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Abstract 

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. 
Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances 
its silencing capacity at endogenous developmental targets and at the facioscapulohumeral 
muscular dystrophy associated macro-array, D4Z4. Heightened SMCHD1 silencing perturbs 
developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the 
mutant SMCHD1 appears to enhance insulation against another epigenetic regulator complex, 
PRC2, while depleting long range chromatin interactions akin to what is observed in the absence of 
SMCHD1. These data suggest that SMCHD1’s role in long range chromatin interactions is not directly 
linked to gene silencing or insulating the chromatin, refining the model for how the 
different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in 
normal development and disease.  
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Introduction 

The importance of correct epigenetic regulation to normal development and differentiation has long 
been known. Modern genomic techniques have revealed sophisticated mechanisms behind 
epigenetic control, where DNA methylation, post-translational histone modifications and chromatin 
conformation come together in a dynamic fashion to regulate gene expression. However, the 
complex interplay between different modes of epigenetic control, often between those considered 
to have opposing function (like bivalent chromatin1), has precluded straightforward interpretations. 
One approach to understanding such a complex biological problem to unravel the factors involved 
in the process using unbiased genetic screens2. Indeed, genetic screening approaches have 
identified novel epigenetic regulators in yeast3, plants4, flies5; 6 and mammals.  

We previously reported a sensitised in vivo screen in mice that paired N-ethyl-N-nitrosourea (ENU) 
mutagenesis with a variegating GFP transgene array to identify modifiers of transgene variegation, 
and therefore epigenetic regulation7. This screen led to the discovery of the Smchd1 gene that 
encodes an epigenetic repressor, since shown to play a role in X-chromosome inactivation8; 9, 
silencing of clustered gene families such as select imprinted clusters10-12, the clustered 
protocadherins10; 11; 13 and Hox genes14. By understanding more about SMCHD1 we can also learn 
more about how gene silencing works in each of these cases. 

In addition to the developmental roles of SMCHD1 elegantly characterised in mice, SMCHD1 is also 
relevant to human disease. Heterozygous pathogenic variants have been found in the 
developmental disorders Bosma-arrhinia and microphthalmia syndrome15; 16 (BAMS) and 
facioscapulohumeral muscular dystrophy17; 18 (FSHD). BAMS is a craniofacial malformation 
syndrome and FSHD is a typically adult-onset debilitating progressive muscular dystrophy. FSHD is 
caused by the death of skeletal muscle cells due to aberrant expression of the germline and cleavage 
stage transcription factor DUX4. DUX4 is expressed when epigenetic silencing is relaxed by one of 
two distinct molecular mechanisms that both result in the same clinical outcome19. The DUX4 gene 
is located within the D4Z4 macrosatellite repeat on chromosome 4q35, which is normally comprised 
of 8-100 D4Z4 tandem repeat units. FSHD type 1 is caused by repeat contraction to 1-10 units20, 
wherein the number of repeat units is insufficient to trigger efficient silencing of the whole repeat 
array. FSHD type 2 is most commonly caused by loss-of-function mutations in SMCHD1, which 
results in de-repression of the D4Z4 repeat array17. Patients who carry both SMCHD1 mutations and 
repeat contraction present with more severe disease, suggesting that SMCHD1 silencing activity is 
relevant to both subtypes of the disease18, and that FSHD patients reside on a disease spectrum21. 
With SMCHD1 now known to contribute to at least two human diseases, it is of high interest to 
determine how SMCHD1 works and thus how its activity may be manipulated to treat disease. 

SMCHD1 is a member of the structural maintenance of chromosomes (SMC) family. It interacts with 
chromatin through its hinge domain, which also enables homodimerisation13; 22; 23. Unlike the 
canonical SMC proteins, SMCHD1 is non-canonical in part because it possesses a GHKL ATPase 
domain24; 25. The pathogenic variants identified in each of these two domains of the protein suggest 
that they are critical for SMCHD1 function. In BAMS, heterozygous missense variants restricted to 
the extended ATPase domain underlie disease15; 16; 26. By contrast, FSHD loss-of-function mutations 
occur across the length of the protein27; 28. The differing mutation types and locations suggest that 
while loss of SMCHD1 function causes FSHD, in BAMS it may be due to altered protein function, in 
some cases mediated by gain of ATPase activity15; 26. However, a comprehensive explanation as to 
why variants in SMCHD1 can cause such disparate phenotypes is currently unclear as one 
pathogenic variant has been identified in both BAMS and FSHD29. 
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Recent work has begun to reveal both how SMCHD1 functions at, and is recruited to, the chromatin. 
For the inactive X chromosome, SMCHD1 recruitment is dependent on the polycomb repressive 
complex 1 (PRC1) catalysed mark, histone 2A lysine 119 ubiquitination30; 31 (H2AK119ub). Somewhat 
like the canonical SMC protein complex, Cohesin, upon recruitment to target loci, SMCHD1 is 
involved in mediating long-range chromatin interactions14; 32; 33. SMCHD1 also appears to insulate 
against the occupancy and effect of other epigenetic regulators, such as CTCF and polycomb 
repressive complex 2 (PRC2)13; 14; 32; 33. To date, our understanding of SMCHD1 function has largely 
been informed by the study of systems upon complete loss of SMCHD1 protein. While these studies 
have been informative, they are limited in that they reflect a complete loss-of-function scenario of 
the SMCHD1 protein and therefore cannot appropriately model all aspects of disease that arise due 
to SMCHD1 perturbation. 

In this study, we report a new Smchd1 missense mutant that was identified in the same ENU 
mutagenesis screen that led to the original discovery of Smchd1. In this screen, mutations were 
named Modifiers of Murine Metastable Epialleles (Mommes)7; 34, with the original report detailing 
the Smchd1 loss-of-function MommeD1 mutation7. Here we describe the effects of the MommeD43 
Smchd1 mutation on gene expression, development and chromatin architecture. These studies 
reveal that the MommeD43 variant produces a gain-of-function effect on the expression of critical 
SMCHD1 targets, including in a mouse model of FSHD where the MommeD43 variant can partially 
rescue DUX4 silencing. Interestingly, our data on chromatin architecture and insulation suggest that 
SMCHD1’s role in regulating long range chromatin interactions is not required for silencing and is 
divorced from its role in chromatin insulation. Therefore, this study suggests an attractive starting 
point for SMCHD1 modulation in FSHD treatment and expands our understanding of how the 
multiple layers of SMCHD1-dependent chromatin regulation interact to elicit epigenetic silencing. 

 

 

Results 

MommeD43 is a Smchd1 mutant with increased transgene array silencing activity 

In our ENU mutagenesis screen looking for epigenetic modifiers of transgene silencing, we identified 
a mutant line of mice, called MommeD43. The system used a transgene array of 11 units containing 
a GFP gene in a tandem repeat, directed to express in erythrocytes35 (Fig. 1a). The MommeD43 
mutation caused a significant decrease in the proportion of erythrocytes expressing the GFP 
transgene as measured by flow cytometry, indicating enhanced silencing (Fig. 1a). The mutation was 
mapped using positional cloning in conjunction with linkage analysis to mouse chromosome 17. 
Further refinement by whole exome sequencing revealed a cytosine to adenosine mutation in exon 
15 of the Smchd1 gene, translating as an Alanine 667 to Glutamic acid conversion (A667E) in the 
extended ATPase domain of SMCHD125 (Fig. 1b). Interestingly, MommeD43 has the opposite effect 
on transgene silencing to the nonsense mutation in Smchd1 identified in the MommeD1 strain7; 8. 
These data suggest that MommeD43 could be a gain-of-function mutation in Smchd1. 

Homozygous Smchd1 null animals show complete female embryonic lethality due to failure of X 
chromosome inactivation and reduced viability in males, dependent on strain background8; 11. By 
contrast, Smchd1MommeD43/+ and Smchd1MommeD43/MommeD43 mice of both sexes are viable and fertile, 
with no observed transmission ratio distortion of each genotype from heterozygous intercrosses 
(Supplementary Fig. 1). 
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To explore how the MommeD43 mutation in Smchd1 may influence SMCHD1 function, we first 
considered whether the mutation results in increased levels of SMCHD1 protein. We found no 
differences in SMCHD1 protein levels when measured by western blot or flow cytometry (Fig. 1c, 
Supplementary Fig. 2). We then tested whether the MommeD43 mutation resulted in altered 
chromatin occupancy by chromatin immunoprecipitation followed by next-generation sequencing 
(ChIP-seq). Lacking antibodies against SMCHD1 that were of high enough quality for ChIP-seq, we 
developed a mouse line carrying the MommeD43 mutation by CRISPR/Cas9 editing of our previously 
described Smchd1-GFP fusion mouse model14, allowing immunoprecipitation of SMCHD1 with an 
antibody to GFP. Both are used interchangeably for the remainder of this study. We performed anti-
GFP ChIP-seq in Smchd1-GFP+/+ and Smchd1-GFPMommeD43/MommeD43 primary female neural stem cells 
(NSCs, a cell type in which we had extensive data on Smchd114). We found very high correlation of 
SMCHD1 levels around (±5kb) known SMCHD1 binding sites (2840 peaks14) between the wild-type 
and MommeD43 mutant cells (Fig. 1e, Pearson R>0.99), such as the Hoxb cluster (Fig. 1d). These 
results suggest that MommeD43 does not alter chromatin localization of SMCHD1. In sum, these 
data indicate that the MommeD43 mutation does not alter the levels of SMCHD1 protein, nor its 
binding to target loci, suggesting that the mutation may instead alter protein function. 
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Figure 1. MommeD43 is a Smchd1 mutant with increased transgene array silencing activity 
a. Diagram of ENU screen experiment (left) and results (right). Erythrocytes from mice with an 11-unit GFP transgene repeat 
array carrying heterozygous or homozygous MommeD43 mutations and wild-type littermate controls were analyzed by FACS 
to measure GFP transgene expression levels. b. Schematic representation of murine Smchd1 (resolved ATPase and hinge 
domains linked by flexible still unresolved domain) and the location of the MommeD43 mutation in its structure (orange). c. 
Western blot of SMCHD1 in Smchd1MommeD43/MommeD43, Smchd1MommeD4/+ and Smchd1+/+ cells showing no noticeable change in 
SMCHD1 levels. d. ChIP-seq genome browser tracks of the Hoxb cluster locus showing GFP ChIP in primary NSCs with 
endogenous SMCHD1-GFP fusion protein. This region is heavily marked by both Smchd1 and MommeD43 does not alter 
localization of either. On top are the name of a few genes in the locus for reference. e. Scatter plot of log2-transformed 
normalized GFP ChIP-seq counts in Smchd1GFP/GFP and Smchd1GFP-MommeD43/MommeD43 NSCs around (±5kb) previously published 
peaks14. The Pearson coefficient indicates very high positive correlation showing no noticeable changes in SMCHD1 DNA 
binding sites. f. ATPase assay using recombinant purified wild-type murine SMCHD1 extended ATPase domain (grayscale) 
compared with the MommeD43 mutant equivalent (blue). MommeD43 abbreviated to MD43. 
  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.12.443934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443934
http://creativecommons.org/licenses/by-nc/4.0/


The MommeD43 mutation does not alter the conformation or activity of the extended ATPase 
domain 

The MommeD43 mutation is located in the extended ATPase domain of SMCHD1, which contains a 
catalytically active GHKL ATPase24; 25. To test if the MommeD43 mutation alters the conformation 
of this region, we analysed the structure of this domain using a recombinant construct to express 
the extended ATPase domain, as we have previously done25. The MommeD43 mutant protein had 
no detectable change in ATPase activity (Fig. 1f). Using small-angle X-ray scattering (SAXS), we 
determined that the MommeD43 mutant extended ATPase domain has the same conformation as 
the wild-type protein (Supplementary Fig. 3, Supplementary Table 1).  Therefore, we cannot 
attribute altered SMCHD1 function to a change in enzymatic activity or conformation. However, 
both of these results were obtained by purifying the recombinant extended ATPase domain and 
therefore do not exclude the possibility that the mutation may confer changes to ATPase activity or 
conformation in the context of the full-length protein. 

