1	TITLE
2 3 4	A chemically-defined growth medium to support Lactobacillus – Acetobacter community analysis
5 6 7	AUTHORS
8 9 10	Kevin Aumiller ^{*1,2} , Eric Stevens ^{*3} , Robert Scheffler ^{*1,2} , Zehra Tüzün Güvener ^{*4} , Emily Tung ⁴ , Anna B. Grimaldo ⁵ , Hans K. Carlson ⁶ , Adam M. Deutschbauer ^{5,6} , Michiko E. Taga ⁵ , Maria L. Marco ^{3,7} , William B. Ludington ^{1,2@}
11 12 13 14	 contributed equally to whom correspondence should be directed: ludington@carnegiescience.edu
15 16 17	AFFILIATIONS
17 18 19 20 21 22 23 24 25 26 27	 Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21218 Johns Hopkins University, Department of Biology, Baltimore, MD 21218 University of California, Davis, Microbiology Graduate Group, College of Biology University of California, Berkeley, Molecular and Cell Biology Department, 94720 University of California, Berkeley, Department of Plant and Microbiology, 94720 Lawrence Berkeley National Laboratory, Department of Environmental Genomics and Systems Biology, Berkeley, CA 94720 University of California, Davis, Department of Food Science and Technology, Davis, CA 95616
28 29	KEYWORDS
29 30 31 32 33	Lactobacillus Acetobacter Chemically-defined growth medium CDM
34 35	ABSTRACT
36 37 38 39 40 41	Lactobacilli and acetobacters are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of <i>Drosophila melanogaster</i> fruit flies. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growths. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would greatly facilitate identification of the precise metabolic interactions between these two
12	around of heatorie. While numerous such medie have been developed that support specific straigs of

- 42 groups of bacteria. While numerous such media have been developed that support specific strains of
- lactobacilli and acetobacters, there has not been a medium formulated to support both genera. We
 developed such a medium, based on a previous *Lactobacillus* CDM, by modifying the nutrient
- 44 abundances to improve growth of both groups of bacteria. We further simplified the medium by
- 46 substituting casamino acids for individual amino acids and the standard Wolfe's vitamins and mineral
- 47 stocks for individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. The new
- 48 CDM and variations of it support robust growth of lactobacilli and acetobacters. We provide the
- 49 composition and an example of its use to measure nutritional interactions.

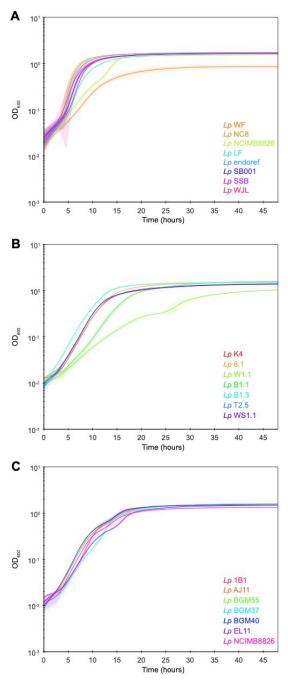
50 INTRODUCTION

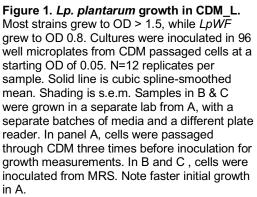
51

52 Lactic Acid Bacteria (LAB) and Acetic Acid Bacteria (AAB) coexist in nature in a wide variety 53 of environments (Reese, 1938). These include food fermentations such as wine (Reese, 1938), beer 54 (Dysvik et al., 2020), kefir (da Cruz Pedrozo Miguel et al., 2010; Gulitz et al., 2011), sauerkraut (Wang 55 and Shao, 2018), kimchi (Wang et al., 2016), bread (Li et al., 2021), and cacao beans (Ho et al., 2018). 56 They also have been found together in agricultural feed, such as silage (Guan et al., 2018). LAB and AAB 57 can coexist as well in mammalian and insect gastrointestinal tracts where they have probiotic benefits 58 (Viladomiu et al., 2013), including within the intestine of the genetic model animal, *Drosophila* 59 *melanogaster*, where lactobacilli and acetobacters are the core types of LAB and AAB respectively (Wong et al., 2011). We note that due to the recent reclassifications within the former *Lactobacillus* genus 60 61 (Zheng et al., 2020), we refer to the LABs used in this study by their new formal scientific names, 62 Lactiplanibacillus plantarum (Lp. plantarum) and Levilactobacillus brevis (Ll. brevis) or collectively by 63 their common name, lactobacillus (plural lactobacilli).

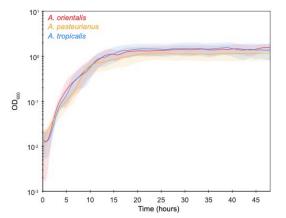
64

65 Why LAB and AAB co-occur so prevalently is the subject of ongoing investigations. A 66 synergistic metabolism between lactobacilli and acetobacters has been demonstrated based on sharing of organic short chain fatty acids (SCFAs), including lactic acid and acetic acid. These compounds are 67 68 generally known to mutually promote growth through cross feeding, such that lactate stimulates 69 acetobacter growth and acetate stimulates lactobacilli (Consuegra et al., 2020; Henriques et al., 2020). 70 There is biomedical relevance of SCFA, including acetate, which are important in human and insect 71 health because their production by the gut microbiome plays a key role in gut epithelial cell metabolism 72 and immune homeostasis (Kim et al., 2018; Rivera-Chávez et al., 2016), potentially underlying the role of 73 LABs as probiotics (Viladomiu et al., 2013). Furthermore, in the mammalian colonic crypts, microbial 74 assemblages include *Lactobacillus* and other Lactobacillales, such as *Streptococcus* and 75 Alphaproteobacteria besides Acetobacter, including Sphingomonas and Paracoccus (Pédron et al., 2012; 76 Saffarian et al., 2019), suggesting there may be a broader phylogenetic pattern of co-existence for these 77 groups, and understanding these relationships in *in vitro* communities could provide insights into their 78 roles in more complex environments with multiple trophic levels such as digestive tract. For instance, 79 cross-feeding may extend beyond SFCAs to other metabolites, including B-vitamins, such as folate and 80 cyanocobalamin, which also impact host health (Degnan et al., 2014; Sannino et al., 2018), and cross-fed 81 nutrients could influence secondary metabolite production (San Roman and Wagner, 2018). 82


83 Determining the nutrient requirements for organismal growth (Elli et al., 2000) as well as the metabolites produced (Ponomarova et al., 2017) during fermentation is greatly improved with a defined 84 85 composition of the growth medium. Chemically-defined growth media have been developed to support 86 lactobacilli growth (Chervaux et al., 2000; Elli et al., 2000; Grobben et al., 1995; Petry et al., 2000; Ricciardi et al., 2015; Saguir and de Nadra, 2007; Savijoki et al., 2006; Wegkamp et al., 2007), vet strain-87 88 specific differences in growth requirements between different lactobacilli are widely reported, particularly 89 carbon, amino acid, vitamin, and mineral requirements, (Hayek and Ibrahim, 2013). Construction of a rich 90 CDM could overcome some of these limitations. Furthermore, no media have been developed with the 91 express purpose of supporting lactobacilli-Acetobacter communities. To better understand the nutritional 92 dependencies within lactobacillus-Acetobacter communities, we developed a rich, chemically-defined 93 medium (CDM) capable of independently supporting growth of both lactobacillus and Acetobacters from 94 the fruit fly gut microbiome and other sources in high throughput. We based this medium on the formulation of Savijoki et al 2006. Our medium may be modified to optimize the growth of either 95 lactobacilli or acetobacters to a density of $\sim 10^9$ cells/mL (OD > 1) or to support co-cultures. In this short 96 97 report, we provide the chemical composition of the medium, some guides on its preparation, an approach 98 to circumvent strain-specific auxotrophies, and some known issues that can result from chemical 99 impurities. We focus our results on the lactobacilli and acetobacters from the Drosophila gut microbiome.


