ), where ε is called the step size, and Σ is the

proposal covariance matrix. An acceptance ratio, α(θi,θ
′), defined by

α(θi,θ
′) = min

{
1,
π(θ′ | y)

π(θm | y)

}

= min

{
1,

π(y | θ′)π(θ′)

π(y | θi)π(θm)

}

is calculated, and a uniform random number, u, is generated on [0, 1].

1. If u ≤ α(θi,θ
′), we accept the proposal θ′ and set θ′ = θi+1.

2. If u ≥ α(θi,θ
′), we reject the proposal θ′ and set θt = θi+1.

The distribution of random draws {θi | i ∈ {0, 1, . . . , Ns}} converges to our posterior distribu-

tion, π(θ | y), as Ns → ∞. In practice, the number of iterations necessary for accurate inference

depends on a number of factors, including the complexity of the problem, the number of parameters

to be inferred, and the relationship between the posterior and proposal distributions. We outline

our choice of Ns in Section S.3
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Metropolis-adjusted Langevin Algorithm (MALA)

Whilst the MH algorithm is relatively simple to understand and implement, it can fail to identify

the posterior if it has a non-trivial, curved correlation structure [78], or if it is multi-modal [79]. It

can also become slow when dimensionality is high, i.e. when there are a large number of parameters

to infer. In these cases the algorithm typically requires a very large number of samples, which is

time consuming, especially if the likelihood calculation is slow. One way to address this is to use

a sampling algorithm that uses the gradient of the posterior distribution, as well as it’s absolute

values, to draw new samples. The gradient can help guide the search towards the modes of the

posterior distribution, making for a more efficient algorithm which typically needs fewer samples.

A number of different MCMC approaches utilise the gradient of the distribution, such as MALA,

and the NO-U-Turn sampler [40], which is an extension on the original Hamiltonian Monte Carlo

(HMC) [42].

We use MALA, since it is well-established that it has better convergence properties than the

MH algorithm [80]. Our algorithm for MALA iterates over the same steps as the MH algorithm, with

an adjusted expression for the proposed parameter combination. Where MH uses the proposal

θ′ = θ +
√
εΣ1/2ξ, (18)

MALA instead uses

θ′ = θ − (ε/2)ΣU(θ) +
√
εΣ1/2ξ, (19)

where ξ ∼ φ(0, Id), with Id denoting the d-dimensional identity matrix, d is the dimension of the

posterior distribution, and U(θ) = −∇ log π(y | θ).

S.3 Implementation of adaptive sampling strategies

We seek to generate Ns independent samples that accurately characterise our posterior distribution,

but samples are dependent on the starting point of the Markov chain. As increasingly many samples

are generated, this dependence diminishes. The correlation between samples can be reduced if an

appropriate covariance matrix is chosen for the proposal distribution. One suitable covariance
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matrix is the covariance of the target posterior distribution, which may be estimated from samples

of the MCMC itself. To do so, we warm up the Markov chains in two steps by drawing Nw1 samples

and discarding the first Nb1 samples as burn-in. With the remaining samples we construct a proposal

covariance matrix, and repeat the process with Nw2 samples and a burn-in of size Nb2 . The adaptive

MCMC is then started using the covariance matrix estimated in this way as the proposal covariance

matrix. We adaptively update our step size at iteration i, εi, using a modified version of Algorithm

4 from Andrieu and Thoms (2008).

At each iteration i, the step size is updated using

γ1 =
1

ic1
,

γ2 = c0γ1,

log(ε2i+1) = log(ε2i ) + γ2(αi − 0.574), (20)

where c0 = 1, c1 = log(10)/ log(Ns/5), and αi is the current acceptance probability. We use 0.574

as the target acceptance rate for MALA, as shown above, and 0.234 for MH [81].