 

MommeD43 has a gain of function effect on Hox gene silencing and skeletal development 

We next investigated the effect of the MommeD43 mutation in development. SMCHD1 has a known 
role in Hox gene regulation and subsequent skeletal development14. Loss of Smchd1 causes a 
posterior homeotic transformation at thoracic vertebra 13 (T13), consistent with the observed 
failure in posterior Hox gene silencing. To determine the effects of MommeD43 on skeletal 
morphology, we examined whole-mount skeletal preparations from embryonic day (E) 17.5 
embryos. We found that the MommeD43 mutation in Smchd1 resulted in an anterior homeotic 
transformation with additional effects on rib formation. We divided these effects into three distinct 
and independent phenotypes (Fig. 2a, detailed scoring in Supplementary Fig. 4). First, a fusion of 
the ribs of the first two thoracic elements was observed with complete penetrance in homozygous 
mutants (Smchd1MommeD43/MommeD43, 12/12 embryos analysed) and partial penetrance in 
heterozygous mutants (Smchd1MommeD43/+, 3/17; Fig. 2b). The second, partially-penetrant phenotype 
was an extra sternal rib attachment, where the rib from the 8th thoracic element connected to the 
sternum instead of being the first false rib, as in wild-type embryos (9/12 in 
Smchd1MommeD43/MommeD43, 12/17 in Smchd1MommeD43/+, Fig. 2c). The last phenotype found in some 
embryos was the presence of a well-formed rib from the vertebral element posterior to T13 (5/12 
in Smchd1MommeD43/MommeD43, 1/17 in Smchd1MommeD43/+, Fig. 2d). In all cases this expansion of thoracic 
count was accompanied by a reduction in lumbar element number from 6 to 5, with no change in 
overall total vertebral number of the animal, indicating this phenotype represents an anterior 
homeotic transformation. Collectively, these phenotypes point to a dysregulation of Hox gene 
expression and are consistent with MommeD43 being a gain of function mutation in Smchd1. 

To investigate Hox dysregulation directly, we dissected tailbud tissue that harbours progenitors of 
the vertebral column from Smchd1+/+ and Smchd1MommeD43/MommeD43 embryos at 8 somites (E8.5) and 
performed RNA-sequencing. In contrast to the upregulation of posterior Hox genes observed in 
Smchd1 null tail buds at E9.5 found previously14, here we see a mild decrease in multiple posterior 
Hox genes (Fig. 2e, Supplementary Table 2). We saw the largest effect on Hoxa6 expression at the 
8-somite stage (log2FC -1.3; n=3 pairs of biological replicates), where the Smchd1MommeD43/MommeD43 
embryos had a decrease in expression, suggesting that MommeD43 is causing a slight delay in the 
activation of Hoxa6. Interestingly, this delay may be sufficient  to explain the T1-T2 rib fusion 
phenotype, as an identical phenotype was observed in Hoxa6 null embryos36, while T3-T4 rib fusion 
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is observed upon Hox6 paralogous deletion37. In a similar manner, the L1->T homeotic 
transformation might be explained by an activation delay of the second most affected gene, Hoxd10. 
Hox10 paralogous deletion causes a lumbar to thoracic homeotic transformation in all lumbar 
vertebrae, but deletion of all paralogues except for one allele of Hoxa10 causes a bilateral L1->T 
homeotic transformation of the first lumbar element38. Given the upregulation of posterior Hox 
genes observed in Smchd1 null tail buds at E9.5 found previously14, these data are consistent with 
the MommeD43 mutation causing a gain of function effect on SMCHD1. 

 

Figure 2. MommeD43 has a gain of function effect on Hox gene silencing and skeletal development 

a. Scoring of the three observed skeletal phenotypes in Smchd1MommeD43/MommeD43 and Smchd1MommeD43/+ embryos. b, c, d. 
Diagrams of the skeletal defects (left) of the three distinct phenotypes observed in Smchd1MommeD43/MommeD43 E16.5 embryos 
with corresponding representative images (right). The white arrows point to the defect. e. Heatmap of the log2-fold change 
between somite-paired Smchd1MommeD43/MommeD43 and Smchd1+/+ E8.5 embryos to account precisely for developmental stage. 
The values used are the mean expression of 3 biological replicates measured by RNA-sequencing. f. Plot of the normalized 
log2 expression values for the two Hox genes most affected by MommeD43. Each circle represents an individual biological 
replicate. Bars are mean ± SEM. MommeD43 abbreviated to MD43.  
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The MommeD43 mutation does not recapitulate morphological changes observed in BAMS 

BAMS is a rare human craniofacial malformation syndrome that causes partial or total loss of the 
nose and sense of smell, along with reduced eye size and other head morphological abnormalities 
(MIM:603457). It is caused by heterozygous missense mutations in SMCHD1’s extended ATPase 
domain, many of which are proven or predicted gain-of-function mutations15; 26, although this 
remains a matter of debate16; 39. Since the effects of MommeD43 on SMCHD1 on transgene 
silencing, Hox gene expression and skeletal patterning are consistent with a gain-of-function, we 
examined craniofacial morphology and development in the MommeD43 mutants. 

We collected E14.5 embryos and analysed them by High Resolution Episcopic Microscopy (HREM). 
After reconstructing a high-resolution three-dimensional model of the embryos’ morphology, we 
quantitated key craniofacial measurements (Fig. 3a-h) and found minimal differences. A slight 
widening of the nasal capsule in Smchd1MommeD43/+ embryos was the only parameter found to be 
significantly altered in mutants. Thus, we decided to test if MommeD43 might affect gene 
expression during the development of the nose and snout. For this purpose, we dissected the 
frontonasal prominence (FNP, Fig. 3i) of somite-matched pairs of Smchd1MommeD43/MommeD43 and 
Smchd1+/+ E10.5 embryos and performed RNA-sequencing. Using duplicate somite-matched pairs 
at 29 somites, we found 56 differentially expressed genes (False Discovery Rate (FDR)<0.05, sex 
chromosomes excluded, Fig. 3j). Of these, 53 were downregulated in Smchd1MommeD43/MommeD43 
embryos which is consistent with the MommeD43 mutation conferring better silencing capacity to 
SMCHD1 (Supplementary Table 3). Gene Ontology analysis showed that 7 of the 11 most 
significantly affected biological processes are directly related to development (Fig. 3k, corrected p-
value<6x10-9). These data suggest that while the MommeD43 mutation does not cause gross 
craniofacial abnormalities, it likely influences developmental gene expression programs that could 
be captured in the RNA-sequencing analysis. Interestingly, when the same region is harvested from 
Smchd1MommeD1/MommeD1 embryos, we observe upregulation of a restricted set of genes representing 
known SMCHD1 targets e.g. clustered protocadherins and genes from the Snrpn imprinted cluster 
(Supplementary Table 4), rather than the set of developmental genes downregulated in the 
MommeD43 samples.  

We have previously used SMCHD1 cDNA microinjection in Xenopus to assess the effect of BAMS 
mutations in SMCHD1 on craniofacial development (Supplementary Figure 5a). In this system, BAMS 
mutations result in a smaller eye phenotype, independent of whether we could detect an increase 
in ATPase activity in recombinant protein15; 26. Here we compared the effect of the MommeD43 
mutation introduced into the human cDNA with that of a BAMS variant, W342S, with wild-type 
SMCHD1 and uninjected tadpoles as controls. While W342S mutant SMCHD1 resulted in a smaller 
eye, the MommeD43 SMCHD1 behaved exactly as wild-type (Supplementary Fig. 5b,c). Taken 
together with the mouse embryology and the normal nasal morphology, these data suggest that 
the MommeD43 variant does not accurately model BAMS in mice or frogs.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.12.443934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443934
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 3. The MommeD43 mutation alters gene expression in the frontonasal prominences but does not recapitulate 
morphological changes observed in BAMS 
a-h : Cutaways of three-dimensional renderings of E14.5 embryos imaged by HREM oriented to measure various craniofacial 
features (a, c, e, g) and graphs detailing the measurements normalised to embryo crown-rump length (b, d, f, h). n/s = not 
significant, **p = significant adjusted p-value. Scale bar in A = 2 mm; scale bar in C = 0.86 mm and relates to E and G. i. Diagram 
of E10.5 embryo. Arrow points to the FNP collected for RNA sequencing. j. MD plot of log2 fold change of normalized RPKM 
counts of gene expression in FNP tissue from 2 somite-matched pairs of Smchd1MommeD43/MommeD43 and Smchd1+/+ E10.5 embryos 
showing 53 downregulated and 3 upregulated genes by MommeD43 (56 total DEGs, FDR<0.05). k. Gene Ontology pathway 
analysis of the 11 main biological processes affected by the 37 uniquely mapped genes recognized by the GO platform out of 
the 56 DEGs shown in j. Bars show p-values corrected for multiple testing. MommeD43 abbreviated to MD43.  
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MommeD43’s improved repeat-silencing capability offers therapeutic potential for FSHD 

Since SMCHD1 is required for proper DUX4 silencing, and the D4Z4 repeat has a structure somewhat 
reminiscent of the GFP transgene array used in the ENU mutagenesis screen, we next examined 
whether MommeD43 would also provide more efficient silencing of DUX4. To test this hypothesis, 
we crossbred Smchd1MommeD43/+ mice with hemizygous D4Z4-2.5 mice carrying a human transgene 
consisting of 2.5 D4Z4 repeat units cloned from genomic DNA of an FSHD1 individual40 (Fig. 4a). This 
approach was necessary because D4Z4 is a primate-specific repeat41. We previously showed that 
murine SMCHD1 represses the human D4Z4 transgene in these mice42. Thus, the D4Z4-2.5 mouse 
model is suitable to evaluate the effect of MommeD43 on DUX4 expression and on the chromatin 
structure of the transgene.  

