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Abstract 

How does the brain prioritize among the contents of working memory (WM) to 

appropriately guide behavior? Using inverted encoding modeling (IEM), previous work 

(Wan et al., 2020) showed that unprioritized memory items (UMI) are actively represented 

in the brain but in a “flipped”, or opposite, format compared to prioritized memory items 

(PMI). To gain insight into the mechanisms underlying the UMI-to-PMI representational 

transformation, we trained recurrent neural networks (RNNs) with an LSTM (long short-

term memory) architecture to perform a 2-back working memory task. Although 

visualization of LSTM hidden layer activity using Principal Component Analysis (PCA) 

suggested that stimulus representations undergo a smooth rotational transformation 

across the trial, demixed (d)PCA of the same data decomposed this pattern into a cascade 

of multiple trajectories, each with a different time course, unfolding within UMI and PMI 

subspaces. The application of the same analyses to the EEG dataset of Wan et al. (2020) 

indicated that an item’s trajectory through the UMI subspace closely mirrored that of the 

RNN, but that its trajectory through the PMI subspace differed markedly from the RNN. It 

may be a general principle that, at the level of the representational code, information held 

in WM undergoes priority-based transformations that allow for its retention while 

preventing it from interfering with concurrent behavior. Implementational details of this 

process may vary across model systems.  
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Author Summary 

How is information held in working memory (WM) but outside the current focus of 

attention? Motivated by previous neuroimaging studies, we trained recurrent neural 

networks (RNNs) to perform a 2-back WM task that entails shifts of an item’s priority 

status. Dimensionality reduction of the resultant activity in the hidden layer of the RNN 

allowed us to characterize how a stimulus item’s representation follows a transformational 

trajectory through high-dimensional representational space as its priority status changes 

from memory probe to unprioritized to prioritized. This work illustrates the value of 

artificial neural networks for assessing and refining hypotheses about mechanisms for 

information processing in the brain. 
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Introduction 

The ability to flexibly select and prioritize among information held in working 

memory (WM) is critical for guiding behavior and thought. For this reason, the neural 

mechanisms of attentional prioritization in WM have been extensively studied in recent 

years. Many studies of WM for visual material have reported that the prioritization of one 

item held in WM leads to a decrease in the activity level of the “unprioritized memory item” 

(UMI; Myers et al., 2017), sometimes to baseline levels (LaRocque et al., 2012; Lewis-

Peacock et al., 2011; Rose et al., 2016). Some have interpreted these results as consistent 

with the idea that whereas prioritized memory items (PMI) are held in an active state, UMIs 

may be maintained as “activity-silent” traces encoded in synaptic weights (Barak & 

Tsodyks, 2014; Stokes, 2015). Although this possibility remains a topic of vigorous debate 

(Christophel et al., 2018; Schneegans & Bays, 2017; Sprague et al., 2016; Stokes et al., 

2020), the present report does not relate directly to this question. Instead, of primary 

relevance here are more recent empirical results suggesting that, rather than producing a 

decline to baseline, deprioritization may produce a representational transformation of an 

item into a different, but still active, format. (We will return to a consideration of activity-

silent models in the Discussion.) 

Experimental tasks used to study prioritization in WM necessarily include multiple 

steps, such that the information not needed for the impending response (i.e., the UMI) 

might nevertheless be needed to guide a subsequent response. This is often done with 

retrocues. For example, van Loon and colleagues (2018) acquired functional magnetic 

resonance imaging (fMRI) data while first presenting subjects two target images 
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sequentially (e.g., first a flower then a cow), then indicating with a cue whether memory for 

the first or second presented image would be tested first. Had the cue been a “1”, subjects 

would next see a test array of six flowers and indicate whether the target flower appeared 

in the test array, and finally a test array of six cows. On this trial, the target cow spent time 

as UMI, because the cue indicated that memory for the flower would be tested first. When 

van Loon et al. (2018) applied multivariate pattern analysis (MVPA) to fMRI data from 

posterior ventral temporal lobe, they found that a decoder trained on trials when an item 

was a PMI performed statistically below chance when that item was a UMI. Furthermore, a 

representational dissimilarity analysis indicated that, within their set of 12 stimuli (four 

cows, four skates, four dressers), each item’s high-dimensional representation in one state 