In our experience, this approach results in far better performance than without warm up or

adaptively updating the step size. In practice, we found that consistent posteriors are obtained by

running 8 Markov chains in parallel, where each chain has Ns = 80, 000, Nw1 = 0.3 × Ns, Nw2 =

0.7 × Ns, and Nbi = 0.5 × Nwi , i = 1, 2. Warm up samples from all eight chains are pooled to

calculate the covariance matrix for the final run of MCMC. This approach to warm up is used in

the same way when either sampler, MH or MALA, is chosen.

S.4 Computing the gradient of the log-posterior

The Kalman filter has previously been used within gradient based sampling schemes [46], which

illustrated that it is possible to calculate the gradient with an iterative scheme similar to the scheme

for the direct likelihood calculation. In the following, we show that these previous approaches can

be extended to derive the gradient of the delay-mediated Kalman filter used here.

For MALA, we compute the derivative of the negative log-posterior U = − log(π(θ|y) with
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respect to the parameters, θ,

∂U(θ)

∂θ
=
∂(− log(π(y | θ)π(θ)))

∂θ

=

∂

(
− log

(∏
t∈T

φ(yt;Fρt, FPtF
T + Σε)π(θ)

))
∂θ

= − ∂

∂θ
log

(∏
t∈T

exp
(
−1

2(yt − Fρt)T (FPtF
T + Σε)

−1(yt − Fρt)
)
π(θ)√

det(2π(FPtF T + Σε))

)

=
∂

∂θ

[∑
t∈T

1

2
log (det(2πSt(θ))) +

1

2

∑
t∈T

(yt − Fρt(θ))T (St(θ))−1(yt − Fρt(θ))− log(π(θ))

]
,

where S = FPtF
T +Σε has been used in the last line, and the dependence of ρ and S on θ has been

emphasized. T denotes the set of time points for each observation, {i · l | i ∈ {0, 1, . . . , n− 1}}. For

a single parameter this simplifies to

∂U(θ)

∂θk
=

1

2

∑
t∈T

(
Tr

(
S−1
t

∂St
∂θk

))
− 1

2

∑
t∈T

(
F
∂ρt
∂θk

)T
S−1
t (yt − Fρt)

− 1

2

∑
t∈T

(yt − Fρt)TS−1
t

∂St
∂θk

S−1
t (yt − Fρt)

− 1

2

∑
t∈T

(yt − Fρt)TS−1
t F

∂ρt
∂θk
− ∂(log(π(θ)))

∂θk
. (21)

This expression can be explicitly calculated if dρt/dθk and dPt/dθk are known at each observation

time point t. These quantities are the predicted state space mean and variance in the prediction

step of the Kalman filter. This implies that eq. (21) can be calculated if the prediction step is

adjusted to predict the derivative of ρ and P in addition to their absolute values. To enable this

adjustment of the prediction step, we derive differential equations for d
dt(dρt/dθk) and

d
dt(dPt/dθk):

d

dt

(
∂ρt
∂θk

)
=

∂

∂θk

(
dρt
dt

)
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=
∂

∂θk
(g(ρt) + f(ρt−τ ))

=
∂g(ρt)

∂ρt

∂ρt
∂θk

+
∂g(ρt)

∂θk
+
∂f(ρt−τ )

∂ρt−τ

∂ρt−τ
∂θk

+
∂f(ρt−τ )

∂θk

= Jg(ρt)
∂ρt
∂θk

+
∂g(ρt)

∂θk
+ Jf (ρt−τ )

∂ρt−τ
∂θk

+
∂f(ρt−τ )

∂θk
, (22)

and

d

dt

(
∂Pt
∂θk

)
=

∂

∂θk

(
dPt
dt

)

=
∂

∂θk

(
Jg(ρt)Pt + P Tt Jg(ρt)

T

+ Jf (ρt−τ )Pt−τ,t + Pt,t−τJf (ρt−τ )T

+ l(ρt) + q(ρt−τ )

)

= Jg(ρt)
∂Pt
∂θk

+
∂P Tt
∂θk

Jg(ρt)
T + Jf (ρt−τ )

∂Pt−τ,t
∂θk

+
∂Pt,t−τ
∂θk

Jf (ρt−τ )T

+

 2∑
j=1

(
∂Jg(ρtj )