101 RESULTS AND DISCUSSION

102


103 Formulation of the CDM for lactobacilli growth 104 105 With a goal of defining a CDM that supports growth 106 of the lactobacilli and Acetobacters isolated from 107 the fruit fly gut (Table S1), we first tested a previous chemically-defined medium that was developed for 108 109 lactobacillus species (Savijoki et al., 2006). This 110 medium contains ? glucose? All amino acids 111 nucleotides? (it would be helpful to understand more 112 precisely what was included) However, that medium supported only limited growth of our strains (OD₆₀₀ 113 114 of X) and a precipitate formed upon 4 C? room 115 temperature? storage. To prevent precipitation, we 116 modified the medium by reducing the concentration 117 of amino acids from X to X ug/ml. This modified 118 medium supported growth of *Lp. plantarum* LFM1. 119 a D. melanogaster isolate, to an OD₆₀₀ of only 120 approximately 0.2 (Table S2), corresponding to $\sim 10^8$ 121 cells/mL. This low value is ~ 10 fold lower density 122 than reported for the Lp. plantarum strain analyzed in the previous study (Savijoki et al., 2006). As 123 strain-specific differences in media preferences are 124 widely reported in lactobacilli (Hayek and Ibrahim, 125 126 2013), we further refined the composition by 127 individually adding amino acids, vitamins and 128 nucleotides at 10-fold higher concentrations into the 129 original CDM (Table S3). Higher amounts of 130 tyrosine and cysteine resulted in media precipitation, 131 causing a higher OD₅₉₅ reading, which would interfere with high throughput growth 132 133 measurements. Improved growth yield with excess 134 alanine and tryptophan was reproducible, thus we 135 increased these concentrations in the CDM to 14 136 mM and 1.4 mM, respectively (Table 1). We also experimented with increasing or decreasing the total 137 138 amino acids, vitamins, and nucleic acids (Table S4), 139 which showed we could double these components to 140 increase Lp. plantarum growth without substantially 141 affecting other lactobacilli and acetobacters. 142 143 We next simplified the medium to reduce the total number of stock solutions. We first replaced the 144 145 vitamins and minerals with Wolfe's vitamins and 146 Wolfe's minerals stocks, which did not noticeably affect growth (not shown). We then replaced the 147 148 individual amino acids with casamino acids, which

are a mixture of purified amino acids derived frompeptidase treatment of casein, having a

- 151 representative abundance of each individual amino
- acid. This variant of the medium, named CDM_L still
- required additional cysteine (12 mM final
- 154 concentration) and tryptophan (2.5 mM final
- 155 concentration) (Figure S1; Table 2) but supported
- 156 rapid growth of a variety of *Lp. plantarum* strains
- 157 from different sources (Table S1) to an OD > 1,
- **158** corresponding to $\sim 10^9$ cells/mL (Figure 1),.
- 159
- 160 We note several technical issues that arose when
- 161 constructing and testing the various CDMs. First,
- inocula from nutrient rich agar plates such as MRSagar do not grow well in CDM, but conditioning them
- by passaging through a mixture of 25:75 MRS:CDM
- before 100% CDM greatly improved the number of
- 166 strains that grew. For many strains, the most robust
- 167 growth resulted after three passages in CDM.
- 168
- 169 Second, we noticed that when different commercial
- sources of iron and cobalt were used, a precipitatesometimes formed after 48 hours at room

Figure 2. Acetobacter strain growth in CDM_A. *A. orientalis, A. pasteurianus,* and *A. tropicalis* grow to O.D. >1.0. Cultures were inoculated in 96-well plates from CDMpassaged cells at a starting O.D. of 0.05. N= 12 replicates per sample. Solid line is cubic splinesmoothed mean. Shading is s.e.m.

- temperature. Re-filtering the media to remove the precipitate did not inhibit *Lp. plantarum* growth,
- 173 suggesting that lower metal concentrations may be used at least for some strains. As noted earlier, amino
- acid precipitation was also an issue, which we were able to resolve by reducing the total amount of amino
- acids (by x-fold) while increasing select ones through the use of casamino acids, cysteine, and tryptophan.
- 176 177

Modification of the CDM for *Acetobacter* growth

180 Next, we incubated several strains of Acetobacter in CDM L. A. pasteurianus and A. tropicalis 181 exhibited extremely limited growth (Table S2). In an attempt to improve growth, we repeated the 10-fold 182 additions experiment used test for improved lactobacilli growth, with ascorbate providing the only growth 183 improvement (Table S3). Because ascorbate caused discoloration of the media after 48 h at room 184 temperature, we only use it optionally. Through a series of trials, we also added lactate, substituted 185 potassium acetate for ammonium acetate, and reduced the amino acid concentrations (by 2.5-fold to 186 formulate a new version of the CDM named CDM A (Table 3), which supported an OD₅₉₅ of $\sim 1.0 (\sim 10^9)$ 187 cells/mL) for the three Acetobacter strains tested (Figure 2). We note that it was critical to supply 188 adequate aeration to *Acetobacter* by shaking and poking a hole in the sealing film over the plate. 189 Increased shaking speed increased the clumping of the cultures, which appears as increased variance in 190 the growth curves (Figure 2). Reducing the shaking speed reduced clumping but also reduced the growth 191 rate.

192

193 An Ll. brevis strain shows cross-feeding with an Acetobacter

194

195 Some preliminary experiments with dropouts of individual nutrients suggested that *Ll. brevis* strain LF,

- 196 which we isolated from laboratory *D. melanogaster*, had several auxotrophies. This strain grew in Man
- **197** Rogosa Sharpe (MRS) rich medium but was unable to grow in the complete CDM_L, suggesting
- 198 metabolic deficiencies (Figure 3A). Growth was restored with the addition of 2.5% v/v MRS to the
- 199 CDM_L (CDM_L+MRS_2.5 (final OD₆₀₀ = 0.6). One of the auxotrophies appeared to be for folate. We
- then made CDM_L+MRS_2.5 lacking folate (CDM_L+MRS_2.5-folate). *L. brevis* LF was unable to
- grow in CDM_L+MRS_2.5-folate, consistent with a folate auxotrophy (Figure 3A).