(e.g., as a PMI) was maximally different from its representation in the other state (i.e., as a 

UMI). Using a similar retrocuing procedure, Yu, Teng and Postle (2020) found, with 

multivariate inverted encoding modeling (IEM) of fMRI data from early visual cortex, that 

the reconstructed orientation of a grating “flipped” when it was a UMI relative to a PMI 

(e.g., a 30º orientation reconstructed as 120º while a UMI). Furthermore, for data from the 

intraparietal sulcus (IPS), they observed that the IEM reconstruction of the location where 

an item had been presented also flipped when an item’s priority status transitioned to UMI.  

Shifts of priority are also characteristic of continuous-performance tasks, for which 

shifts of priority are dictated by task rules rather than by explicit cues. One example, which 

provided the impetus for the work presented here, is the 2-back WM task from Wan and 

colleagues (2020; Figure 1). Electroencephalography (EEG) signals were recorded while 

subjects viewed the serial presentation of oriented gratings and judged for each one 

whether it was a match or a non-match to the item that had appeared two positions 
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previously in the series. This task entails a predictable transition through priority states for 

each item: When an item n is initially presented, it serves as probe to compare against the 

memory of item n – 2; after the n-to-n – 2 decision is made, item n becomes a UMI while 

item n – 1 is prioritized for the upcoming comparison with n + 1. Next, once the n + 1-to-n – 

1 comparison is completed, item n becomes a PMI for its impending comparison with item 

n + 2. To analyze the EEG data, we trained an IEM on the raw EEG voltages from a separate 

1-item delayed-recognition task, and tested it on the delay periods separating n and n + 1 

and separating n + 1 and n + 2 (i.e., when item n assumed the status of UMI, then PMI). The 

results, reminiscent of van Loon et al. (2018) and Yu, Teng and Postle (2020), indicated 

that the IEM reconstruction of the UMI was “flipped” relative to the training data, then 

transformed again when its status transitioned to PMI (Figure 2).  We referred to the 

transition from PMI to UMI, and back, as “priority-based remapping” (rather than 

“recoding” or “code morphing”; c.f. Parthasarathy et al., 2017), reasoning that the IEM 

reconstruction of the UMI would fail if it were represented in a neural code different from 

the trained model. To gain mechanistic insight into this phenomenon, formal modeling is 

needed.  

Two computational models offer some insight into priority-based remapping. One 

model, by Lorenc and colleagues (2020), was designed to account for a similar flipped IEM 

reconstruction observed in an fMRI study using a retrocuing task. This approach was 

inspired by evidence from monkeys performing WM tasks, in which top-down signals from 

FEF were shown to alter several receptive field properties of neurons in extrastriate visual 

areas V4 and MT (Merrikhi et al., 2017). They created simulated data for training IEMs 

using the basis set that was employed for IEM reconstructions on empirical data, and 
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subsequently created a test dataset where the basis function parameters for memory 

strength, gain, receptive field width, and receptive field centers were varied. These 

parameters were then fitted to experimental data. Although this model reasonably 

reproduced the flipping of IEM reconstructions, its mechanistic interpretation was 

equivocal because multiple solutions fit the data similarly well (i.e., width modulation 

versus memory strength + gain modulation). Additionally, its implications for the PMI-to-

UMI transition are unclear, because the simulated “flipped” IEM reconstruction was 

obtained from the time period when the stimulus was no longer required for the task. A 

second model, from Manohar and colleagues (2019), simulated working memory 

performance in a network comprised of hard-coded feature-selective units and a pool of 

freely conjunctive units that can form a plastic attractor to keep one item, a PMI, in a state 

of elevated activity. When attention shifted away from an item (making it a UMI), it 

remained briefly encoded in a residual pattern of strengthened connections, and, under 

some conditions, inhibition from activity in other parts of the network produced an 