The D4Z4-2.5/Smchd1MommeD43/+ mice exhibited Mendelian genotype and sex distributions 
(Supplementary Figure 6a-b). They appeared healthy up to at least two months of age when they 
were sacrificed for this study. Males showed a slight increase in weight and females were 
comparable to the other measured genotypes (Supplementary Fig. 6c). 

To determine whether MommeD43 provides more efficient silencing of DUX4 in vivo than wild-type 
SMCHD1, we first quantified the transcript levels of DUX4, Wfdc3 (a murine target of human 
DUX440), and Smchd1 in three different skeletal muscles of D4Z4-2.5/Smchd1+/+ and D4Z4-
2.5/Smchd1MommeD43/+ mice (gastrocnemius, quadriceps, triceps). DUX4 expression levels were low 
(Cq values varied between 34 and 38, while Cq values for Gapdh and Rpl13a were around 14 and 
18, respectively), as previously reported for D4Z4-2.5 mice42, and comparable between D4Z4-
2.5/Smchd1+/+ and D4Z4-2.5/Smchd1MommeD43/+ mice (Supplementary Fig. 7a). In line with this, we 
observed no changes in Wfdc3 transcript levels (Supplementary Fig. 7b). As expected, we saw no 
change on Smchd1 transcript levels (Supplementary Fig. 7c) or SMCHD1 protein levels 
(Supplementary Fig. 7d).  

DUX4 expression is typically higher in muscle cell cultures and non-muscle tissues of D4Z4-2.5 mice 
than muscle tissue from the same animals. So, we turned to muscle cell cultures established from 
the extensor digitorum longus (EDL) muscle and several non-muscle tissues (cerebellum, heart, 
spleen, thymus). DUX4 transcript levels were significantly decreased in both proliferating myoblast 
cultures and differentiating myotube cultures, in cerebellum and in spleen of D4Z4-
2.5/Smchd1MommeD43/+ mice relative to samples from D4Z4-2.5/Smchd1+/+ animals (Fig. 4b, myotube 
differentiation confirmed by Mef2c levels, Supplementary Fig. 7k). In line with this, Wfdc3 levels 
were also lower in EDL cultures established from D4Z4-2.5/Smchd1MommeD43/+ mice as well as in 
spleen (Fig. 4c). SMCHD1 expression and protein levels were not affected in any of the studied cells 
or tissues (Fig. 4d, Supplementary Fig. 7c,d,g,h). 

Although murine Wfdc3 was previously reported to be a human DUX4 target, it was not verified in 
all tissues40. Wfdc3 levels were unchanged in cerebellum, which might suggest tissue-dependent 
responses to DUX4. We observed no changes in expression levels of either DUX4 or Wfdc3 in heart 
or thymus (Supplementary Fig. 7e,f). Finally, we found that DUX4 protein levels were significantly 
decreased in myoblast and myotubes cultures (Fig. 4e). We could not measure DUX4 protein levels 
in other tissues, since the currently available anti-DUX4 antibodies do not work in tissues. 

In humans, silencing of the D4Z4 repeat is achieved by DNA methylation and repressive chromatin 
marks such as histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation 
(H3K27me3)43-45. Since D4Z4 hypomethylation is observed in all tissues tested in carriers of a 
pathogenic variant in SMCHD1, we tested D4Z4 methylation in tail DNA, as we previously did for 
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D4Z4-2.5 mice with a Smchd1 nonsense mutation42 and found D4Z4 repeat hypomethylation. In tail 
DNA we observed no difference in DNA methylation levels at the DR1 or FasPas regions 
(Supplementary Fig. 7i), that are well characterised regions within and just distal to the the D4Z4 
repeat46; 47 respectively. Next, we measured the permissive chromatin mark H3K4me2 and the 
repressive histone marks H3K9me3 and H3K27me3 in both fibroblast cultures and spleen tissue. 
Although we did not observe any significant differences, H3K4me2 levels were slightly decreased in 
D4Z4-2.5/Smchd1MommeD43/+ mice compared with Smchd1 wild-type counterparts, while H3K9me3 
and H3K27me3 levels were higher. As a result, the chromatin compaction score (H3K9me3 level 
corrected for H3K4me2) was significantly increased in the MommeD43 samples (Fig. 4f). This score 
is reduced in fibroblasts and myoblasts of individuals with FSHD48 and in fibroblasts of D4Z4-2.5 mice 
with the Smchd1MommeD1 (null) mutation42. 

Our results suggest that MommeD43 affects DUX4 levels in specific tissues, perhaps by modulating 
the chromatin structure of the D4Z4 repeat transgene. MommeD43’s more efficient silencing of 
DUX4 is not due to altered SMCHD1 binding to the transgene (Supplementary Fig. 7j), consistent 
with our genome-wide data. As mouse and human SMCHD1 are highly homologous, MommeD43 
may act as a hypermorphic variant in humans and may offer therapeutic potential for individuals 
with FSHD.  
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Figure 4: MommeD43 results in improved silencing of DUX4 in a mouse model of FSHD. 
 a. Diagram of D4Z4 repeat in healthy humans, FSHD1 patients and the 2.5-unit transgene repeat used in the murine model 
(described in 40). b-d. Relative DUX4 transcript levels, Wfdc3 transcript levels, and Smchd1 transcript levels in myoblasts, 
myotubes, cerebellum, and spleen. Bars represent the average transcript levels per genotype (average value in D4Z4-2.5 tissue 
is set as 1); each dot represents a single mouse. Statistical analysis was performed using a Student’s t-test. *P<0.05; **P<0.01. 
e. Relative DUX4 protein levels in myoblasts and myotubes, as measured by DUX4 and tubulin western blot. Bars represent 
the average transcript levels per genotype (average value in D4Z4-2.5 cells is set as 1); each dot represents a single mouse. 
Statistical analysis was performed using a Student’s t-test. *P<0.05. f. H3K4me2 levels, H3K9me3 levels, H3K27me3 levels, and 
the chromatin compaction score (H3K9me3 level corrected for H3K4me2 level) in fibroblast cultures and spleen. Bars 
represent the average levels per genotype; each dot represents a single mouse (black dots are fibroblasts; grey dots are spleen 
tissue). Statistical analysis was performed using a Student’s t-test. *P<0.05. MommeD43 abbreviated to MD43.  
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The MommeD43 mutation divorces the role of SMCHD1 in chromatin conformation from its role 
in gene silencing and chromatin insulation 

Our data presented so far are consistent with MommeD43 being a gain-of-function mutation. Since 
we have previously shown the effects of loss of SMCHD1 on gene expression, chromatin 
conformation, and histone marks in neural stem cells14 (NSCs) we examined these features in 
Smchd1MommeD43/MommeD43 NSCs to define the mechanism behind the apparent gain-of-function. 

In Smchd1 null NSCs – either Smchd1MommeD1/MommeD1 derived from male mice that have never had 
SMCHD1 or Smchd1del/del deleted at least 7 days prior from female Smchd1fl/fl NSCs in culture – we 
found major changes in gene expression by RNA-sequencing (1520 DEGs FDR<0.05 in MommeD113; 
463 DEGs FDR<0.05 in Smchd1del/del cells14). Conversely, there were no significant changes in female 
Smchd1MommeD43/MommeD43 NSCs in either strain background (FVB/NJ from the ENU screen and 
C57BL/6 Smchd1-GFP fusion created with CRISPR-Cas9). The clustered protocadherins on 
chromosome 18, which are well known to be regulated by SMCHD110; 11; 13, and whose expression is 
greatly increased upon SMCHD1 loss, showed interesting changes, albeit not significant. Although 
barely detectable, their expression is consistently reduced in Smchd1MommeD43/MommeD43 cells, 
supporting the notion that MommeD43 is a gain-of-function mutation (Supplementary Fig. 8). 

Another known role of SMCHD1 is in mediating long-range chromatin interactions. We performed 
in situ HiC in female Smchd1+/+ and Smchd1MommeD43/MommeD43 NSCs (n=3 each). We have previously 
shown that Smchd1 deletion caused major changes in chromatin conformation without altering 
topologically associated domains (TAD) borders or the distribution of A and B compartments14. 
Similarly, MommeD43 did not shift TAD borders (Supplementary Fig. 9) or compartments, with the 
exception of modest differences on the X chromosome (Fig. 5a). The modest changes in chromatin 
architecture we observed in MommeD43 were highly correlated to those seen in Smchd1del/del cells 
(r=0.64 at 1 Mb resolution, Fig. 5b-c, r=0.60 at 100 kb resolution, Fig. 5b-c), including those on the 
X chromosome. Of the 61 significantly different interactions (FDR<0.1, 1 Mb resolution, 
Supplementary Table 5), 50.8% are on the X chromosome (all strengthened in 
Smchd1MommeD43/MommeD43), consistent with what was observed in Smchd1del/del female cells and 
SMCHD1’s binding across the inactive X chromosome.  

Many changes in the Smchd1del/del cells were observed between the Hoxb cluster and other clustered 
gene families on chromosome 11 (Fig. 5d). The most significantly weakened interaction of these was 
between the Hoxb and the keratin gene cluster, which was also noticeably weakened in 
Smchd1MommeD43/MommeD43 cells (Fig 5. e,f). We focused on a specific interaction between the Hoxb 
cluster and an olfactory receptor gene cluster approximately 50 Mb away, which was significantly 
weakened upon Smchd1 deletion in our HiC data, by using DNA Fluorescence in situ hybridization 
(DNA FISH, Fig. 5g). The results were consistent with our HiC data, showing a significant decrease in 
the frequency of interaction in Smchd1del/del cells (80% decrease, Fig. 5h), and a less pronounced 
though still significant decrease in Smchd1MommeD43/MommeD43 cells (63% decrease, Fig. 5i). That same 
interaction was not significantly weakened in the HiC data in Smchd1MommeD43/MommeD43 cells, which 
might be due to HiC being a high-background and low-resolution technique less suited to detecting 
subtle changes. From these data, MommeD43 seems to behave as a hypomorphic allele with respect 
to chromatin conformation, which is in contrast to the gain of function effect we observed by all 
other measures of SMCHD1 function. 
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Figure 5: MommeD43 has a hypomorphic effect on Smchd1-dependent chromatin interactions 
a. Diagram of the X chromosome from IGV. On top in red are the significant (FDR<0.1) differential interactions in Smchd1GFP-