202

- 203 Acetobacters are known B-vitamin producers, with complete folate metabolism (Bernhardt et al., 204 205 2019; Sannino et al., 2018). Coculture with A. 206 pasteurianus increased Ll. brevis LF growth in CDM L 207 as did a 50:50 mix of CDM L+MRS 2.5-folate with 208 filter-sterilized spent CDM L+MRS 2.5-folate from A. 209 pasteurianus growth (Figure 3B), indicating that A. 210 pasteurianus produces metabolites (likely including 211 folate) that compensate for the *Ll. brevis* auxotrophies. 212 While the overall densities of cells are quite low, this 213 example shows how the base CDM can be used to 214 explore community metabolism in lactobacillus-215 Acetobacter cocultures, even when the medium cannot 216 support the individual strains.
- 218

219 CONCLUSIONS

220

217

- 221 The CDM formulated here enables investigation of
- 222 lactobacillus-Acetobacter community metabolism and it
- 223 may provide a starting point for investigation of more
- diverse LAB and AAB communities, which are often
- observed together in nature.
- 226

227

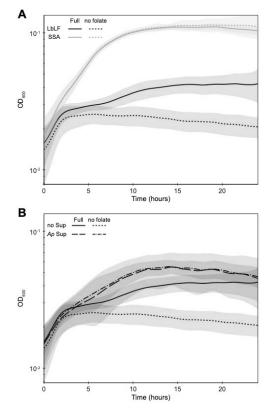


Figure 3. Lactobacillus-Acetobacter coculture in spent CDM_L+MRS_2.5 that lacks folate. (A) *Levilactobacillus brevis* LF grows in CDM_L supplemented with 2.5% MRS but not when folate is excluded. (B) *Acetobacter pasteurianus*-conditioned media restores *LI. brevis* LF growth in CDM lacking folate. All samples grown in 96-well plates. N=12 replicates per sample. Solid line is cubic splinesmoothed mean. Shading is s.e.m.

228 MATERIALS AND METHODS

- 229
- 230 Chemicals 231

A list of chemicals used in CDM are provided in Table S5.

234 Media preparation

235

Stock solutions were individually prepared in ultra-pure water or in appropriate solvents. pH adjustments
were made as indicated in Table 1. All stock solutions were passed through 0.22 µm filter and kept in
dark at 4 °C except nucleotides, which were stored at -20 °C. FeSO₄.7H₂O was freshly prepared. Medium
was initially made with 30 % less water to allow customized additions. Final pH of CDM was adjusted to
6.5 and the medium was passed through a 0.22 µm filter. CDM was stored at 4 °C and used within 2 days.

241

242 To make a carbon-free CDM, the following components were combined in the following order in a final 243 volume of 17.5 ml: 8.375 ml ultra-pure water, 2.5 ml MOPS buffer, 0.25 ml K₂HPO₄, 0.25 ml NaCl, 0.25 244 ml NH₄Cl, 0.5 ml K₂SO₄, 0.625 ml L-Alanine, 0.125 ml L-Arginine, 0.125 ml Glycine, 0.125 ml L-245 Lysine, 0.5 ml L-Proline, 0.125 ml L-Histidine, 0.125 ml L-Serine, 0.125 ml L-Threonine, 0.125 ml L-246 Aspartic acid, 20 uL of 10 N NaOH for pH correction, 0.125 ml L-Asparagine, 10 uL of 10 N NaOH for 247 pH correction, 0.125 ml L-Tyrosine, 0.125 ml L-Cysteine-HCl, 0.125 ml L-Valine, 0.125 ml L-Glutamic 248 acid, 0.125 ml L-Tryptophane, 0.125 ml L-Phenylalanine, 0.125 ml L-Glutamine, 0.125 ml L-Leucine, 249 0.125 ml L-Isoleucine, 0.125 ml L-Methionine, 0.125 ml Ca-D-(+)-pantothenate, 0.125 ml Lipoic acid, 250 0.125 ml Nicotinic acid, 0.125 ml para-Aminobenzoic acid, 0.125 ml Pyridoxine-HCl, 0.125 ml 251 Thiamine-HCl, 0.125 ml Biotin, 0.125 ml Ascorbic acid, 0.125 ml Folic acid, 0.125 ml Guanine, 0.125 ml 252 Uracil, 0.125 ml Xanthine, 0.125 ml Adenine, 0.25 ml MgCl₂.6H₂O, 0.25 ml MnCl₂.4H₂O, 0.25 ml 253 FeSO₄.7H₂O.

254

Appropriate carbon sources were provided in CDM to grow specific isolates. A final concentration of 1 %
glucose and 0.1 % acetate were added for the growth of *L. plantarum*. A final concentration of 1 %
glucose, 0.5 % fructose and 0.1 % acetate was optimized for the growth of *L. brevis*. A final concentration of 1 % fructose was used for the growth of *Acetobacter pasteurianus*, and 1 % glucose was used for the growth of *A. tropicalis*.

261 Bacterial strains and growth

262 263 Bacterial strains used in this study are listed in Table S1. Strains were grown on MRS agar plates at 30 °C 264 incubation for 1 to 2 days. Plate-grown cells were routinely generated from glycerol stocks and plates 265 were used only once. At least 30 colonies [to reduce the odds of a mutant dominating the growth curve] 266 were transferred into 3 ml CDM in a test tube and cultures were shaken at 30°C for 16 to 18 h. Turbidity was adjusted to OD₆₀₀ of 0.5 and used to inoculate media for growth kinetics experiments. Time-course 267 268 growth experiments were performed in 100 µL CDM in 96-well microplates. After aliquoting 70 µL 269 CDM into each well, indicated carbon sources from sterile stocks were added to appropriate wells and the 270 medium was inoculated with 10 μ L culture for a final OD₆₀₀ of 0.05. Plates were sealed with a Breatheasy 271 film. Microplates were incubated in a temperature-controlled plate reader with shaking. OD₅₉₅ measurements were taken every 15 minutes for 24 to 48 hours. M1000 (Tecan) and Magellan (Biotek) 272 273 plate readers were used for experiments. OD₅₉₅ measurements were background-subtracted using the

274 OD₅₉₅ measurement of medium-only blank controls.

For acetobacter growth, maximal shaking was used, with a speed of 600 RPM at an orbital radius of 3 mm. To improve aeration further, we poked an off-center hole in the Breatheasy film over each well using a fine gauge needle.