“inverted” representation of UMI. Although this model successfully reproduced other 

empirical findings using simulated data, such as the temporary reactivation of the UMI by a 

nonspecific pulse of excitation, it was not used to account for empirical neural data. From 

the perspective of the framework of Marr and Poggio (1976), both of the models reviewed 

above were intended to address the phenomenon of opposite results between UMI and PMI 

at the implementational level (e.g., why does the IEM reconstruction flip?). Our interest in 

this report, however, is not to understand how different conditions might influence the 

behavior of MVPA or IEM. Rather, our interest is at the algorithmic level of analysis: Are 

shifts in priority status accompanied by systematic transformations of neural 
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representation? Thus, although MVPA and IEM produced the results that gave rise to the 

priority-based remapping hypothesis, are poorly suited to evaluating it, because they don’t 

permit direct measures of neural representation (Gardner & Liu, 2019; Liu et al., 2018; 

Sprague et al., 2018, 2019). 

To address this question, we turned to artificial neural networks (ANNs), which 

have been playing an increasingly prominent role in providing mechanistic insights into, 

and generating novel hypotheses of, phenomena in cognition and neuroscience (Kell & 

McDermott, 2019; Mante et al., 2013; Richards et al., 2019; Sussillo et al., 2015; Yang et al., 

2019). In the current work, we use recurrent neural networks (RNNs) with an LSTM 

architecture (Hochreiter & Schmidhuber, 1997) to perform a 2-back WM task modeled on 

Wan et al., (2020). LSTMs can generate flexible behavior guided by long range temporal 

dependencies, and can solve complex tasks such as speech recognition (Graves et al., 2013) 

and machine translation (Sutskever et al., 2014). Moreover, LSTM might be a good model 

for WM tasks due to its gating-based architecture, reminiscent of the cortico-striatal 

mechanisms believed to gate information into and out of WM (Chatham & Badre, 2015; 

O’Reilly & Frank, 2006). 

Our approach was to train RNNs to perform the 2-back task, then first use Principal 

Component Analysis (PCA) of the activity of the RNN’s hidden layer to visualize its 

representational dynamics. This revealed a smooth rotational transformation of stimulus 

representations over the course of the trial (Figure 4). This trajectory was consistent with 

what would be expected of a series of priority-based transformations of representational 

formats as stimuli transitioned functional roles from memory probe to UMI to PMI. 
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However, PCA does not allow for the isolation and quantification of variation attributable 

to specific task dimensions (of particular interest here, priority status and the 

match/nonmatch decision). Therefore, we treated these observations as a hypothesis-

generating step, and carried out two additional sets of analyses. First, we established the 

validity of these hypotheses in the RNN data by submitting the data to demixed Principal 

Component Analysis (dPCA; Kobak et al., 2016) -- a procedure that allowed for the 

identification of dimensionality-reduced subspaces specific to the probe, UMI, and PMI 

states of representation, as well as one specific to the decision – then quantifying the 

geometric relations of these subspaces to one another as well as the temporal dynamics of 

the representational geometry within these subspaces. This yielded the final a priori, 

quantitative hypotheses that we tested with the EEG data from Wan et al. (2020). The 

results of these hypothesis tests provided novel insights about priority-based 

transformations of stimulus information that are carried out by the human brain. 

Methods 

Behavioral task 

 In each experimental block of the 2-back working memory task, both human 

subjects (N = 42) and RNNs (N = 10) were serially presented a sequence of stimuli drawn 

from a closed set of six different identities (128-stimulus blocks for humans, 20-stimulus 

blocks for RNNs). The task was to indicate, for each stimulus, whether or not it matched the 

identity of the stimulus that had been presented 2 positions earlier in the series. Each EEG 

subject performed 4 blocks and each RNN performed 200 blocks. 