MommeD43/GFP-MommeD43 vs Smchd1GFP/GFP Hi-C data at 1Mb resolution (all are strengthened). The grey semi-circles on top represent 
the top 5 interactions by log2 fold change. Underneath is a plot of the difference in Eigenvectors used to determine A and B 
compartments between Smchd1GFP-MommeD43/GFP-MommeD43 vs Smchd1GFP/GFP (calculated at 100kb resolution). b, c. Correlation plots 
of the differential interactions caused by loss of Smchd1 between the two datasets shown in b and d at 1Mb (b.) and 100kb 
(c.) resolution. Each point in the graphs represents one interaction (the link between two genomic regions of length equal to 
the resolution), where the x coordinate is the log-fold change of that interaction between Smchd1GFP-MommeD43/GFP-MommeD43 and 
Smchd1GFP/GFP and the y coordinate is the log-fold change between Smchd1del/del and Smchd1fl/fl. X-linked interactions shown in 
purple. d. Diagram of the main Smchd1-dependent interactions on chromosome 11. e, f. The left side panels are heatmaps of 
normalized in situ Hi-C interactions in Smchd1fl/fl (e., top triangle) and Smchd1del/del (e., bottom triangle) and Smchd1GFP/GFP (f., 
top triangle) and Smchd1GFP-MommeD43/GFP-MommeD43 (f., bottom triangle) female NSCs surrounding the Hoxb cluster at 100kb 
resolution. The right side panels are zoomed in heatmaps of the region 96-106 Mb region at 50kb resolution. Inside the white 
dotted squares is the most significant interaction lost upon Smchd1 deletion, which is also reduced in Smchd1GFP-MommeD43/GFP-

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.12.443934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443934
http://creativecommons.org/licenses/by-nc/4.0/


MommeD43 cells. The tracks between the two triangular heatmaps show the genes in the region (blue and red bars for sense and 
antisense, respectively). The light blue bars represent the Hoxb genes and in green are the keratin genes whose interaction is 
inside the white dotted square. The bottom track (black bars) shows previously published Smchd1 peaks from ChIP-seq. g. 
Representative images of DNA FISH with probes labelling the Hoxb cluster (green) and the olfactory receptor gene cluster 
(magenta) highlighted in a. in the same colours (DAPI DNA stain shown in cyan). The left panel shows non-interacting loci for 
both alleles, the right panel shows one non-interacting and one interacting allele (colocalization of the magenta and green 
probes). h,i. Scoring of DNA FISH images such as the ones shown in g. in male and female NSCs of both FVB/NJ and C57Bl/6 
backgrounds. The number of scored alleles for each genotype is shown at the bottom of each bar. In black is the frequency of 
non-interacting loci and in grey the frequency of colocalizing probes. The asterisks show statistical significance (paired t-test) 
of the reduction of the frequency of interaction between the two observed loci both in Smchd1del/del and 
Smchd1MommeD43/MommeD43 cells compared to their respective controls. MommeD43 abbreviated to MD43. 
 

Other previously described effects attributable to loss of SMCHD1 during development are DNA 
hypomethylation at its autosomal targets and on the inactive X chromosome 10; 11; 13; 14 and increased 
levels and spreading of H3K27me3 on the inactive X chromosome14. To examine DNA methylation, 
we performed Reduced Representation Bisulphite Sequencing (RRBS) in female 
Smchd1MommeD43/MommeD43 NSCs. We observed no differences in CpG island methylation levels (only 
356 hypermethylated and 81 hypomethylated individual CpG nucleotides found with at least 25% 
difference q<0.05), either at autosomal regions or on the X chromosome. Similarly, H3K27me3 ChIP-
seq in NSCs showed no change in peak localisation (Fig. 6a,b, Supplementary Table 6); however, this 
technique is ill-suited to measure relative levels of histone marks. We turned to 
immunofluorescence staining to assess relative levels of both SMCHD1 and H3K27me3 in both 
Smchd1del/del and Smchd1MommeD43/MommeD43 female NSCs, in which we could examine H3K27me3 
enrichment specifically on the inactive X chromosome. The X chromosome bears most of the 
significant alterations in chromatin interactions and shifts in compartment type observed in Hi-C 
data upon Smchd1 perturbation (Fig. 5a). After acquiring high-resolution confocal Z-stack images, 
we defined the nuclear and inactive X volumes by using the boundaries of DAPI (DNA dye) and high 
H3K27me3 respectively, then used the total fluorescence intensity within each channel normalised 
to the volume of the region as a proxy for relative levels of SMCHD1 and H3K27me3 on the inactive 
X (Fig. 6c). Smchd1del/del cells showed the expected increase in H3K27me3 levels, whereas 
Smchd1MommeD43/MommeD43 cells showed a modest but still significant decrease in H3K27me3 levels, 
both on the inactive X (Fig. 6d,e) and for the whole nucleus (data not shown). Interestingly, there 
was a slight yet significant reduction in SMCHD1 levels in Smchd1MommeD43/MommeD43 nuclei (Fig. 6f) 
that may have been outside the detection range of the western blots and flow cytometry shown 
previously. Even with slightly decreased SMCHD1 levels the effect observed with the MommeD43 
variant is opposite to that of loss of SMCHD1, which suggests that the gain-of-function effect seen 
here outweighs any minor change in protein levels. 

We have shown here that MommeD43 has either no effect or behaves as a gain-of-function 
SMCHD1 mutation in a context-dependent manner, except in chromatin conformation where it is 
more akin to a hypomorphic mutation. Therefore, we believe MommeD43 is a neomorphic mutation 
with altered function. 
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Figure 6: MommeD43 results in depleted H3K27me3 on the inactive X chromosome 
a. ChIP-seq track of H3K27me3 in Smchd1GFP-MommeD43/GFP-MommeD43 vs Smchd1GFP/GFP primary female NSCs at the Hoxb cluster. 
The track shows no differences in H3K27me3 localization (ChIP-seq is not a directly quantitative technique, and so the 
difference in peak height between the two tracks might not be of biological significance). b. Scatter plot of log-transformed 
normalized H3K27me3 ChIP-seq counts in Smchd1GFP-MommeD43/GFP-MommeD43 vs Smchd1GFP/GFP NSCs around (±2.5kb, then merged 
if within 1kb) peaks determined from both datasets. The Pearson coefficient indicates very high positive correlation. c. 
Representative images of immunofluorescence with anti-H3K27me3 (green), anti-SMCHD1 (orange) and DAPI (DNA stain, 
cyan) in primary female Smchd1+/+ (left) and Smchd1MommeD43/MommeD43 (right) NSCs. The arrow points to the inactive X 
chromosome which is characterized by very high levels of both H3K27me3 and SMCHD1. d, e and f. Scoring of the volume and 
total levels of H3K27me3 and Smchd1 of the inactive X chromosome in female Smchd1fl/fl, Smchd1del/del, Smchd1+/+ and 
Smchd1MommeD43/MommeD43 primary female NSCs. Levels of H3K27me3 and Smchd1 are defined as the total intensity of 
fluorescence inside the volume of the inactive X, normalized by the total nuclear volume of each scored cell. The inactive X 
chromosome is defined as the high H3K27me3 region in a semi-automated approach using Imaris to define a closed surface 
of highest green fluorescence in each nucleus. MommeD43 abbreviated to MD43.  
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Discussion 

We and others have previously studied SMCHD1 extensively in X chromosome inactivation, 
development, its effects in gene regulation as well as its role in organising the genome. It has been 
shown that SMCHD1 plays a role in Hox gene regulation14, clustered protocadherin gene 
expression10; 11; 13, in mediating long-range chromatin interactions14; 31-33, and in canonical and non-
canonical imprinting12. Moreover, variants in SMCHD1 that have differing outcomes on SMCHD1 
function are associated with two different diseases: FSHD and BAMS15; 27. In each case, SMCHD1 has 
been considered an epigenetic repressor, however a molecular mechanism of SMCHD1-mediated 
silencing has yet to be elucidated. In this study, we report a new single amino acid substitution 
mouse variant of SMCHD1, MommeD43. By studying the consequence of this variant on SMCHD1 
molecular function and in models of BAMS and FSHD, we enhance both the understanding of how 
SMCHD1 brings about gene silencing and identify a potential avenue for treatment of FSHD. 

Through our developmental and molecular analyses, we show that, with the level of resolution of 
the techniques used, there is a counter-intuitive divorce of SMCHD1’s activity on gene expression 
and insulation of the chromatin, versus its effect on chromatin architecture. The MommeD43 
variant was identified because it caused increased transgene silencing. Consistently, we revealed 
that while its effect on target gene activity is context-dependent, the MommeD43 variant frequently 
imparts a gain of function effect on SMCHD1. We observed downregulation, which we believe is a 
delay in activation, of Hoxa6 and Hoxd10 in the MommeD43 mutants. This is consistent with the 
anterior homeotic transformation observed in skeletal patterning, and in contrast to the 
upregulation of posterior Hox genes and posterior homeotic transformation in Smchd1 null 
embryos14. On the inactive X chromosome, we observed a decrease in H3K27me3 enrichment in the 
MommeD43 mutant female cells, whereas the Smchd1 deleted samples show an increase in 
H3K27me3. These data suggest that SMCHD1’s role in insulating against other epigenetic regulators 
such as PRC2, as proposed by us and others is enhanced in the MommeD43 variant13; 14; 32; 33. While 
these observations suggested a gain of function effect, the influence of the MommeD43 variant on 
chromatin interactions were, however, reminiscent of those found upon loss of SMCHD1. We 
observed weakened long range interactions between SMCHD1 targets, but to a lesser extent than 
is observed in the Smchd1-null mouse. Our findings suggest that the genome-wide long-range 
chromatin interactions that require SMCHD1 are not directly linked to SMCHD1’s silencing of gene 
expression. This is consistent with our previous study showing loss of long-range interactions on the 
inactive X and at Hox genes in neural stem cells post Smchd1 deletion, but no upregulation of these 
genes when Smchd1 is deleted after early embryonic development14.  

Many groups have shown the relatively modest effect of altered chromatin interactions on 
transcription. However, those studies usually rely on the ablation of well characterized members of 
the cohesin complex or CTCF (e.g. ref49), which seem to be predominantly architectural in their 
function. In contrast, newer findings show that PRC1, a complex that has long been considered as a 
direct repressor of gene expression, also plays a role in setting long-range chromatin interactions 
which is independent of its silencing function50. SMCHD1 seems to exert similarly independent 
effects. 

In addition to the MommeD43 effect on gene silencing, we were intrigued by the depletion of 
H3K27me3 on the inactive X despite no detectable change in gene expression in our RNA-seq data 
in NSCs. These data suggest that the MommeD43 variant enhanced SMCHD1’s capacity to insulate 
the chromatin against other epigenetic regulators. Given the loss of long-range interactions on the 
X chromosome observed in the same cells, SMCHD1-mediated long-range interactions themselves 
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may not offer the insulation against other chromatin regulators, but instead must arise from 
another action of SMCHD1. 

We studied the effects of the MommeD43 mutation on SMCHD1 function related to disease for two 
main reasons: it is a variant that conferred greater transgene silencing capabilities to SMCHD1 
where the transgene array was reminiscent of the D4Z4 tandem repeat involved in FSHD; and 
because this enhanced silencing capacity may inform interpretation of SMCHD1 variants found in 
BAMS, the other disease where SMCHD1 has a confirmed involvement. Relevant to BAMS, we 
observed no craniofacial abnormalities in the mouse or Xenopus systems; however, we did observe 
differential expression of some developmentally regulated genes in the frontonasal prominence 
regions from MommeD43 embryos, suggesting that the relevant tissue in the embryo is sensitive to 
the MommeD43 variant. For reasons we do not yet understand, these changes did not result in 
phenotypic outcomes, meaning the MommeD43 mouse is not a useful model to relate to BAMS. 