279 REFERENCES

- Bernhardt C, Zhu X, Schütz D, Fischer M, Bisping B. 2019. Cobalamin is produced by Acetobacter
 pasteurianus DSM 3509. *Appl Microbiol Biotechnol* 3875–3885. doi:10.1007/s00253-019-09704-3
- 282 Chervaux C, Ehrlich SD, Maguin E. 2000. Physiological Study of Lactobacillus delbrueckii subsp.
 283 bulgaricus Strains in a Novel Chemically Defined Medium. *Appl Environ Microbiol* 66:5306–5311.
- Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F. 2020. Metabolic
 cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional
 stress. *ISCIENCE* 101232.
- da Cruz Pedrozo Miguel MG, Gomes Cardoso P, de Assis Lago L, Freitas Schwan R. 2010. Diversity of
 bacteria present in milk kefir grains using culture-dependent and culture-independent methods. *Food Res Int* 43:1523–1528. doi:10.1016/j.foodres.2010.04.031
- Degnan PH, Taga ME, Goodman AL. 2014. Vitamin B12 as a Modulator of Gut Microbial Ecology. *Cell Metab* 20:769–778.
- 292 Dysvik A, Leanti La Rosa S, De Rouck G, Rukke E-O, Westereng B, Wicklund T. 2020. Microbial
 293 Dynamics in Traditional and Modern Sour Beer. *Appl Environ Microbiol* 86:1–14.
- Elli M, Zink R, Rytz A, Reniero R, Morelli L. 2000. Iron requirement of Lactobacillus spp. in completely
 chemically defined growth media. *J Appl Microbiol* 88:695–703.
- Grobben GJ, Sikkema J, Smith MR, de Bont JAM. 1995. Production of extracellular polysaccharides by
 Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J
 Appl Bacteriol 79:103–107. doi:10.1111/j.1365-2672.1995.tb03130.x
- Guan H, Yan Y, Li Xiaoling, Li Xiaomei, Shuai Y, Feng G, Ran Q, Cai Y, Li Y, Zhang X. 2018.
 Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. *Bioresour Technol* 265:282–290. doi:10.1016/j.biortech.2018.06.018
- Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF. 2011. The microbial diversity of water kefir.
 Int J Food Microbiol 151:284–288. doi:10.1016/j.ijfoodmicro.2011.09.016
- Hayek SA, Ibrahim SA. 2013. Current limitations and challenges with lactic acid bacteria: a review. *Food Nutr Sci* 4:73–87.
- Henriques SF, Dhakan DB, Serra L, Francisco AP, Carvalho-Santos Z, Baltazar C, Elias AP, Anjos M,
 Zhang T, Maddocks ODK, Ribeiro C. 2020. Metabolic cross-feeding in imbalanced diets allows gut
 microbes to improve reproduction and alter host behaviour. *Nat Commun* 11:4236.
 doi:10.1038/s41467-020-18049-9
- Ho VTT, Fleet GH, Zhao J. 2018. Unravelling the contribution of lactic acid bacteria and acetic acid
 bacteria to cocoa fermentation using inoculated organisms. *Int J Food Microbiol* 279:43–56.
- Kim G, Huang JH, McMullen JG, Newell PD, Douglas AE. 2018. Physiological responses of insects to
 microbial fermentation products: Insights from the interactions between Drosophila and acetic acid.
 J Insect Physiol 106:13–19. doi:10.1016/j.jinsphys.2017.05.005
- Li H, Fu J, Hu S, Li Z, Qu J, Wu Z, Chen S. 2021. Comparison of the effects of acetic acid bacteria and
 lactic acid bacteria on the microbial diversity of and the functional pathways in dough as revealed
 by high-throughput metagenomics sequencing. *Int J Food Microbiol* 346:109168.
 doi:10.1016/j.ijfoodmicro.2021.109168
- Pédron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, Sansonetti PJ. 2012. A Crypt Specific Core Microbiota Resides in the Mouse Colon. *MBio* 3:262–267.
- 321 Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M. 2000. Factors affecting exocellular

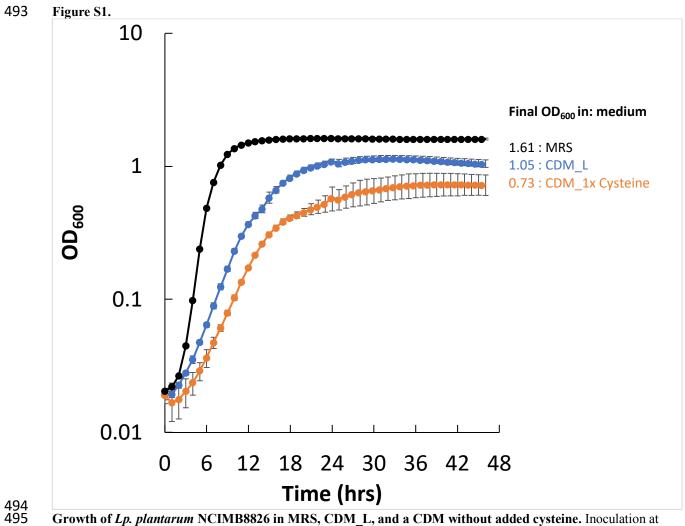
- polysaccharide production by Lactobacillus delbrueckii subsp bulgaricus grown in a chemically
 defined medium. *Appl Environ Microbiol* 66:3427–3431.
- Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas
 A, Sauer U, Ralser M, Patil KR. 2017. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria
 through Nitrogen Overflow. *Cell Syst* 5:345-357.e6.
- Reese V. 1938. Some effects of association and competition on Acetobacter. *J Bacteriol* **36**:357–367.
- Ricciardi A, Ianniello RG, Parente E, Zotta T. 2015. Modified chemically defined medium for enhanced
 respiratory growth of Lactobacillus caseiand Lactobacillus plantarumgroups. *J Appl Microbiol* 119:776–785.
- Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM,
 Lebrilla CB, Winter SE, Bäumler AJ. 2016. Depletion of Butyrate-Producing Clostridia from the
 Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. *CHOM* 19:443–454.
- Saffarian A, Mulet C, Regnault B, Amiot A, Tran-Van-Nhieu J, Ravel J, Sobhani I, Sansonetti PJ, Pédron
 T. 2019. Crypt- and Mucosa-Associated Core Microbiotas in Humans and Their Alteration in Colon
 Cancer Patients. *MBio* 10:G351-20.
- 337 Saguir FM, de Nadra MCM. 2007. Improvement of a Chemically Defined Medium for the Sustained
 338 Growth of Lactobacillus plantarum: Nutritional Requirements. *Curr Microbiol* 54:414–418.
- San Roman M, Wagner A. 2018. An enormous potential for niche construction through bacterial cross feeding in a homogeneous environment. *PLoS Comput Biol* 14:1–29.
 doi:10.1371/journal.pcbi.1006340
- Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. 2018. The Drosophila melanogaster Gut
 Microbiota Provisions Thiamine to Its Host. *MBio* 9.
- Savijoki K, Suokko A, Palva A, Varmanen P. 2006. New convenient defined media for [35S]methionine
 labelling and proteomic analyses of probiotic lactobacilli. *Lett Appl Microbiol* 42:202–209.
 doi:10.1111/j.1472-765X.2005.01853.x
- Viladomiu M, Hontecillas R, Yuan L, Lu P, Bassaganya-Riera J. 2013. Nutritional protective mechanisms
 against gut inflammation. *J Nutr Biochem*.
- Wang Z, Shao Y. 2018. Effects of microbial diversity on nitrite concentration in pao cai, a naturally
 fermented cabbage product from China. *Food Microbiol* 72:185–192. doi:10.1016/j.fm.2017.12.003
- Wang ZM, Lu ZM, Shi JS, Xu ZH. 2016. Exploring flavour-producing core microbiota in multispecies
 solid-state fermentation of traditional Chinese vinegar. *Sci Rep* 6:1–10. doi:10.1038/srep26818
- Wegkamp A, van Oorschot W, de Vos WM, Smid EJ. 2007. Characterization of the role of para aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. *Appl Environ Microbiol* 73:2673–2681.
- Wong CNA, Ng P, Douglas AE. 2011. Low-diversity bacterial community in the gut of the fruitfly
 Drosophila melanogaster. *Environ Microbiol* 13:1889–1900.
- Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O'toole PW, Pot B, Vandamme
 P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. 2020. A taxonomic note on the
 genus Lactobacillus: Description of 23 novel genera, emended description of the genus
 Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. *Int J Syst Evol*
- **362** *Microbiol* **70**:2782–2858. doi:10.1099/ijsem.0.004107
- 363