Recurrent neural network (RNN) model 
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RNN architecture 

Ten RNNs with an LSTM architecture were trained and simulated using the Python-

based machine learning package PyTorch. Initially, networks consisted of 6 “orientation”-

selective input neurons and 7 LSTM hidden units (as provided by default in PyTorch), 

which were linearly rectified and linearly read out to a single output neuron (Figure 3). We 

employed the linear rectification to emulate the nonlinear relationship between subjects’ 

memory representations (as measured by EEG) and their decision outputs. Networks with 

other numbers of hidden units (up to 256) gave qualitatively similar results. Initially we 

chose to use 7 units because they are few enough to solve the task, and the network 

solutions (as evaluated by representational dynamics from the PCA visualization) were the 

most consistent across training instances). Subsequently, we repeated the procedure with 

RNNs with 60 LSTM hidden units, to match the dimensionality of our EEG data. 

Stimuli 

The identity of each stimulus presented to the network was denoted by an integer 

randomly generated between 1 and 6. The stimulus input took the form of a one-hot vector, 

with only the unit corresponding to the stimulus identity activated (e.g., [0, 0, 1, 0, 0, 0] for 

stimulus #3; we also explored RNNs trained on metrically varying input vectors following 

the basis function used to build IEMs in Wan et al. (2020), and these yielded similar results, 

see Supplementary Materials S1). To simulate the delay period in the human task, we 

installed 2 “delay” timesteps following the presentation of each stimulus (with an input of 

[0, 0, 0, 0, 0, 0]; no delay timesteps after the last stimulus in the sequence). A “stimulus 

event” consisted of the presentation of stimulus n and its following two delay timesteps. To 
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evaluate the UMI-to-PMI representational transition of stimulus n, we refer to the 

concatenation of each two consecutive “stimulus events” as a “trial”.  

The output unit took on a value at each timestep, with target output values of 0 

during each delay timestep, of 0 for stimulus presentation timesteps presenting a non-

matching stimulus (equivalent to withholding a response on a target-detection task), and of 

1 for stimulus presentation timesteps presenting a matching stimulus (i.e., a stimulus 

matching the item presented two items previously). Each block comprised 18 trials 

(because no delay period followed stimulus #20; the last trial contained stimulus #18 and 

#19), and only 16 trials were analyzed (because the first two stimulus events had no target 

outputs: not enough stimuli preceded them to have a match/non-match decision). We 

generated 200 random stimulus sequences for training the RNNs and 200 random 

sequences for testing the trained networks. Because the human 2-back task had a ratio of 

1:2 between match and non-match trials, we generated random sequences that satisfied 

the criterion that each sequence had to contain at least 5 match trials. The outcome was 

that training sequences had an average of 5.55 match trials (SD = 0.78) and testing 

sequences an average of 5.46 match trials (SD = 0.70).  

RNN training and testing 

Unit activity of the RNNs was initialized with 0, and weights and biases were 

initialized with random values. The RNNs were trained using the Adam stochastic gradient 

descent (SGD) algorithm for 5000 iterations (Kingma & Ba, 2017; learning rate = 10-3). In 

each iteration, a batch of 20 sequences was randomly selected (with replacement) from the 
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200 training sequences. The loss function minimized was the mean squared error between 

output activity and target output across all timesteps and sequences.  

After 5000 iterations of training, RNNs were tested on an independently sampled 

set of 200 stimulus sequences to assess generalization. The network’s performance 

accuracy was calculated as the percentage of trials (across all 200 sequences in the test set) 

on which the network made a correct response, where a response was deemed correct if 

the absolute difference between the activation of the output neuron and the target output 

was smaller than 0.5. For 7 hidden-unit networks, we set a criterion level of performance 

accuracy of 99.5%. Because individual networks revealed very similar network behavior 

and representational dynamics, we judged that successful training of 10 networks would 

be sufficient, and total of 12 networks were trained to achieve this subjectively determined 

number (i.e., 2 networks discarded). All RNNs trained had the same architecture, 

hyperparameters and training/testing sequences. The only thing that differs across 

networks is the random initialization of the RNN weights. For analyses, the activity 

timeseries of the LSTM hidden layer units from all 3200 trials (16 trials x 200 sequences) in 

the training data set were extracted for subsequent analyses. 