∂ρtj

∂ρtj
∂θk

)
+
∂Jg(ρt)

∂θk

Pt + P Tt

 2∑
j=1

(
∂Jg(ρtj )

∂ρtj

∂ρtj
∂θk

)
+
∂Jg(ρt)

∂θk

T

+

 2∑
j=1

(
∂Jf (ρt−τj )

∂ρt−τj

∂ρt−τj
∂θk

)
+
∂Jf (ρt−τ )

∂θk

Pt−τ,t

+ Pt,t−τ

 2∑
j=1

(
∂Jf (ρt−τj )

∂ρt−τj

∂ρt−τj
∂θk

)
+
∂Jf (ρt−τ )

∂θk

T

+

 2∑
j=1

(
∂l(ρtj )

∂ρtj

∂ρtj
∂θk

)
+
∂l(ρt)

∂θk

+

 2∑
j=1

(
∂q(ρtj )

∂ρtj

∂ρtj
∂θk

)
+
∂q(ρt)

∂θk

 (23)

where ρtj means the jth element of ρt. Similarly,

d

dt

(
∂Ps,t
∂θk

)
=

∂

∂θk

(
dPs,t

dt

)
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=
∂

∂θk

(
Ps,tJ

T
g (ρt) + Ps,t−τJ

T
f (ρt−τ )

)
=
∂Ps,t
∂θk

JTg (ρt) +
∂Ps,t−τ
∂θk

JTf (ρt−τ )

+ Ps,t

 2∑
j=1

(
∂Jg(ρtj )

∂ρtj

∂ρtj
∂θk

)
+
∂Jg(ρt)

∂θk

T

+ Ps,t−τ

 2∑
j=1

(
∂Jf (ρt−τj )

∂ρt−τj

∂ρt−τj
∂θk

)
+
∂Jf (ρt−τ )

∂θk

T

. (24)

Similar to the delay differential equations for the state space mean and variance, it is necessary

to define values for non-positive times for the delay differential equations provided here before the

first prediction step can be executed. To do so, we need to provide derivatives of the initialisation

of the state space mean and variance provided in Section S.1. We calculate the derivatives of p∗

and m∗ with respect to each parameter, θk, as follows:

∂p∗

∂θk
=

− ∂

∂θk

(
αmαp
µmµp

)
f(p∗)−

(
αmαp
µmµp

)
∂

∂θk
(f(p∗))(

αmαp

µmµp

) ∂

∂p∗
f(p∗)− 1

, (25)

∂m∗

∂θk
=

∂

∂θk

(
µp
αp
p∗
)
. (26)

S.5 Update step derivatives

The delay differential equations given by eqs. (22) to (24) can be used to predict the derivatives

of the state space mean and variance with respect to each model parameter, using dρ∗t /dθk and

dP ∗t /dθ as initial (and past) conditions. We incorporate the integration of these ODEs into the

prediction step of our Kalman filter. The derivatives of dρ∗t /dθk and dP ∗t /dθ at each observation

can be calculated by extending the update step. Using eqs. (15) to (17), we have

∂ρ∗t−τ :t

∂θk
=

∂

∂θk
(ρt−τ :t +Kt−τ :t (yt − Fρt))
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=
∂ρt−τ :t

∂θk
+
∂Kt−τ :t

∂θk
(yt − Fρt)−Kt−τ :tF

∂ρt
∂θk

, (27)

∂P ∗t−τ :t

∂θk
=

∂

∂θk

(
Pt−τ :t −Kt−τ :tStK

T
t−τ :t

)
=
∂Pt−τ :t

∂θk
− ∂Kt−τ :t

∂θk
StK

T
t−τ :t −Kt−τ :t

∂St
∂θk

KT
t−τ :t −Kt−τ :tSt

(
∂Kt−τ :t

∂θk

)T
, (28)