The gain-of-function effects of the MommeD43 variant could provide a potentially elegant solution 
for treatment of the FSHD phenotype by revealing how to stimulate the wild-type copy of SMCHD1 
that is retained in FSHD patients to silence DUX4. Indeed, overexpression of SMCHD1, or restoring 
expression of wild-type SMCHD1 in muscle cell cultures of FSHD2 patients is an efficient way of 
silencing DUX451; 52. Utilising a mouse model harbouring a short D4Z4 transgene array, we found 
that the MommeD43 variant in SMCHD1 partially rescues aberrant activation of DUX4 in tissues 
relevant to FSHD. This finding raises the possibility that gain of function mutations to SMCHD1, 
similar to MommeD43, may be harnessed therapeutically to re-establish the silencing of DUX4 in 
FSHD patients. The precise role of ATPase activity in the execution of SMCHD1’s gene silencing 
functions is currently incompletely understood. It remains of outstanding interest to define whether 
this enzymatic activity could be targeted therapeutically, and which functions beyond this enzymatic 
activity are conducted by the extended ATPase domain, including the C-terminal region where 
the Momme43 substitution resides. 

In conclusion, our study of a new mouse variant of SMCHD1 has disentangled SMCHD1’s role in 
chromatin architecture from its role in transcription and insulation, providing greater mechanistic 
insight into how SMCHD1 may bring about gene silencing. Moreover, we have revealed that 
modulating SMCHD1’s activity is effective in ameliorating failed D4Z4 silencing in a model of FSHD, 
with direct relevance to FSHD treatment.  
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Materials and Methods 

Mouse strains and genotyping 

All mice were bred and maintained with standard animal husbandry procedures. At WEHI protocols 
were approved by the WEHI Animal Ethics Committee under animal ethics numbers AEC 2014.026, 
2018.004. Mice at QIMR were kept under the approval of the QIMR ethics committee, including the 
ENU treatment of mice. The approval numbers for this work were QIMR AEC-P1076 and AEC-P1224. 
At the animal facility of the Leiden University Medical Center all mouse breeding and experiments 
were performed according to Dutch law and Leiden University guidelines and were approved by the 
National and Local Animal Experiments Committees. Mice at all three locations were kept in 
individually ventilated cages with standard rodent chow and water available ad libitum with a 
standard 12h/12h light/dark cycle.  

Smchd1fl/fl mice were maintained on a C57BL/6 background, as described previously42. Mice carrying 
the Smchd1MommeD1 mutation, as previously described7, were maintained on the FVB/NJ inbred 
background. Smchd1GFP/GFP mice were maintained on a C57BL/6 background as described14. 

Mice carrying the Smchd1MommeD43 mutation were produced on the FVB/NJ background homozygous 
for the Line3 transgene, exactly as previously described for other Momme mutations7; 34; 53. The 
MommeD43 mutation was backcrossed off the transgenic background and maintained on pure 
FVB/NJ after mapping of the mutation.  

The MommeD43 mutation was recreated on the Smchd1GFP/GFP background14 by injection of Cas9 
protein, guide RNA plus repair template into zygotes (sequences for Smchd1 gRNA and repair 
template in Supplementary Table 8), similarly to what has previously been described54. At the same 
time as introducing the MommeD43 mutation the PAM site was mutated with a silent C to T 
mutation. This was performed by the WEHI MAGEC facility. The new allele was backcrossed to 
Smchd1GFP/GFP for more than 5 generations before animals were used in experiments. This line was 
created and maintained on a C57BL/6 background. 

D4Z4-2.5 mice were generated before40. Female hemizygous D4Z4-2.5 mice on a C57BL6/J 
background were crossbred with male heterozygous Smchd1MommeD43/+ mice on an FVB/NJ 
background to obtain D4Z4-2.5/Smchd1MommeD43/+ mice. Genotypes were determined by PCR 
analysis using tail DNA.  

Both the MommeD43 and MommeD1 mutations were genotyped by allelic discrimination (primers 
in Supplementary Table 8). The Smchd1fl, Smchd1del and Smchd1GFP alleles were genotyped by PCR 
as previously described14; 42 (primers in Supplementary Table 8). The D4Z42.5 transgene was 
genotyped as previously described42 (Supplementary Table 8 for primer sequences). 

Embryo tails or yolk sacs were used to prepare DNA through standard methods. Genotypes were 
determined by PCR with GoTaq Green (Promega) or allelic discrimination for MommeD1 or 
MommeD43. Sex was determined by PCR for Otc (X chromosome) and Zfy (Y chromosome) 
(Supplementary Table 8 for primer sequences).  
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ENU mutagenesis screen to identify MommeD43 mutant line 

The ENU mutagenesis screen used to identify the MommeD43 mutant line of mice was run exactly 
as previously described7; 34. In brief, homozygous transgenic males were treated with ENU and 
allowed to recover fertility. They were bred with wild-type transgenic females and the expression 
of transgene silencing was assessed in the offspring at weaning, by performing flow cytometry for 
GFP expression, in a drop of whole blood taken from the tail tip. The founder animal for the 
MommeD43 line displayed reduced GFP expression and was bred further to study inheritance 
patterns. 

Genetic mapping of the MommeD43 mutation 

Mapping of the MommeD43 mutation was performed as has been reported for other Momme 
mutations34. The MommeD43 allele was bred down at least 4 generations before mapping was 
initiated. For mapping the allele was crossed from the FVB/N background to the C57BL/6 
background (Line3C, carrying the GFP transgene on the C57BL/6 background) twice to enable 
positional cloning. These animals were phenotyped for the effect on transgene expression by flow 
cytometry. The Illumina GoldenGate genotyping assay (Mouse Medium Density Linkage Panel) was 
performed on 11 phenotypically mutant and 11 phenotypically wild-type littermates. The Mouse 
Medium Density Linkage panel has 766 measurable SNPs between C57BL/6J and FVB/NJ. Samples 
were genotyped following the Illumina protocol and genotype calls were made using the 
Genotyping module of the GenomeStudio v1.1 software. Only samples with a call rate >95 were 
accepted. Linked intervals were identified based on LOD score (Supplementary Table 7). A LOD score 
of over 4.5 was found for chromosome 17, 63-98 Mb. Subsequent exome sequencing using Roche 
Nimblegen capture in MommeD43 and wild-type controls revealed the G to T mutation at chr17: 
71776840, which relates to a C to A mutation in the sense orientation of exon 15 of Smchd1. This 
mutation was verified by Sanger sequencing. No other mutations were found either within the 
linked interval or in other exons. 

 

Generation of Neural Stem cells 

NSCs were derived and cultured exactly as previously described13; 14. In brief, cortices of E14.5 
embryos were dissociated and grown as an adherent monolayer on tissue culture treated plates. 
Growth media was NeuroCult NSC Basal Medium (Mouse) containing NeuroCult Proliferation 
Supplement (Mouse) (StemCell Technologies), 0.2% heparin solution (Stem-Cell Technologies), 
recombinant human EGF (20 ng/mL), recombinant human basic FGF (20ng/mL, all from Stem Cell 
Technologies) and 10 ng/ml laminin (Sigma Aldrich). Primary cells were maintained for a maximum 
of 20 passages. 

Generation of Smchd1del/del NSCs 

Smchd1del/del NSCs were generated from Smchd1fl/fl NSCs exactly as previously described14. Smchd1 
deletion was confirmed by immunofluorescence with an in-house made anti-Smchd1 antibody 
during the immunofluorescence experiments (Mab #8, now available commercially from Merck). 

Retrovirus production and transduction 

VSVg pseudotyped MSCV-Cre-puromycin retroviral supernatants were produced with calcium 
phosphate–mediated transient transfection of 293T cells, as previously described55. The medium 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.12.443934doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.12.443934
http://creativecommons.org/licenses/by-nc/4.0/


was collected at 48 h after transfection, centrifuged to remove residual 293T cells and either 
concentrated with PEG or used unconcentrated. 

Transduction of NSCs with PEG-concentrated viral supernatant was performed exactly as previously 
described14. 

Immunofluorescence 

Immunofluorescence was performed on Smchd1+/+, Smchd1MommeD43/MommeD43, Smchd1fl/fl and 
Smchd1del/del early passage primary NSCs as described56. The primary antibodies used were an in-
house monoclonal anti-Smchd1 and an anti-H3K27me3 (Cell Signalling technologies, C36B11). After 
immunofluorescence assays and DAPI stain, cells were mounted in Vectashield H-1000 mounting 
medium (Vector Laboratories). Cells were visualized on an LSM 880 (Zeiss) microscope. All images 
were taken using the same settings and the same instrument across multiple sessions. Images for 
each “treatment” condition and its corresponding control were acquired within the same sessions. 
The mean value of the corresponding control was used to normalize total intensity values 
individually for each channel across different acquisition sessions. 

Imaris Software (Bitplane) was used to measure the volume of the nucleus (using DAPI staining) or 
occupied by high levels of H3K27me3 as marker of the Xi within the nucleus. A threshold was 
manually set to measure the signal only above nucleoplasmic staining or background. Nuclei that 
were too close together to be defined as separate volumes were manually removed from 
subsequent analyses. A region of interest was then defined on the basis of DAPI (nuclei) or focal 
H3K27me3 enrichment (Xi). The volume was then calculated for the region of interest above the 
threshold. Total fluorescence intensity levels of Smchd1 or H3K27me3 fluorescence were 
normalized by the nuclear volume of each cell individually, then across each acquisition session. 

DNA FISH 

DNA FISH was performed on Smchd1MommeD43/MommeD43 and its Smchd1+/+ control (FVB/NJ 
background), Smchd1GFP-MommeD43/GFP-MommeD43 and its Smchd1-GFP+/+ control (C57Bl/6 background) 
and Smchd1del/del and its Smchd1fl/fl control (C57Bl/6 background) NSCs. 1 µg RP23-196F5 (HoxB 
locus) or RP24-323I2 (Olfr locus) BAC DNA (CHORI) was used in a 12-hour nick-translation reaction 
(Vysis) to generate DNA probes labeled with Green 496 dUTP or Orange 552 dUTP (Seebright), 
respectively. Approximately 100 ng probe per sample was precipitated in ethanol with 10% NaOAc, 
1 µg salmon sperm DNA (Life Technologies) and 1 µg mouse Cot-1 DNA before being resuspended 
in formamide (Sigma-Aldrich), denatured at 75 °C for 10 min and allowed to compete with Cot-1 
DNA for 1 h at 37 °C. Cells were prepared for DNA FISH exactly as described in Chaumeil et al.56 with 
36h of hybridization at 42°C. Cells were mounted in H1000 Mounting Medium (Vectashield) and 
visualized on an LSM 880 (Zeiss) microscope with Airyscan processing. Images were analysed with 
the open-source ImageJ distribution package FIJI57. Brightness and contrast were manually set for 
each image for clear scoring, and spectral shift was corrected using an image of Tetraspeck 0.1um 
beads (ThermoFisher) acquired on each session with the same settings as the experiment images. 
Overlapping or touching FISH signals for HoxB and Olfr probes were scored as interacting. 419 alleles 
were scored for the Smchd1+/+ NSCs, 320 alleles for the Smchd1MommeD43/MommeD43 NSCs, 164 alleles 
for the Smchd1flox/flox and 152 alleles for the Smchd1del/del.  
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SAXS (described in Biochem J 2016, 473, p. 1733-174425) 

SAXS data were collected on the SAXS/WAXS beamline at the Australian Synchrotron, coupled with 
in-line size exclusion chromatography. 50 μL at 5 mg/mL of recombinant SMCHD1 protein sample 
was each loaded onto a Superdex-200 5/150 (GE Healthcare) pre-equilibrated in purification buffer 
[200 mM NaCl, 20 mM Tris-HCl (pH 8.0), 10% (v/v) glycerol, 0.5 mM TCEP] and eluted via a 1.5 mm 
glass capillary at 16◦ C positioned in the X-ray beam. Diffraction data were collected with a 1M, 170 
mm x 170 mm Pilatus detector at 2 s intervals over the course of the elution. Data were processed 
by the beamline control software, ScatterBrain. 2D intensity plots from the size exclusion 
chromatography peak of the eluting protein sample were radially averaged and normalised to 
sample transmission. Scattering profiles from buffer alone were averaged for background 
subtraction of 1D profiles.  