After analysis of the 10 successfully trained 7 hidden-unit networks, we repeated 

these training procedures and trained 10 RNNs with 60 units in the LSTM layer (batch size 

= 20, learning rate = 10-3, 1500 iterations), so as to generate RNN data matching the 

dimensionality of our EEG data sets. 

PCA visualization of the LSTM layer activity 
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We extracted from each network the activity of the 7 hidden units in the LSTM layer 

from all 200 training sequences and used Principal Component Analysis (PCA) to project 

these 7-dimensional activity patterns onto the top two dimensions accounting for the most 

variance across all training sequences and timesteps. We then visualized each stimulus n’s 

transition from probe to UMI to PMI within this subspace by plotting the dimensionality-

reduced activity across the 9-timestep time course of a trial. These 9 timesteps comprised 

the presentations of stimulus n, n + 1, n + 2 and the delay timesteps that followed each (i.e., 

delay 1:1 and delay 1; delay 2:1 and delay 2:2; and delay 3:1 and delay 3:2; Figure 4, 

“unlabeled” column).  (Note that, once a decision has been made about item n + 2, item n is 

no longer relevant for the task, and so the delay 3:1 and delay 3:2 timesteps illustrate the 

evolution of the representational structure of n after it has been “dropped from WM”.) To 

see how the representation of stimulus n evolves as it transitions from being a UMI to a 

PMI, we colored the activity patterns according to the identity of stimulus n (Figure 4, 

“stimulus” column).  As explained in the Introduction, the memory of stimulus n is a UMI 

during the delay period after the presentation of stimulus n (i.e., during delay 1:1 and delay 

1:2; because it is not needed for the upcoming n – 1-to- n + 1 comparison), then becomes a 

PMI during the delay period after the presentation of stimulus n + 1 (i.e., during delay 2:1 

and delay 2:2; in preparation for the imminent comparison with n + 2). We focused on the 

delay 1:2 and delay 2:2 timesteps (highlighted by blue and red squares) to characterize the 

UMI-to-PMI representational transformation. To visualize the representation of decision, 

we re-plotted the same activity patterns but colored them according to the correct 

response to the n-to-n + 2 comparison when n + 2 was presented (Figure 4, “decision” 

column). 
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WM-specific dimensionality reduction via dPCA 

Demixed principal component analysis (Kobak et al., 2016) was employed to 

identify dimensions of RNN and EEG activity relevant to the stimulus representation in 

WM. Unlike PCA, which seeks dimensions that maximize the total variance of the data 

regardless of task variables, dPCA allows one to parse out dimensions of variability specific 

to certain task variables (e.g., stimulus identity, decision). Given a task variable of interest, 

the dPCA algorithm does this by grouping neural activity patterns according to this variable 

and identifying dimensions that maximize between-group variance and minimize within-

group variance. Here, we used this method to identify dimensions of activity that were 

strongly modulated by the identity of the UMI or PMI during the delay period. 

To visualize the UMI neural representation, we first sought to identify dimensions 

along which neural activity was relatively stable over the delay period and also strongly 

dependent on the UMI stimulus identity. We thus estimated the UMI demixed Principal 

Components (dPC’s) by minimize the following loss function: 

 

where 𝑥𝑡
𝑠  is the neural activity at time t within the delay period averaged over all trials in 

which stimulus s (s in [1, 2, 3, 4, 5, 6]) was the UMI (trial averaging was necessary to 

average away noise), �̅�𝑠  is its temporal mean over the delay period, and �̅� is the global 

mean over all trials and delay period timepoints. We used delay 1:2 (for UMI) and delay 2:2 

(for PMI) for RNN and the second half of the delays (-1400ms to 0ms (for UMI) 2150ms to 

3550ms (for PMI) relative to stimulus N+1 onset) to find stimulus-specific dimensions. The 