364 Table 1. Composition of the chemically defined medium.365

365						
366	Compound	Concentration	Units	Supplier	Part Number	Stock
367						
368	Base					
369	MOPS	40	mМ	Millipore	475898	10x in H ₂ O
370	K ₂ HPO ₄	5	mМ	Fisher	P288	10x in H ₂ O
371	NaCl	0.2	mМ	Fisher	S271	100x in H ₂ O
372	NH4Cl	20	mМ	Fisher	A649	100x in H ₂ O
373	K ₂ SO ₄	10	mМ	Sigma	746363	50x in H ₂ O
374	Metal Salts	10	1111/1	Sigina	110505	2 0 x III 112 0
375	MgCl ₂ .6H ₂ O	1	mМ	Fisher	BP214	100x in H ₂ O
376	MnCl ₂ .4H ₂ O	0.05	mM	Sigma	M3634	100x in H ₂ O
370	FeSO ₄ .7H ₂ O	0.05	mM	Sigma	F8633	100x in H ₂ O
378		0.03	IIIIVI	Sigina	F 8033	100x III H ₂ O
	Amino acids	14		G :	17(27	
379	L-Alanine	14	mМ	Sigma	A7627	40x in H ₂ O
380	L-Arginine	0.36	mМ	Sigma	A5131	200x in H ₂ O
381	Glycine	3.41	mМ	Sigma	G7126	200x in H ₂ O
382	L-Lysine	3.59	mМ	Sigma	L5626	200x in H ₂ O
383	L-Proline	1.737	mМ	Sigma	P0380	200x in H ₂ O
384	L-Histidine	2.664	mМ	Sigma	H8125	200x in H ₂ O
385	L-Serine	7.374	mМ	Sigma	S4500	200x in H ₂ O
386	L-Threonine	2.098	mМ	Sigma	T8625	200x in H ₂ O
387	L-Aspartic acid	0.083	mМ	Sigma	A9256	200x in 1 M HCl
388	L-Asparagine	4.162	mМ	Sigma	A0884	200x in 1 M HCl
389	L-Tyrosine	1.1035	mМ	Sigma	T3754	200x in 1 M NaOH
390	L-Cysteine-HCl	4.758	mМ	Sigma	C1276	200x in H ₂ O
391	L-Valine	4.268	mМ	Sigma	V0500	200x in 1 M NaOH
392	L-Glutamic acid	1.417	mМ	Sigma	G1251	200x in 1 M HCl
393	L-Tryptophane	1.371	mМ	Sigma	T0254	200x in 1 M NaOH
394	L-Phenylalanine	1.513	mM	Sigma	P2126	200x in 1 M HCl
395	L-Glutamine	3.267	mM	Sigma	G3126	200x in 1 M NaOH
396	L-Leucine	1.905	mM	Sigma	L8000	2000x in 0.5 M HCl
397	L-Isoleucine	1.905	mM	Sigma	12752	2000x in 0.5 M HCl
398	L-Isoleucine L-Methionine	0.67	mM	Sigma	M9625	2000x in 0.5 M HCl
399	Nucleotides	0.07	IIIIVI	Sigilia	119023	200X III 0.1 WI HCI
		0.022		G :	0(770	200
400	Guanine	0.033	mM	Sigma	G6779	200x in 0.1 M NaOH
401	Uracil	0.0445	mМ	Sigma	U1128	200x in 0.1 M NaOH
402	Xanthine	0.0325	mМ	Sigma	X4002	200x in 0.1 M NaOH
403	Adenine	0.037	mМ	Sigma	A2786	200x in 0.1 M HCl
404	Carbon					
405	Glucose	1	%	Sigma	G8270	50x in H ₂ O
406	Fructose	0.5 or 1	%	Sigma	F3510	50x in H ₂ O
407	Acetate	0.1	%	Fisher	S210	100x in H ₂ O
408	Optional					
409	Ascorbic acid	1.4	mМ	Fisher	AA3623714	100x in H ₂ O
410	Lipoic acid	1	mМ	Sigma	T1395	direct
411	-			-		
412						