Data analyses were performed with the ATSAS suite 58. PRIMUS59 was used to perform Guinier 
analysis for examining scattering curves at small angles (qRg below 1.3). From this, estimation of 
two parameters can be obtained: the radius of gyration (Rg) value, which represents the square root 
of the average distance of each scattering atom from the particle centre, and zero angle intensity 
(I(0)), which is proportional to the molecular weight and the concentration of the protein. The 
linearity of the Guinier plot reflects the quality of the scattering data obtained, indicating the 
absence of high molecular weight aggregates or inter-particle interference. Real-space interatomic 
distance distribution function, P(r), and maximum dimension of the scattering particle, Dmax, were 
computed by indirect Fourier transform via GNOM60. Low resolution shape envelopes were 
generated via the ab initio bead-modeling program, DAMMIF61. 10 independent models were built 
from each scattering profile and were further compared in the program DAMSEL, where the mean 
value of the normalised spatial discrepancy (NSD) of the 10 models were calculated. The most 
probable models were aligned by DAMSUP, and an averaged model was obtained via DAMAVER. 
The final model was adjusted to correspond with the experimentally obtained data via the program 
DAMFILT62.  

Protein expression and purification 

The SMCHD1 N-terminal region (residues 111-702) was PCR-amplified from a Mus musculus full-
length Smchd1 template. The MommeD43 mutation (A667E) was introduced by oligonucleotide-
directed mutagenesis (5’ CTGTGCCCATTGAAAAGCTGGAT AGG; 3’ 
CCTATCCAGCTTTTCAATGGGCACAG) and ligated into the pFastBac Htb vector (Life Technologies). 
Bacmids were prepared using the Bac-to-Bac system, and utilized for protein expression in Sf21 
insect cells, as described previously25. Cells were maintained in Insect-XPRESS protein-free insect 
cell media with L-glutamine (Lonza) and infected at a density of 3-4 x 106 with high-infectivity 
baculovirus for protein expression.  

Purification was performed as previously described23; 26. Cells were resuspended in lysis buffer [0.5 
M NaCl, 20 mM Tris-Hcl (pH 8.0), 20% (v/v) glycerol, 5 mM imidazole (pH 8.0), 0.5 mM TCEP] 
supplemented with 1 mM PMSF and 1X cOmplete EDTA-free protease inhibitor (Roche). Sonication 
was performed on ice for 5 cycles with 1 s on, 0.2 s off, 22 s per cycle at 50% amplitude, using the 
Bandelin sonicator fitted with the VS 70/T probe. To remove insoluble material, lysates were 
centrifuged at 45,000 x g for 30 min at 4◦ C. Following cell lysis by sonication, lysate supernatant 
from cells expressing N-terminal 6- His-tagged proteins were incubated with nickel-nitrilotriacetic 
acid (Ni-NTA) cOmplete His-tag purification resin (Roche) for 1 h at 4◦ C, on rollers. 1 ml of 50% resin 
slurry was used per 1 L of cell culture. The resin was pelleted by centrifugation at 1,500 x g for 5 min 
at 4◦ C and the supernatant was removed as the unbound sample. The resin was washed twice with 
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5 mM imidazole buffer (pH 8.0), followed by two washes with 35 mM imidazole (pH 8.0) and eluted 
in 250 mM imidazole buffer (pH 8.0). The 6-His-tag was cleaved by incubation of the pooled elutions 
with tobacco etch virus (TEV) protease overnight at 4◦ C. Next day, cleaved protein was 
concentrated with a 30-kDa molecular mass cut-off concentrator (Millipore) by centrifugation for 5 
min at 2,500 x g, 4◦ C, then diluted in Buffer A [50 mM NaCl, 25 mM HEPES (pH 7.5), 0.5 mM TCEP, 
10% (v/v) glycerol] for ion exchange chromatography. The concentrated protein sample was loaded 
onto a MonoQ 5/50 GL column (GE Healthcare) pre-equilibrated with Buffer A and exchanged into 
Buffer B [500 mM NaCl, 25 mM HEPES (pH 7.5), 0.5 mM TCEP, 10% (v/v) glycerol] in a 0-100% 
gradient over 20 column volumes for protein elution. Fractions of interest were pooled, 
concentrated and subjected to size exclusion chromatography on a Superdex-200 10/300 GL column 
(GE Healthcare) pre-equilibrated with either SEC100 buffer [100 mM NaCl, 20 mM HEPES (pH 7.5)]. 
Fractions containing the recombinant protein of interest were pooled concentrated and snap-frozen 
in liquid nitrogen for storage at -80◦ C. Protein concentration was measured using a DS-11 FX 
Spectrophotometer (DeNovix). 

 

ATPase assay 

ATPase assays were performed as outlined in Chen et al.25 10 μL reactions were set up in triplicates 
in 384-well low flange, black, flat-bottom plates (Corning) containing 7 μL reaction buffer [50 mM 
Hepes (pH 7.5), 4 mM MgCl2, 2 mM EGTA], 1 μL recombinant protein at concentrations ranging 
from 0.1-0.6 μM or SEC buffer control, 1 μL nuclease-free water and 1.25-10 μM ATP substrate. 
Reactions were incubated at 25 C for 1 hour in the dark. Reactions were stopped by the addition of 
10 μL detection mix [1X Detection buffer, 4 nM ADP AlexaFluor 633 Tracer, 128 μg/mL ADP2 
antibody] and incubated for another hour in the dark. Fluorescence polarization readings (mP) were 
measured with an Envision plate reader (PerkinElmer Life Sciences) fitted with excitation filter 
620/40 nm, emission filters 688/45 nm (s and p channels) and D658/fp688 dual mirror. Readings 
from a free tracer (no antibody) control were set as 20 mP as the normalization baseline of the assay 
for all reactions. The amount of ADP produced by each reaction was estimated by a 12-point 
standard curve, as outlined in the manufacturer’s protocol. Data was plotted and analysed in 
GraphPad Prism. 

 

Western Blot 

Samples were resolved by standard SDS-PAGE analysis on 4-12% Bis-Tris gels (Thermo Fisher 
Scientific) in MES buffer and transferred to a PVDF membrane (Osmonics, GE Healthcare) by wet 
transfer at 100 V for 1 h in transfer buffer [25 mM Tris, 192 mM glycine, 20% (v/v) methanol]. 
Membranes were blocked with a 5% (v/v) skim milk powder in 0.1% (v/v) Tween-20/PBS for 1 h at 
room temperature. Primary antibody (monoclonal in-house anti-Smchd1, clone 1D6, 1:2000) was 
added to the membranes in 5 mL blocking buffer and incubated overnight at 4◦ C in a capped tube, 
on rollers. Membranes were washed for 30 min at room temperature with 0.1% (v/v) Tween-
20/PBS, followed by incubation with secondary antibody (anti-rat IgG HRP-conjugated, Southern 
Biotech, 1:10,000) for 1 h at room temperature, which was diluted in 5 mL blocking buffer. The 30 
minute washing step was repeated as before and antibody binding was visualised using the 
Luminata ECL system (Millipore) following the manufacturer’s instructions.  
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Skeletal preparations and scoring 

Whole-mount skeletal staining of E16.5 fetuses was performed as previously described 63. Each fetus 
was skinned and organs were removed under a light microscope, in additional to dissolving 
remaining tissue in acetone. Once stained, skeletons were washed through a graded glycerol/water 
series before imaging in 100% glycerol using a ZEISS SV11 stereomicroscope. The vertebral 
phenotype of each skeleton was scored by two independent assessors who were blind to genotype 
and sex.  

 

Tailbud dissection and somite counting 

Tailbud tissue containing the presomitic mesoderm (PSM) was dissected from Smchd1+/+ and 
Smchd1MommeD43/MommeD43 E8.5 embryos as previously described 14; 64. In brief, embryos were 
dissected ice-cold DEPC-treated PBS. Tailbud tissue was horizontally dissected at the distance of 1.5 
somites below the last segmented somite to ensure the next developing somite from the PSM, S0, 
was not included in the tailbud dissection. Tailbud tissue was snap frozen on dry ice and stored at -
80°C for later RNA extraction using a Zymo Quick-RNA Miniprep Kit. The yolk sac was retained for 
genotyping. Somites were counted before fixing each embryo in 4% DEPC-treated 
paraformaldehyde at 4°C overnight. Embryos were washed through a graded methanol/PBT (DECP-
treated PBS with 1% Tween (v/v)) series as previously described65 before brief staining in dilute 
ethidium bromide solution and imaging under a fluorescence dissection microscope to check somite 
counting. RNA-sequencing was performed on somite-matched pairs of Smchd1+/+ and 
Smchd1MommeD43/MommeD43 tailbud tissue.  

 

Frontonasal prominence collection 

E10.5 embryos were dissected in ice-cold PBS and the frontonasal prominence (FNP) removed by 
dissecting along the boundary which separates the FNP from the maxillary prominence using fine 
forceps. Dissected tissue was immediately snap frozen on dry ice and the remaining embryo placed 
in a fresh well of PBS for somite counting. Yolk sacs were collected for genotyping purposes. 