N x D matrix 𝑉𝑈𝑀𝐼  is the so-called “encoding” weight matrix and the N x D matrix 𝑊𝑈𝑀𝐼   is 
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the “decoding” weight matrix, used for dimensionality reduction, where N is the 

dimensionality of the neural activity (7 for RNN, 60 for RNN and 60 for EEG data). This 

optimization problem is called a reduced-rank regression problem, and admits a closed-

form solution (Kobak et al., 2016). Because there are only 6 different UMI stimuli (and thus 

6 different �̅�𝑠  vectors), only up to D=5 dPC’s can be computed in this way (since the 

ordinary least-squares solution has rank 5). As in PCA, these dPC’s can be ordered in terms 

of the amount of variance they explain in the data. 

Because the task variable used for dPCA was the UMI stimulus, we call these dPC’s 

the UMI dPC’s, and call the subspace spanned by corresponding encoding vectors, 𝑉𝑈𝑀𝐼 , the 

UMI subspace. We also extracted PMI dPC’s, 𝑉𝑈𝑀𝐼 , 𝑊𝑈𝑀𝐼 , and a PMI subspace by exactly 

repeating the above operation but with the index s now indexing the PMI stimulus identity. 

For visualization purposes we used D=2 dPC’s to obtain 2-dimensional projections, 

𝑧𝑡
𝑠 of the neural activity. These projections were computed using the dPC decoders, 

 

It is these 2-dimensional vectors that are plotted in Figure 5 for the simulated RNN data (𝑥𝑡
𝑠  

is the internal LSTM state vector) and the EEG data (𝑥𝑡
𝑠  is the vector of EEG signals 

recorded at each channel; Figure 6).  

For estimating stimulus and decision subspaces (Figure 7), a slightly different loss 

function was employed. We sought to capture dimensions of decision variability across 

different stimuli. We expected that decision variability might depend on the stimulus 

identity of the probe, so in our dPCA analysis we aimed to capture decision related 
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fluctuations at each stimulus and timepoint. For stimulus dPC’s, we thus minimized the 

following loss: 

 

where 𝑥𝑡
𝑠,𝑑  is the is the neural activity at time t within the second half of the delay period 

averaged over all trials in which stimulus s was the UMI and response d (“match” or “non-

match”) was the decision made by the subject/RNN, 𝑥𝑡
𝑑  is its mean over stimuli, and �̅� is 

again the global mean over all trials and delay period timepoints. PMI dPC’s were computed 

by replacing the s index with an index of the PMI stimulus. Decision dPC’s were similarly 

computed by minimizing the following loss: 

 

Here, 𝑥𝑡
𝑠is the neural activity averaged over all decisions. We again used D=2, in accordance 

with previous analyses of WM subspaces (Panichello & Buschman, 2021). See 

“UMI/PMI/decision subspace analysis” section below on how the relationships between 

these subspaces were then quantified. 

Percent variance explained calculations were performed as follows. Percent global 

variance explained by the ith dPC, 𝑤𝑖 (i.e. the ith row of the decoder matrix W), was 

calculated using the corresponding column 𝑣𝑖  from the encoder matrix V by 

1 − 
𝔼𝑠,𝑡 [‖(𝑥𝑡

𝑠 – �̅�) − 𝑣𝑖𝑤𝑖
𝑇(𝑥𝑡

𝑠 − �̅�)‖
2

]

𝔼𝑠,𝑡[‖(𝑥𝑡
𝑠 – �̅�)‖2]

 

The percent stimulus variance explained was defined as 
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1 − 
𝔼𝑠,𝑡 [‖(�̅�𝑠 – �̅�) − 𝑣𝑖𝑤𝑖

𝑇(�̅�𝑠 − �̅�)‖
2

]

𝔼𝑠,𝑡[‖(�̅�𝑠 – �̅�)‖2]
 

 

Characterizing the dynamics of the UMI-to-PMI transformation 

To characterize the continuous dynamics of the UMI-to-PMI rotational 

transformation in stimulus-relevant dimensions, we quantified the evolving geometry of 

the UMI and PMI representations visualized in Figure 5 and 6 with two different scalar 

metrics. 