∂Kt−τ :t

∂θk
=

∂

∂θk

(
Pt−τ :t,tF

TS−1
t

)
=
∂Pt−τ :t,t

∂θk
F TS−1

t − Pt−τ :t,tF
TS−1

t

∂St
∂θk

S−1
t

=
∂Pt−τ :t,t

∂θk
F TS−1

t − Pt−τ :t,tF
TS−1

t F
∂Pt−τ :t

∂θk
F TS−1

t . (29)

Here,
∂ρt−τ :t

∂θk
and

∂Pt−τ :t

∂θk
are the derivatives for the state space mean and variance that have been

predicted in the previous prediction step. Hence, we can evaluate eq. (21) for each of the parameters

iteratively by evaluating eqs. (22) to (24), (27) and (28) at each update step, and integrating eqs. (10)

to (12) within each prediction step of the Kalman filter.

S.6 Choice of priors and reparameterisation of variables

Bayesian methods require the choice of prior parameter distributions. For the mRNA and protein

degradation rates, µm and µp, we use fixed values throughout, which are based on previously

identified experimental measurements [2]. This facilitates our analysis of experimental time course

data from the same paper in Figure 4. For the transcription and translation rates, αm and αp,

we use prior distributions that are log-uniform. For all other parameters, we choose uniform prior

distributions. Our chosen parameter ranges are informed by existing literature values [2;8;19;22;82;83],

and summarised in Table S1.

The choice of log-uniform priors for the transcription and translation rates, αm and αp, is

motivated by the fact that possible values for these parameters span multiple orders of magnitude,

from 0.01 – 120/min and 0.01 – 40/min respectively. To enable sampling from these log-uniform
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Parameter Range of Values
Repression threshold, P0 0 - 120,000 [22]

Hill Coefficient, h 2 - 6 [8;22]

Protein degradation rate, µp log(2)/(90 min) [2]

mRNA degradation rate, µm log(2)/(30 min) [2]

Basal transcription rate, αm 0.01/min - 60/min [82;83]

Translation rate, αp 1/min - 40/min [19]

Transcriptional delay, τ 5 min - 40 min [8;22]

Table S1: The values each of the parameters of the model can take, in relation to the HES5
system, informed by experimental work and biophysical limitations. These values define the prior
distributions which we use in our parameter inference algorithms.

priors, we convert the parameters into logarithmic space using

θ̃ = ln(θ),

where θ represents the parameter that is being transformed into logarithmic space, i.e. αm or αp.

Let P1(θ | y) and P2(θ̃ | y) define the posterior distributions for the original and transformed

parameter respectively. A transformation of variables changes the shape of the posterior distribution

according to

P2(θ̃ | y)dθ̃ = P1(θ | y)dθ

which in turn gives

P2(θ̃ | y) = θP1(θ | y)

= eθ̃P1(eθ̃ | y), (30)

since
dθ̃

dθ
=

1

θ
.

Using P1(θ | y) = L(y | θ)π1(θ) and considering a prior that is uniform in logarithmic space,

i.e. π1(θ) = C/θ with an appropriately chosen constant C, eq. (30) leads to

ln(P2(θ̃ | y)) = θ̃ + ln(L(y | eθ̃)) + ln

(
C

θ

)
= ln(L(y | eθ̃)) + ln(C)
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= ln(L(y | θ)) + ln(C), (31)

Lastly, taking the derivative gives

∂

∂θ̃
ln(P2(θ̃ | y)) = θ

∂

∂θ
ln(L(y | θ)). (32)

S.7 MCMC success is qualified by multiple convergence diagnostics

When using MCMC samplers such as MH and MALA, it is necessary to check for convergence of

the sampled distribution and to identify whether a sufficient number of samples has been generated.

A combination of convergence diagnostics give confidence that the obtained samples are useful and

represent the posterior accurately. Specifically, we use the split-R̂ and effective sample size (ESS)

methods [84;85]. We follow the guidance of Vehtari et. al. [85], running multiple chains (m > 4), and

conclude convergence when split-R̂ < 1.01 and the total ESS is at least 50× 2×m.