413Table 2. Composition of CDM_L (for lactobacilli).414

414 415	Stock Solution	Chemical		Final Con	centration	
416				buffer and	l salts	
417	1	MOPS		40 mM (1x	x)	
418	1	K ₂ HPO ₄		5 mM (1x)		
419	1	NH ₄ Cl		20 mM (1x	x)	
420	1	Na ₂ SO ₄		10 mM (1x	x)	
421						
422		metals				
423	2	MgCl ₂ *6 H ₂ O		1 mM (1x)		
424	2	MnCl ₂ *4 H ₂ O		.05 mM (1:	x)	
425	2	FeSO ₄ *7 H ₂ O		.05 mM (1:	x)	
426						
427		carbon source				
428	3	glucose / mannit	tol	125 mM (1	x)	
429						
430		Amino Acids				
431	4	Casamino AAs		3 g/L		
432						
433	5	Cysteine-HCl*H	I ₂ O	1x (0.145 g	g/L)	
434						
435	6	Tryptophan		1x (0.05 g/	L)	
436	7	***		2 (··· 1 1 \	
437 438	7	Wolfe's Vitami	ns	2x (see cor	mposition below)	
438	8	Wolfe's Minera		7 x (200 00r	nposition below)	
439	0	wone's winter a	115	2x (see con	iipositioii below)	
441						
442						
442 443	Wolfe's Vitamin	s (100x)	Concentratio	on units	Supplier	Part Number
443	Wolfe's Vitamin Ca-(D)-(+)-panto		Concentratio 0.001		Supplier Sigma	Part Number C8731
443 444	Ca-(D)-(+)-panto		0.001	g/L	Sigma	C8731
443		thenate	0.001 0.001	g/L g/L		
443 444 445	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo	thenate	0.001 0.001 0.001	g/L g/L g/L	Sigma Sigma Nutr. Biochem.	C8731 N4126 R-238
443 444 445 446	Ca-(D)-(+)-panto Nicotinic acid	thenate	0.001 0.001 0.001 0.002	g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar	C8731 N4126 R-238 A12041
443 444 445 446 447	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl	thenate	0.001 0.001 0.001	g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore	C8731 N4126 R-238
443 444 445 446 447 448	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl	thenate	0.001 0.001 0.001 0.002 0.001	g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma	C8731 N4126 R-238 A12041 5871
443 444 445 446 447 448 449	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin	thenate	0.001 0.001 0.001 0.002 0.001 0.0004	g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore	C8731 N4126 R-238 A12041 5871 B4639
443 444 445 446 447 448 449 450	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid	thenate	0.001 0.001 0.001 0.002 0.001 0.0004 0.0004	g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma	C8731 N4126 R-238 A12041 5871 B4639 F8758
443 444 445 446 447 448 449 450 451	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid	thenate	0.001 0.001 0.001 0.002 0.001 0.0004 0.0004	g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma	C8731 N4126 R-238 A12041 5871 B4639 F8758
443 444 445 446 447 448 449 450 451 452	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂	thenate bic acid	0.001 0.001 0.001 0.002 0.001 0.0004 0.0004	g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma	C8731 N4126 R-238 A12041 5871 B4639 F8758
443 444 445 446 447 448 449 450 451 452 453	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid	thenate bic acid s (100x)	0.001 0.001 0.001 0.002 0.001 0.0004 0.0004	g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma TCI	C8731 N4126 R-238 A12041 5871 B4639 F8758
443 444 445 446 447 448 449 450 451 452 453 454	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral	thenate bic acid s (100x)	$\begin{array}{c} 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.001\\ 0.0004\\ 0.0004\\ 0.00002\end{array}$	g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449
443 445 446 447 448 449 450 451 452 453 454 455	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ad	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.00002	g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma TCI	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877
443 444 445 446 447 448 449 450 451 452 453 454 455 456	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H ₂ O	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.00002 0.3 0.3	g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma Sigma TCI Sigma EMD Millipore	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H ₂ O MnSO4-H ₂ O	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002	g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H ₂ O MnSO4-H ₂ O NaCl	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ad MgSO4-7H ₂ O MnSO4-H ₂ O NaCl CaCl ₂	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002	g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ad MgSO4-7H ₂ O MnSO4-H ₂ O NaCl CaCl ₂ FeSO4-7H ₂ O	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002 0.3 0.6 0.1 0.2 0.02 0.02	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma F8633	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H ₂ O MnSO4-H ₂ O NaCl CaCl ₂ FeSO4-7H ₂ O CoCl ₂ -6 H ₂ O	thenate bic acid s (100x)	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002 0.0000002 0.3 0.6 0.1 0.2 0.02 0.02 0.02 0.02	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma F8633 Sigma 202185	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H ₂ O MnSO4-H ₂ O NaCl CaCl ₂ FeSO4-7H ₂ O CoCl ₂ -6 H ₂ O ZnSO4-7 H ₂ O	thenate bic acid s (100x) cid	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002 0.0000002 0.3 0.6 0.1 0.2 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma F8633 Sigma 202185 Fisher Z68 VWR 330 Sigma 237086	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H2O MnSO4-H2O NaCl CaCl ₂ FeSO4-7H2O CoCl ₂ -6 H ₂ O ZnSO4-7 H ₂ O CuSO4-5 H ₂ O AlK(SO) ₄ -12 H ₂ O H ₃ BO ₃	thenate bic acid s (100x) cid	0.001 0.001 0.002 0.001 0.0004 0.0004 0.00040 0.000002 0.002 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma 202185 Fisher Z68 VWR 330 Sigma 237086 Fisher A78	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1 4160
$\begin{array}{r} 443\\ 444\\ 445\\ 446\\ 447\\ 448\\ 449\\ 450\\ 451\\ 452\\ 453\\ 454\\ 455\\ 456\\ 457\\ 458\\ 459\\ 460\\ 461\\ 462\\ 463\\ 464\\ 465\\ 466\end{array}$	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H2O MnSO4-H2O NaCl CaCl ₂ FeSO4-7H2O CoCl ₂ -6 H ₂ O ZnSO4-7 H ₂ O CuSO4-5 H ₂ O AlK(SO)4-12 H ₂ O	thenate bic acid s (100x) cid	0.001 0.001 0.002 0.001 0.0004 0.0004 0.000002 0.0000002 0.3 0.6 0.1 0.2 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma F8633 Sigma 202185 Fisher Z68 VWR 330 Sigma 237086	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465	Ca-(D)-(+)-panto Nicotinic acid Para-Aminobenzo Pyridoxine-HCl Thiamine HCl Biotin Folic acid Vitamin B ₁₂ Wolfe's Mineral Nitrilotriacetic Ao MgSO4-7H2O MnSO4-H2O NaCl CaCl ₂ FeSO4-7H2O CoCl ₂ -6 H ₂ O ZnSO4-7 H ₂ O CuSO4-5 H ₂ O AlK(SO) ₄ -12 H ₂ O H ₃ BO ₃	thenate bic acid s (100x) cid	0.001 0.001 0.002 0.001 0.0004 0.0004 0.00040 0.000002 0.002 0.02 0.02 0.02 0.02 0.02 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	g/L g/L g/L g/L g/L g/L g/L g/L g/L g/L	Sigma Sigma Nutr. Biochem. Alfa aesar EMD Millipore Sigma TCI Sigma EMD Millipore Fisher M113 Fisher S271 Mallinckrodt Sigma 202185 Fisher Z68 VWR 330 Sigma 237086 Fisher A78	C8731 N4126 R-238 A12041 5871 B4639 F8758 C0449 N9877 MX0070-1 4160


Notes

in 0.1 M NaOH in 0.1 M NaOH

469 470 471

Table 3. Composition of CDM_A (for *Acetobacters*).

4/1					
472	Reagent	Concentration		Supplier	Part Number
473	Base				
474	MOPS 40 0.837 8.37 (pH 6.8)	40	$\mathrm{m}\mathrm{M}$	(Millipore)	475898
475	K2HPO4	5	$\mathrm{m}\mathrm{M}$	(Fisher)	P288
476	NH4Cl 18.69 0.1 10	20	$\mathrm{m}\mathrm{M}$	(Fisher)	A649
477	K2SO4 8.28 0.144 7.2	10	$\mathrm{m}\mathrm{M}$	(Sigma)	746363
478	Metal Salts				
479	MgCl2.6H2O 0.98 0.02 2	1	$\mathrm{m}\mathrm{M}$	(Fisher)	BP214
480	MnCl2.4H2O 0.05 0.001 0.1	0.05	$\mathrm{m}\mathrm{M}$	(Sigma)	M3634
481	FeSO4.7H2O 0.035 0.001 0.1	0.05	$\mathrm{m}\mathrm{M}$	(Sigma)	F8633
482	Carbon Sources				
483	Glucose	125	$\mathrm{m}\mathrm{M}$	(Sigma)	G8270
484	Potassium Acetate	6	$\mathrm{m}\mathrm{M}$	(Fisher)	P171
485	DL-Lactic Acid	50	$\mathrm{m}\mathrm{M}$	(Sigma)	69785
486	Amino acids				
487	Casamino Acids	6	g/L	BD Bacto	223050
488	L-Cysteine HCL	0.58	g/L	Sigma	C1276
489	L-Tryptophan	0.2	g/L	Sigma	T0254
490	Wolfe's vitamins 1x				
491	Wolfe's minerals 1x				
492					

Growth of *Lp. plantarum* NCIMB8826 in MRS, CDM_L, and a CDM without added cysteine. Inoculation at
 0.05 from overnight cultures of MRS grown cells washed in PBS. Growth in 96 well plates with 12 technical
 replicates per growth curve. Note that CDM_L has 10x the cysteine of CDM_1x Cysteine.