 

HREM 

E14.5 embryos were collected and fixed in Bouin’s fixative overnight followed by extensive washing 
and storage in PBS. Following dehydration in a graded methanol series, samples were incubated for 
3 days in JB-4 (Sigma)/Eosin (Sigma)/Acridine orange (Sigma) dye mix before embedding and 
imaging as previously described66; 67 (https://dmdd.org.uk/hrem/). To measure key craniofacial 
features, samples were aligned to equivalent orientations in three dimensions and the distance 
measured then divided by crown-rump length using OsirixMD. Statistics were calculated using 
unpaired t-tests, followed by Benjamini-Hochberg procedure to correct for the false discovery rate.  
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Xenopus embryological assays 

Xenopus laevis were used according to guidelines approved by the Singapore National Advisory 
Committee on Laboratory Animal Research. Injections of human SMCHD1 mRNA into Xenopus 
embryos were performed as previously reported15. Briefly, two dorsal animal blastomeres were 
injected at the 8-cell stage with 240 pg of in vitro transcribed human SMCHD1 mRNA containing 
various mutations. Embryos were allowed to develop at room temperature until stage 45-46 and 
fixed. Eye diameter was measured using a Leica stereomicroscope with a DFC 7000T camera. No 
statistical method was used to predetermine sample size. No randomization or blinding was used. 
Embryos that died before gastrulation were excluded. Statistics were calculated using 1-way 
ANOVA, followed by Dunn’s multiple comparison test. 

 

Isolation and culturing of fibroblasts and EDL-derived muscle cells 

For establishing fibroblast cultures, neonatal mice were sacrificed by decapitation after which the 
skin was removed. The skin was next cut into small pieces, evenly distributed over a 60 mm culture 
dish, and a small amount of DMEM/F12 medium (Gibco; Thermo Fisher Scientific, Bleiswijk, the 
Netherlands) supplemented with 1% penicillin-streptomycin (P/S) (Sigma Aldrich, Zwijndrecht, the 
Netherlands) and 20% heat-inactivated foetal bovine serum (FBS) (Thermo Fischer Scientific, the 
Netherlands) was added. Twice a week, a small amount of medium was added to the culture dish, 
and over time fibroblasts grew out of the skin pieces. These cells were either transferred for further 
expansion using the same medium or harvested for RNA or chromatin isolation.  

For establishing muscle cell cultures, mice of two months of age were sacrificed by cervical 
dislocation followed by removal of the EDL muscle from tendon to tendon. The EDL muscle was next 
incubated for 105 minutes at 37 °C in 0.2% collagenase (Sigma Aldrich, Zwijndrecht, the 
Netherlands) in DMEM medium (Gibco; Thermo Fisher Scientific, Bleiswijk, the Netherlands) 
containing 1% P/S (Sigma Aldrich, Zwijndrecht, the Netherlands). The resulting individuals muscle 
fibres were dissociated with a Pasteur pipet with a smooth end and, after several washing steps as 
previously described68, transferred to a Matrigel-coated (BD Biosciences, Vianen, the Netherlands) 
6-well culture plate (150 fibres per well) in DMEM medium supplemented with 30% FBS, 10% horse 
serum, 1% P/S, 1% chicken embryo extract, and 2.5 ng/ml fibroblast growth factor (all from Thermo 
Fischer Scientific, Bleiswijk, the Netherlands). After three days, the fibres were removed, and the 
attached myoblasts were trypsinised and plated in fresh Matrigel-coated plates. Myoblasts were 
harvested for RNA and protein isolation at ~70% confluency or differentiated by replacing the 
medium with DMEM with 2% horse serum and 1% P/S. 72 hours after the start of differentiation, 
myotubes were harvested for RNA and protein isolation. 

 

RNA isolation, cDNA synthesis, and real-time quantitative PCR 

Total RNA was isolated using the miRNeasy kit (Qiagen, Venlo, the Netherlands) following the 
manufacturer’s instructions and included a DNase treatment on the column for 30 minutes at room 
temperature. RNA concentrations were determined using the Nanodrop ND-1000 
spectrophotometer (Thermo Fisher Scientific, Bleiswijk, the Netherlands). 1-3 μg RNA was reverse 
transcribed with the RevertAid H Minus First Strand cDNA synthesis kit and Oligo(dT)18 primers 
(both Thermo Fisher Scientific, Bleiswijk, the Netherlands), following the instructions of the 
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manufacturer. cDNA was treated with 2 units of RNaseH (Thermo Fisher Scientific, Bleiswijk, the 
Netherlands) for 20 minutes at 37°C. RT-qPCR analysis was performed with the CFX96 system (Bio-
Rad, Veenendaal, the Netherlands using iQ SYBR Green Supermix (Bio-Rad, Veenendaal, the 
Netherlands), 0.5 pM of each primer (sequences are listed in Supplementary Table 8), and 1:5 or 
1:50 diluted cDNA. The following cycling conditions were used: an initial denaturation step at 95 °C 
for 3 minutes followed by 40 cycles of 10 seconds at 95 °C and 30 seconds at primer Tm. A melting 
curve analysis from 65 °C to 95 °C (temperature increments of 0.5 °C) was performed to determine 
the specificity of each reaction. Data was analysed with Bio-Rad CFX Manager version 3.1 (Bio-Rad, 
Veenendaal, the Netherlands) and normalized to the housekeeping genes Gapdh and Rpl13a. 

 

Western blot in NSCs and D4Z4 samples 

The Western blot for SMCHD1 in NSCs was performed exactly as previously described in de Greef et 
al42, using in house monoclonal #5 against SMCHD1, which is now available by Merck. 

Tibialis anterior muscle, spleen tissue, and scraped myoblasts and myotubes were homogenized in 
10 volumes of solubilization buffer (150 mM NaCl, 50 mM Tris, 200 mM PMSF, 100 mM 
benzamidine, pH 7.4) with 1% Triton X-100. Next, samples were incubated, rotating top-over-top, 
for 1 hour at 4°C and centrifuged for 30 minutes at 4°C at maximum speed (tabletop centrifuge) to 
remove non-homogenized material. Protein concentrations were determined using the Pierce™ 
BCA Protein Assay Kit (Thermo Fisher Scientific, Bleiswijk, the Netherlands). Protein samples were 
separated on a NuPAGE™ 4–12% Bis-Tris Protein Gel (Thermo Fisher Scientific, Bleiswijk, the 
Netherlands) and transferred to an Immobilon-FL PVDF membrane (Merck, Amsterdam, the 
Netherlands). The membrane was blocked for 1 hour at room temperature in 4% skim milk/PBS 
containing 0.1% Tween-20, followed by an overnight incubation step at 4°C with primary antibodies: 
anti-Smchd1 antibody (1:250; HPA039441; Sigma Aldrich, Zwijndrecht, the Netherlands), anti-
Emerin (1:200; SC-15378; Santa Cruz Biotechnology; Bio-Connect B.V., Huissen, the Netherlands), 
anti-DUX4 antibody (1:1000; ab124699; Abcam, Cambridge, United Kingdom), and anti-Tubulin 
(1:2000; T6199; Sigma Aldrich, Zwijndrecht, the Netherlands). The next day, blots were washed with 
PBS containing 0.1% Tween-20 and incubated with dye-conjugated secondary antibodies (Li-Cor, 
Bad Homburg, Germany) for 1 hour at room temperature in 4% skim milk/PBS with 0.1% Tween-20. 
After washing with PBS containing 0.1% Tween-20 and PBS, blots were imaged using the Odyssey 
CLx imager (Li-Cor, Bad Homburg, Germany). 

 

DNA methylation analysis at D4Z4 

Genomic DNA (400 ng) from mouse tail was bisulphite converted with the EZ DNA Methylation-
Lightning kit (Zymo Research; BaseClear Lab Products, Leiden, the Netherlands) following the 
instructions of the manufacturer. A PCR reaction of the DR1 region within the D4Z4 repeat transgene 
(and a PCR reaction of the FasPas region just distal of the D4Z4 repeat transgene was performed 
using FastStart Taq DNA polymerase (Roche, Woerden, the Netherlands) with the following cycling 
conditions: initial denaturation for 10 minutes at 95 °C followed by 35 cycles of 20 seconds at 95 °C, 
30 seconds at 60 °C and 40 seconds at 72 °C, with a final extension step for 5 minutes at 72 °C. Next, 
the PCR products were ligated into the TOPO TA vector (Thermo Fisher Scientific, Bleiswijk, the 
Netherlands), followed by transformation of the ligation products into competent DH5α bacteria. 
Plasmid DNA from at least 10 individual colonies was isolated and sent for Sanger sequencing.   
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Chromatin immunoprecipitation followed by real-time quantitative PCR at D4Z4 

We followed a previously published protocol with minor modifications69. Confluent cultures of 
neonatal fibroblasts and spleen tissue minced into small pieces were used for these analyses. Both 
cells and tissues were crosslinked with 1% formaldehyde for 10 minutes at room temperature, after 
which the crosslinking reaction was stopped by adding 125 mM glycine for 5 minutes at room 
temperature. Next, fibroblasts were lysed in NP buffer (150 mM NaCl, 50 mM Tris-HCL (pH 7.5), 5 
mM EDTA, 0.5% NP-40, 0.1% Triton X-100). Spleen tissue was lysed in LB buffer (50 mM Hepes (pH 
7.5), 14 mM NaCl, 1 mM EDTA, 10% glycerol, 0.25% NP-40, 0.25% Triton X-100). The resulting 
chromatin was sheared in NP buffer using a sonicator bath (Bioruptor Pico; Diagenode, Ougrée, 
Belgium) for 30 minutes at maximum output and 30 seconds on/off cycles. The fragmentation 
between 200–2000 bp was confirmed through phenol-chloroform extraction followed by agarose 
gel electrophoresis. DNA concentrations were determined with the Nanodrop ND-1000 
spectrophotometer (Thermo Fisher Scientific, Bleiswijk, the Netherlands).  For the histone ChIP 
analyses, 3 µg of chromatin was used. For the Smchd1 ChIP analysis, 30 µg of chromatin was used. 
First, chromatin was precleared for 1 hour at 4 °C with blocked protein A Sepharose beads (GE 
Healthcare, Eindhoven, the Netherlands. Next, precleared chromatin was incubated overnight at 4 
°C with 5 µg of the following antibodies: H3K4me2 (39141; Active Motif, Carlsbad, USA), H3K9me3 
(39161; Active Motif, Carlsbad, USA), H3K27me3 (07-449; Merck, Amsterdam, the Netherlands), 
Smchd1 (ab31865; Abcam, Cambridge, United Kingdom), or mouse IgG (PP64; Merck, Amsterdam, 
the Netherlands). Immunoprecipitation was performed by incubating the antibody-chromatin 
mixture with blocked protein A Sepharose beads for 2 hours at 4 °C. Washing of the beads was 
performed according to the previously published protocol69. DNA was isolated with Chelex resin 
(Bio-Rad, Veenendaal, the Netherlands). Finally, quantitative PCR analysis was performed to amplify 
the D4Z4 repeat transgene45. The Gapdh promoter was amplified as a control. 

 

Statistical analyses 

Statistical analyses of the non-genomic data were performed with GraphPad Prism software 
(version 8; GraphPad Software, Inc., La Jolla, USA). The statistical tests that were performed are 
described in the figure legends. P<0.05 was considered significant. 

 

Genomics 

Genomic data have been deposited in the Gene Expression Omnibus and can be accessed under the 
accession GSE174113. 