When testing our algorithm on in silico data, we choose the relative mean error and the coefficient

of variation as test diagnostics. Specifically, for a given set of in silico data, let µθi define the true

value of each parameter that generated the data set, and let µ̂θi , σ̂θi define the posterior mean and

variance, respectively, for each parameter. We measure the accuracy of inference by looking at both

the coefficient of variation (CV) and the relative mean error (ME), summed across all parameters,

θ:

CVθ =
∑
θi

σ̂θi
µθi

, (33)

MEθ =
∑
θi

|µθi − µ̂θi |
µθi

. (34)
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A B

Figure S1: Our algorithm accurately samples posterior distributions. A, B. Posterior dis-
tributions for one-dimensional inference. For individual model parameters, posterior distributions
were inferred while keeping all other parameters fixed, respectively. Shown above are the inferred
marginal posteriors for the repression threshold (A) and translation rate (B) respectively as his-
tograms, using MALA as the underlying sampling algorithm for 2500 samples. The blue lines are
the analytical likelihood calculations. The sampled and analytical distributions coincide. Other
parameters are shown in Figure 2.

Parameter True Value µ (MALA) µ (MH) σ (MALA) σ (MH)
log Transcription rate, log(αm) 2.764 2.784 2.782 0.054 0.052

log Translation rate, log(αp) 0.239 0.259 0.255 0.055 0.053
Transcriptional delay, τ 30.0 30.546 30.652 6.653 6.578

Table S2: The true values for the parameters which were used to generate the data in Figure 3A,
alongside the means, µ, and standard deviations, σ of the corresponding one-dimensional posterior
distributions, from both the MALA and MH algorithms (Figure S2).
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BA

C

Figure S2: Our algorithm accurately samples posterior distributions. A, B, C. Histograms
for both MALA and MH on the 1-dimensional problem for the transcription rate (A), translation rate
(B) and transcriptional delay (C). Histograms and kernel density estimates are plotted, alongside
the mean from each chain and the ground truth value. Other parameters are shown in Figure 2.
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Figure S3: Increasing the length of time course data improves inference more than
increased sampling frequency. A. Values of the MEθ (see eq. (34)) for data sets spanning
multiple coherence values. The grey shaded region spans one standard deviation from the mean
over all datasets for each value. The pink and purple triangles correspond to the low and high
coherence data sets in Figure 5A. B. MEθ for low coherence data sets sampled with different
lengths, from 12 hours to 60 hours. As length increases from 12 hours to 36 hours, both the mean
and standard deviation decreases by an order of magnitude. C. Same as B with the high coherence
data sets. Whilst the trend is the same, note the different y-axis range. D. MEθ for low coherence
data sets sampled with different frequencies. As frequency increases from 15 minutes to 5 minutes,
both the mean and standard deviation decreases by an order of magnitude. E. Same as D with the
high coherence data sets. Again, note the y-axis range.

53

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.12.443895doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443895
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	The negative feedback chemical reaction network
	The likelihood function can be evaluated through Kalman filtering
	Implementation of MCMC sampling algorithms
	Trends in the data are identified by Gaussian processes
	Oscillation quality is quantified by the coherence measure
	Data collection and analysis
	Imaging of Primary NS cells
	Conversion of Venus::HES5 intensity to molecule number


	Results
	Sampled posterior distributions agree with analytical derivations for one-dimensional parameter inference.
	Our method allows for simultaneous inference of multiple model parameters
	Parameter inference on single cell data outperforms previous approaches and may reveal underlying mechanisms for population heterogeneity
	Longer time course data improves accuracy of inference more effectively than more frequent sampling

	Discussion
	Supplementary Information
	Kalman filter prediction and update step
	Markov Chain Monte Carlo sampling algorithms
	Implementation of adaptive sampling strategies
	Computing the gradient of the log-posterior
	Update step derivatives
	Choice of priors and reparameterisation of variables
	MCMC success is qualified by multiple convergence diagnostics