The first metric quantified how dispersed these points were from each other: 

 

In Figure 5C and 6C we plot this dispersion metric as a function of time, for both the 

low-dimensional projections, 𝑧𝑡
𝑠 computed from the UMI dPC’s and PMI dPC’s calculated 

according to equations 1 and 2. 

The second metric quantified the change in the UMI/PMI representation over the 

trial relative to time-averaged representation during the first half of the first delay. This 

change was quantified using a scalar, 

 

where 𝑧̅𝑠here refers to the time-averaged projection over the timesteps during the first half 

of the first delay (delay 1:1 for RNN and -2800 to -1400 ms relative to stimulus n + 1 onset 

for EEG). In Figure 5B and 6B we plot these best-fitting scalars as a function of time, using 
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both the low-dimensional projections, 𝑧𝑡
𝑠, computed from the UMI dPC’s and PMI dPC’s 

calculated according to equations 1 and 2. 

UMI/PMI/decision subspace analysis 

To quantify the relationship between UMI, PMI and decision subspaces calculated 

from equations 3 and 4, we used a metric developed by Panichello and Buschman (2021). 

This metric measures the alignment between corresponding pairs of dPC encoding vectors 

as follows: 

 

where the dot denotes the Euclidean dot product, and the bars denote absolute value. Here, 

𝑣1
𝑈𝑀𝐼 , 𝑣2

𝑈𝑀𝐼  are the 1st and 2nd UMI dPC encoding vectors, i.e. the two columns of the N x 2 

matrix 𝑉𝑈𝑀𝐼 . The analogous definition holds for the PMI and decision dPC’s: 𝑣1
𝑃𝑀𝐼 , 𝑣2

𝑃𝑀𝐼  are 

the columns of 𝑉𝑃𝑀𝐼; 𝑣1
𝑑𝑒𝑐 , 𝑣2

𝑑𝑒𝑐 are the two columns of 𝑉𝑑𝑒𝑐 . Note that under the standard 

dPCA formulation used by Kobak et al. (2016) and used here, the encoding vectors are all 

norm 1. These dot products can therefore be interpreted as cosines of angles between the 

pairs of vectors, and the subspace alignment metric can be interpreted as a product of two 

cosines. 

To turn this metric into an angle, we took the inverse cosine of each alignment 

metric in equations 7, 8, 9. These are the angles plotted in Figure 7. 

EEG dataset 
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The experimental protocol for the Wan et al. (2020) EEG study (the data from which 

was analyzed in this paper), along with the informed consent form, was approved by the 

University of Wisconsin–Madison Health Institutional Review Board (protocol no. 2016-

0500). Prior to each experimental session, informed consent was obtained by lab personnel 

listed on the IRB-approved protocol. 

60-channel EEG data were acquired and preprocessed as per procedures described 

in Wan et al. (2020). Raw EEG voltages were used for all analyses. Because data from the 

pilot and replication experiments from Wan et al. (2020) yielded very similar IEM 

reconstruction results, they were combined to yield a dataset of 42 subjects. As is the case 

with the RNN data, after excluding the first two stimuli from each block there were 126 

stimulus events and hence 125 trials per block (Figure 2). Each stimulus event (stimulus 

presentation followed by a delay) lasted 3550 ms. A third of the trials in each block were 

‘match’ trials and the other two thirds were ‘non-match’ trials. EEG data from all trials 

(both correct and incorrect) were included in the analyses. For each stimulus n, during the 

delay period after its onset, stimulus n – 1 had the status of PMI and n had the status of 

UMI. 