500	Table S1.
500	1 abic 51.

500	
501	Bacterial strains used in this study.

502	Species	Source	Reference
503	Lp. plantarum WF	Wild D. melanogaster isolate	Obadia et al. 2017
504	Lp. plantarum NC8	Fermented grass	Axelsson et al. 2012
505	Lp. plantarum NCIMB8826	Human saliva	Hayward & Davis 1956
506	<i>Lp. plantarum</i> LF	Canton-S D. melanogaster	Obadia et al. 2017
507	Lp. plantarum endoref	lab D. melanogaster	Storelli et al. 2011
508	Lp. plantarum SB001	lab D. melanogaster	Obadia et al. 2017
509	Lp. plantarum SSB	wild D. melanogaster	Hardy et al. 2018
510	<i>Lp. plantarum</i> WJL	lab D. melanogaster	Ryu et al 2008
511	Lp. plantarum K4	wheat sourdough starter	Yu et al 2021
512	Lp. plantarum 8.1	wheat boza	Yu et al 2021
513	Lp. plantarum W1.1	wheat flour teff injera	Yu et al 2021
514	<i>Lp. plantarum</i> B1.1	brown flour teff injera	Yu et al 2021
515	<i>Lp. plantarum</i> B1.3	brown flour teff injera	Yu et al 2021
516	Lp. plantarum T2.5	fermented tomatoes	Yu et al 2021
517	Lp. plantarum WS1.1	fermented tomatoes (spoiled)	Yu et al 2021
518	<i>Lp. plantarum</i> 1B1	cactus fruit (Opuntia ficus-indicia)	Tyler et al 2016
519	<i>Lp. plantarum</i> AJ11	fermented olives	Golomb et al 2013
520	Lp. plantarum BGM55	fermented olives inoculated with yeast	Golomb et al 2013
521	Lp. plantarum BGM37	olive fermentation brine	Golomb et al 2013
522	Lp. plantarum BGM40	fermented olives	Golomb et al 2013
523	<i>Lp. plantarum</i> EL11	fermented olives	Golomb et al 2013
524	<i>Îl. brevis</i> LF	isolated from lab D. melanogaster	Gould et al. 2018
525	Ll. brevis LF2	isolated from lab D. melanogaster	Obadia et al. 2017
526	Ll. brevis SSA	isolated from wild D. melanogaster	Hardy et al. 2018
527	<i>Ll. brevis</i> Di	isolated from wild D. immigrans	this paper
528	Acetobacter orientalis	Canton-S isolate	Gould et al. 2018
529	Acetobacter pasteurianus	Oregon-R isolate	Gould et al. 2018
530	Acetobacter tropicalis	Oregon-R isolate	Gould et al. 2018
521			

- 534 Table S2.
 - Initial growth yield values of strains grown in CDM (Savijoki et al., 2006) with indicated carbon sources. Glu
- 535 536 (Glucose), Fru (Fructose), Ac (Acetate), LP (Lactobacillus plantarum), (LB) L. brevis, (AP) Acetobacter
- 537 538 pasteurianus, (AT) A. tropicalis.

			Final	growth yield (OD595)	
_	Glu (0.65 %)	Glu (0.65 %)	Glu (1 %)	Fru (1 %)	Glu (1 %)	Ac (0.1%)
	Fru (0.65 %)	Fru (0.65 %)	Ac (0.1 %)			
	Ac (0.1 %)					
LP			0.123		0.056	0.001
LB	0.051	0.026				0
AP				0.026		0.014
AT			0.021		0.044	0.021

547 Table S3.

Variations in CDM and final growth yields of strains. CDM single variations with one component in 10-fold excess.
The final growth yield was compared to the final growth yield of the same strains grown in CDM with the final concentration of amino acids, vitamins, nucleotides indicated in Table 1. ODs >0.3 are highlighted. S.E.M. in parentheses.