All of the genomics datasets were analysed from the raw data stage concomitantly with all the other 
datasets to which they were compared. In the case of ChIP-seq in Smchd1GFP/GFP NSCs, RNA-seq in 
Smchd1MommeD1/MommeD1 or Smchd1fl/fl and Smchd1del/del NSCs, in situ Hi-C in Smchd1fl/fl and 
Smchd1del/del NSCs, these data were published previously. 

ChIP-seq 

Chromatin immunoprecipitation for Smchd1-GFP was performed exactly as described in 
Wanigasuriya, Gouil et al.12 in 4x107 cells from three independent primary NSC lines for each 
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genotype Smchd1GFP-MommeD43/GFP-MommeD43 and Smchd1GFP/GFP with 16ug of anti-GFP antibody 
(Invitrogen A11122). 
 
Chromatin immunoprecipitation for H3K27me3 was performed exactly as described in Jansz et al.14 
“ChIP for histone proteins”. 1x106 cells from the same cell lines as above were used with 2ug of anti-
H3K27me3 antibody (Cell Signalling technologies, C36B11). After pulldown, DNA was purified using 
a Zymo ChIP DNA clean and concentrator kit. 
 
Libraries were generated with an Illumina TruSeq DNA Sample Preparation Kit. 200- to 400-bp 
fragments were size-selected with AMPure XP magnetic beads. Libraries were quantified with a 
D100 tape in a 4200 Tapestation (Agilent). Libraries were pooled and sequenced on the Illumina 
NextSeq platform, with 75-bp single-end reads. 

ChIP-seq analysis 

Adapter trimming was performed with Trim Galore! v0.4.4 with Cutadapt v.1.1570, library QC was 
assessed with FastQC v0.11.8 before mapping with Bowtie2 v2.3.4.171 and Samtools v1.772 with 
default parameters to the GRCm38.p6 version of the reference mouse genome. BAM files were 
imported into SeqMonk v1.45.1 extending them by 150 bp to better represent size-selected 
fragments and peaks were called with the MACS style caller within the SeqMonk package (settings 
for 300 bp fragments, P < 1 × 10−5) by merging all three Smchd1GFP biological replicates and both 
WCE biological replicates into replicate sets. ChIP-seq tracks for the GFP ChIP were produced with 
SeqMonk by defining probes with a running window (width, 1000 bp; step 250 bp), doing a read-
count quantitation then normalizing by library size before doing a match distribution normalization 
within each replicate set and smoothing over 5 adjacent probes. For the Smchd1-GFP ChIP scatter 
plot, the same data was quantified only over the peaks (±5kb) published in Jansz et al.14, normalized 
by total library size log2-transformed counts with datasets from merged biological replicates (3 for 
each genotype). The H3K27me3 plot was produced the same way, using the lists of peaks from both 
genotypes produced as described above ±2.5kb, then merging any probes closer than 1kb. 

Reduced representation bisulphite sequencing (RRBS) 

Genomic DNA was extracted using a Qiagen DNeasy kit. RRBS was performed with 100ng of genomic 
DNA from each sample of female primary Smchd1MommeD43/MommeD43 and Smchd1+/+ NSCs (3 
independent cell lines of each genotype) with the Ovation RRBS Methyl-seq kit (NuGen) following 
the manufacturer’s instructions. The bisulphite conversion was performed with the EpiTect Fast 
Bisulfite Conversion kit (Qiagen) following the instructions. 

The libraries produced were were cleaned and size-selected with AMPure XP magnetic beads. 
Libraries were quantified with a D100 tape in a 4200 Tapestation (Agilent). Libraries were pooled 
and sequenced on the Illumina NextSeq platform with 75-bp paired-end reads73. 

RRBS analysis 

The fastq files were processed with TrimGalore! v0.4.4 with Cutadapt v1.1570 to remove Illumina 
adapter sequences. Custom adapter sequences from the Ovation RRBS kit were removed with the 
trimRRBSdiversityAdaptCustomers.py script provided on the manufacturer’s website. Trimmed 
libraries were processed with Bismark v0.19.074 with Bowtie2 v2.3.471 and Samtools v1.772. They 
were aligned to the GRCm38.p6 version of the mouse genome. 
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The bismark coverage files produced were then loaded into R v3.6.1 and processed using the 
methylKit v1.10 package75 (bismarkCoverage pipeline for CpG context), filtered by coverage 
(minimum 10 reads per base, maximum 99.9% percentile). The reported differences in methylated 
bases were obtained with the getMethylDiff function for a difference of at least 20% in methylation 
status with q-value<0.05 for significance. 

In situ Hi-C 

Three independent female NSC cell lines of each Smchd1GFP-MommeD43/GFP-MommeD43 and Smchd1GFP/GFP 
genotype were used to generate in situ Hi-C libraries exactly as previously described14 based on Rao 
et al.76, using MboI as a restriction enzyme. Libraries were sequenced on the Illumina NextSeq 
platform, with 75-bp paired-end reads.  

Primary-data processing was performed with HiCUP v0.7.277,  mapping reads to the mm10 mouse 
genome assembly. DIs were identified with diffHiC v1.16.078, which uses edgeR statistics79 (edgeR 
v3.26.8 and R v3.6.1). In brief, reads mapped and filtered with HiCUP were counted into 100-kb and 
1-Mb bin pairs. Noise was removed by filtering out low-abundance reads on the basis of a negative 
binomial distribution and with interchromosomal counts to determine nonspecific ligation events. 
Libraries were then normalized with LOESS normalization (the counts from the matrices’ diagonals 
were normalized separately to the rest), and trended biases were removed by fitting libraries to a 
generalized linear model. EdgeR was then used to test for differential interactions between 
genotypes, at either 100-kb or 1-Mb resolution, with a quasi-likelihood F test, and then adjustment 
was performed for multiple testing with FDR. To make a track of significant differential interactions 
for chromosome X, both sets of anchors were merged into a single 2-D track. 

Generation of Hi-C contact matrices. 

To construct the Hi-C interaction matrices of the Smchd1GFP-MommeD43/GFP-MommeD43 and Smchd1GFP/GFP 
genomes, we used TADbit v0.4.3980 with the original iterative mapping strategy ICE (mm10 
reference genome). The minimal size for mapping was set to 25 bp, and the iterative mapping 
procedure increased in steps of 5 bp until a maximal read length of 75 bp was reached. The reads 
were filtered with the apply_filter function from TADbit with the following parameters: maximum 
molecule length adjusted individually for each library to the longest insert in the 99.9% percentile, 
minimum distance to restriction site to be defined as a random break equal to 1.5 times the 
maximum molecule length, minimum fragment size of 150bp, too close to restriction site if within 
4bp of it and default settings for the other parameters. Once filtered, the read pairs were binned at 
100-kb or 1-Mb resolution, and columns containing few interaction counts were removed according 
to the two-step strategy described in Serra et al.80. The remaining bins were further normalized with 
ICE as implemented in TADbit. After checking the correlation between the 3 biological replicates of 
each genotype (Spearman correlation > 0.98), we merged the unnormalized reads into a single 
dataset for each of them. The new datasets were then normalized the same way. 

TAD detection on Hi-C contact maps. 

The merged interaction maps were used for domain detection at a 100-kb resolution. The TADbit 
program uses a breakpoint-detection algorithm that returns the optimal segmentation of the 
chromosome with a BIC-penalized likelihood81. TADbit was used to make the TAD alignment 
diagrams for chromosome 3, 6, 11 and X at 100kb resolution.  
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Compartment detection on Hi-C contact maps. 

The merged interaction maps were used for compartment detection at 1-Mb resolution. The TADbit 
program was used to search for compartments in each chromosome by computing a correlation 
matrix on the normalized matrix and by using the first eigenvector to identify compartments. TADbit 
was used to make the Eigenvector-difference plot for chromosome X. 

RNA-sequencing 

For RNA-sequencing in primary NSCs of the following genotypes: Smchd1MommeD43/MommeD43 vs 
Smchd1+/+ (FVB/NJ background) and Smchd1GFP-MommeD43/GFP-MommeD43 vs Smchd1GFP/GFP (C57BL/6) 
cells from the indicated number of independent lines were harvested at an early passage (£10) and 
RNA was extracted and treated with DNAse I with the Quick RNA kit (Zymo) as per the instructions. 
For PSM RNA-sequencing libraries, tissue was dissected from E8.5 embryos and E10.5 embryos 
respectively, as described in the relevant methods sections, snap-frozen, then treated the same way 
as the other samples. 100ng of total RNA was used to make libraries with the TruSeq RNA Library 
Prep kit v2 or the TruSeq stranded mRNA Library Prep kit following the manufacturers’ instructions. 
200- to 400-bp products were size-selected and cleaned up with AMPure XP magnetic beads. Final 
cDNA libraries were quantified with a D1000 or D5000 tape in the 4200 Tapestation (Agilent) and 
pooled for sequencing on the Illumina NextSeq platform, with 75-bp single-end reads. 

RNA-sequencing analysis 

Reads from the experiments mentioned above as well as previously published data from Chen et al. 
PNAS 2015 (Smchd1MommeD1/MommeD1 vs Smchd1+/+ RNA-seq in NSCs of FVB/NJ background; data 
available from GEO under accession number GSE65747) were trimmed for adapter sequences with 
TrimGalore! v0.4.4 with Cutadapt v2.970 then mapped with hisat2 v2.0.582; 83 to the GRCm38.p6 
reference assembly of the mouse genome. 

For the E8.5 PSM libraries and the E10.5 FNP libraries, the analysis was performed using SeqMonk 
v1.47.2 by importing the BAM files and using its RNA quantitation pipeline to create log2-
transformed counts normalized by library size and corrected for transcript length to obtain log2 
RPKM counts. Heatmaps of the log2 fold-change were made by subtracting the log2 RPKM counts 
from the control to the test dataset.  Differential gene expression analysis on FNP samples was 
performed with SeqMonk’s inbuilt EdgeR-based statistical test79 with an FDR cut-off of 0.05 after 
excluding sex chromosomes. 

Analysis of NSC RNAseq data from Smchd1MommeD43/MommeD43 vs Smchd1+/+, Smchd1GFP-MommeD43/GFP-

MommeD43 vs Smchd1GFP/GFP and Smchd1MommeD1/MommeD1 vs Smchd1+/+ was performed using limma 
v3.40.684 with edgeR v3.26.879 in R v3.6.1. Since these data were obtained from multiple 
experiments, we corrected for batch effects using technical replicates across batches as well as sex 
(all Smchd1MommeD1/MommeD1 cells are male since MommeD1 is an embryonic lethal mutation in 
homozygous females) and strain (FVB/NJ or C57BL/6). Linear models were fitted to the log2 CPM 
count matrices using voom with quality weights85. DEGs were determined using empirical Bayes’ 
moderated t-tests86 with an FDR cut-off of 0.05.  
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Gene Ontology analysis 

GO term analysis of the differentially expressed genes found in Smchd1MommeD43/MommeD43 
FNP RNA-seq was performed by uploading a list of those 56 genes to the geneontology.org GO 
Enrichment Analysis platform, looking for affected biological processes in Mus musculus. 
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