552

553 Final growth yield (OD595) LP LB AP AT 554 CDM (Table 1) 0.238 (m 0.002) 0.131 (m 0.001) 0.103 (m 0.020) $0.036 (m \ 0.001)$ 555 556 CDM single variations 557 558 0.218 (m 0.009) 0.138 (m 0.000) 0.199 (m 0.000) 0.073 (m0.007) Ala 559 0.132 (m 0.005) 0.229 (m 0.019) 0.136 (m 0.112) 0.037 (m 0.006) Asn 560 0.317 (m 0.011) 0.071 (m 0.006) 0.030 (m 0.004) 0.049 (m 0.002) Glu 561 Phe 0.285 (m 0.033) $0.134 (m \ 0.002)$ $0.062 (m \ 0.040)$ $0.034 (m \ 0.003)$ 562 0.130 (m 0.002) 0.025 (m 0.003) 0.047 (m 0.004) Leu 0.269 (m 0.109) 563 0.064 (m 0.023) 0.036 (m 0.005) Ile 0.228 (m 0.001) 0.135 (m 0.011) 564 Met $0.231 (m \ 0.002)$ $0.123 (m \ 0.000)$ $0.024 (m \ 0.041)$ $0.040 (m \ 0.001)$ 565 Val 0.251 (m 0.044) 0.138 (m 0.001) $0.032 (m \ 0.003)$ 0.004 (m 0.001) 566 Trp 0.877 (m 0.535) 0.127 (m 0.004) 0.128 (m 0.059) 0.036 (m 0.003) 567 Gln 0.287 (m 0.007) 0.076 (m 0.003) $0.000 (m \ 0.002)$ 0.039 (m 0.000) 568 0.118 (m 0.030) 0.124 (m 0.000) 0.085 (m 0.021) 0.033 (m 0.002) Arg 569 0.133 (m 0.000) 0.156 (m 0.040) 0.034 (m 0.000) Gly 0.217 (m 0.005) 570 0.213 (m 0.000) $0.141 (m \ 0.001)$ 0.099 (m 0.013) 0.041 (m 0.000) Lys 571 0.298 (m 0.016) 0.155 (m 0.002) 0.058 (m 0.020) 0.037 (m 0.000) Pro 572 0.268 (m 0.019) 0.138 (m 0.003) 0.118 (m 0.083) 0.040 (m 0.000) His 0.296 (m 0.008) 573 0.121 (m 0.007) $0.054 (m \ 0.002)$ 0.065 (m 0.032) Ser 574 0.257 (m 0.025) $0.140 (m \ 0.002)$ 0.046 (m 0.011) 0.032 (m 0.001) Thr 575 0.055 (m 0.027) 0.027 (m 0.009) Panthothenate $0.246 (m \ 0.011)$ $0.138 (m \ 0.002)$ 576 0.111 (m 0.004) $0.032 (m \ 0.005)$ $0.033 (m \ 0.000)$ Lipoic acid 0.260 (m 0.010) 577 Cyanocobalamin 0.088 (m 0.000) 0.045 (m 0.003) 0.261 (m 0.005) 0.136 (m 0.000) 578 Nicotinic acid 0.218 (m 0.007) 0.151 (m 0.027) $0.074 (m \ 0.002)$ $0.039 (m \ 0.001)$ 579 para-Aminobenzoic acid 0.217 (m 0.010) 0.155 (m 0.028) 0.137 (m 0.065) $0.038 (m \ 0.004)$ 580 0.067 (m 0.007) Pyridoxine 0.225 (m 0.000) 0.135 (m 0.001) 0.038 (m 0.004) 581 Thiamine 0.231 (m 0.012) $0.136 (m \ 0.001)$ 0.143 (m 0.051) 0.037 (m 0.000) 582 Biotin 0.299 (m 0.009) 0.137 (m 0.005) 0.075 (m 0.002) 0.041 (m 0.000) 583 Ascorbate 0.231 (m 0.007) 0.088 (m 0.052) 0.316 (m 0.370) 0.050 (m 0.000) 584 Folate 0.227 (m 0.010) 0.139 (m 0.001) 0.071 (m 0.009) 0.041 (m 0.000) 585 Riboflavin 0.230 (m 0.012) $0.135 (m \ 0.000)$ 0.187 (m 0.013) $0.037 (m \ 0.001)$ 586 0.042 (m 0.005) Guanine 0.212 (m 0.004) 0.136 (m 0.000) 0.124 (m 0.035) 587 0.155 (m 0.004) 0.066 (m 0.019) Uracil 0.267 (m 0.000) $0.043 (m \ 0.003)$ 588 0.138 (m 0.002) 0.069 (m 0.018) 0.040 (m 0.003) Xanthine 0.243 (m 0.007) 589 Adenine 0.133 (m 0.001) 0.055 (m 0.033) 0.044 (m 0.002) 0.252 (m 0.007) 590 PO₄ 0.263 (m 0.008) 0.208 (m 0.000) 0.042 (m 0.018) 0.037 (m 0.002) 591 SO_4 0.276 (m 0.074) 0.132 (m 0.000) 0.120 (m 0.081) 0.042 (m 0.001) 592 0.159 (m 0.002) 0.040 (m 0.017) 0.036 (m 0.003) NH_4 0.200 (m 0.004) 593 0.060 (m 0.003) Mg 0.205 (m 0.092) 0.154 (m 0.039) 0.039 (m 0.002) 594 Mn 0.290 (m 0.008) 0.157 (m 0.003) 0.113 (m 0.029) 0.057 (m 0.020) 595 Fe 0.210 (m 0.007) 0.157 (m 0.001) $0.120 (m \ 0.029)$ $0.042 (m \ 0.001)$ 596 0.177 (m 0.032) 0.139 (m 0.001) 0.164 (m 0.085) 0.018 (m 0.000) Na 597 0.347 (m 0.019) 0.022 (m 0.004) 0.038 (m 0.000) Bicarbonate, 40 mM 0.0135 (m 0.001) 598

vitamins, a	and nucleotides from t illus plantarum), (LB)	ains grown in CDM wi the concentration of co) <i>L. brevis</i> , (AP) <i>Aceto</i>	mponents listed in Ta	able 1, which is set t	to 1x. LP
	Fold excess		Final grov	wth yield	
		LP	LB	AP	AT
	2	0.440 (0.020)	0.00 (0.005)	0.101 (0.070)	0.070 (0.005
	2 x 1 x	$0.449 (m \ 0.029)$ $0.236 (m \ 0.016)$	$0.06 (m \ 0.005)$ $0.058 (m \ 0.002)$	$0.101 (m \ 0.078)$ $0.151 (m \ 0.014)$	0.072 (m 0.005
	0.2 x	0.236 (m 0.016) 0.085 (m 0.009)	0.058 (m 0.002) 0.031 (m 0.001)	0.151 (m 0.014) 0.103 (m 0.004)	0.096 (m 0.001 0.093 (m 0.004

617 Table S5.618 List of che619

List of chemicals used in this study.

Chemical	Vendor	Catalog number	Molecular Weight
MOPS, Free acid, UltraPure	GoldBio	M790	209.26
K ₂ HPO ₄	Fisher Scientific	P288	174.18
NaCl	Fisher Scientific	S271	58.44
NH ₄ Cl	Fisher Scientific	A649	53.49
K_2SO_4	Sigma	P9458	174.26
MgCl ₂ .6H ₂ O	Fisher Scientific	BP214	203.31
MnCl ₂ .4H ₂ O	Sigma	M3634	197.9
FeSO ₄ .7H ₂ O	Sigma	F8633	278.01
L-Alanine	Sigma	A7627	89.09
L-Arginine	Sigma	A5131	210.66
Glycine	Sigma	G7126	75.07
L-Lysine	Sigma	L5626	146.19
L-Proline	Sigma	P0380	115.13
L-Histidine	Sigma	H8125	155.15
L-Serine	Sigma	S4500	105.09
L-Threonine	Sigma	T8625	119.12
L-Aspartic acid	Sigma	A9256	133.1
L-Asparagine	Sigma	A0884	132.12
L-Tyrosine	Sigma	Т3754	181.19
L-Cysteine-HCl	Sigma	C1276	157.62
L-Valine	Sigma	V0500	117.15
L-Glutamic acid	Sigma	G1251	183.6
L-Tryptophane	Sigma	T0254	204.23
L-Phenylalanine	Sigma	P2126	165.19
L-Glutamine	Sigma	G3126	146.14
L-Leucine	Sigma	L8000	131.17
L-Isoleucine	Sigma	12752	131.17
L-Methionine	Sigma	M9625	149.21
Ca-(D)-(+)-pantothenate	Sigma	C8731	238.27
Lipoic acid	Sigma	T1395	206.33
Nicotinic acid	Sigma	72309	123.11
Para-Aminobenzoic acid	Sigma	A9878	137.14
Pyridoxine-HCl	Sigma	P9755	205.64
Thiamine-HCl	Sigma	T4625	337.27
Biotin	Sigma	B4639	244.31
Ascorbic acid	Fisher Scientific	AA3623714	176.12
Folic acid	Sigma	F7876	441.4
Riboflavin	Sigma	R4500	376.36
Cyanocobalamin	Sigma	V6629	1355.37
Guanine	Sigma	G6779	151.13
Uracil	Sigma	U1128	112.09
Xanthine	Sigma	X4002	152.11
Adenine	Sigma	A2786	135.13
Glucose	Sigma	G8270	180.16
Fructose	Sigma	F3510	180.16
Acetate, sodium salt	Fisher Scientific	S210	90.08