 

Results 

Behavioral results of EEG study 

Mean accuracy was 86.1% (SD = 5.6%), mean d’ was 2.40 (SD = 0.65), and mean 

response time was 0.82 s (SD = 0.18 s). 
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PCA of LSTM activity patterns 

PCA was carried out on the 7D LSTM hidden layer activity from the training data, 

and the resultant dimension-reduced activity from all 3200 trials projected onto the 2D-

space constructed by the first 2 principal components (Figure 4, “unlabeled” column). This 

revealed that representations tended to cluster into band-like manifolds that appeared to 

rotate over the course of the trial (i.e., from timestep n to timestep n + 2). Next, to get a 

sense of the stimulus representational structure and how it evolves over time, we colored 

the data points for each trial according to the identity of stimulus n (Figure 4, “stimulus” 

column). This revealed that, across trials, stimulus representations were organized into 

stimulus-specific “stripes” that at some timesteps cut across the band-like manifolds (delay 

1:1 and delay 1:2), and at others were perfectly overlaid on them (delay 2:1 and delay 2:2). 

These “stripes” thus defined a stimulus-coding axis. (That is, a stimulus’s identity can be 

read out based on its location along this axis. A schematic illustration of this axis is 

superimposed on some of the timesteps from Figure 4, “stimulus” column, with a black 

dotted line.) It is noteworthy that, at timestep n + 2, the configuration of individual trials is 

different than at timestep n. This reflects that fact that items serve different functions at 

these two timesteps – probe at timestep n and memorandum at timestep n + 2. Indeed, if 

one were to re-color timestep n + 2 according to stimulus n + 2’s identity, this frame would 

be identical to the configuration of stimulus n at timestep n, which means that n + 2 and n 

are in opposite locations in PCA space (e.g., in Figure 4, the azure-colored stimulus trials 

occupying the right side of PCA space at timestep n are on the left side of the space at 

timestep n + 2).  
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Finally, to get a sense of the decision representational structure, we colored each 

data point according to whether or not it would require a response of “match” at the end of 

the trial (i.e., at timestep n + 2; Figure 4, “decision” column). This revealed that, when n is 

compared with n + 2, trials requiring a “match” response converged onto the two central 

band-like manifolds, whereas non-match trials the flanking manifolds. This organization 

thus defined a decision-coding axis, in that the output required for a stimulus can be read 

out based on its location along this axis. A schematic illustration of this axis is 

superimposed on some of the timesteps from Figure 4, “stimulus” column, with a black 

dotted line). 

Over the course of a trial, n’s stimulus-specific axis appeared to rotate 

counterclockwise (in the PCA plane) as it transitioned from UMI (during delay 1:1 and delay 

1:2) to PMI (during delay 2:1 and delay 2:2). This likely reflects, in part, transitions between 

the functional roles of probe (timestep n), then UMI, then PMI. Thus, we can hypothesize 

the following functional account of the representational trajectory through a trial of, say, an 

azure-colored stimulus from Figure 4. At timestep n, its representational structure puts it 

on one of the central bands if it matches item n – 2 (and therefore elicits an output of [1]), 

or on a band to the right of center if it does not match item n – 2. These two locations align 

with the decision-coding axis. Next, as it acquires the functional status of UMI, it transitions 

to a configuration that is not compatible with decision-making, as evidenced by the fact 

that every azure stimulus is located along a “stripe” that is parallel to the decision-coding 

axis (stated another way, the stimulus-coding axis at timestep n + 1 is orthogonal to the 

decision-coding axis). During delay 2:1 and delay 2:2 the item’s representation continues to 

rotate in the same counterclockwise direction, trajectory that brings it back into alignment 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.05.13.443973doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443973
http://creativecommons.org/licenses/by/4.0/


22 
 

with the decision axis, but now on the “opposite side” of the PCA space, reflecting the fact 

that it is a PMI. (I.e., for azure items, probes cluster on the right side of PCA space, PMIs on 

the left side.) At timestep n + 2, the band occupied by this item will depend on its 

match/nonmatch status. From this we can further hypothesize that the function of this 

rotational trajectory might be to prevent the remembered representation of n from 

influencing the n – 1 versus n + 1 decision (at timestep n + 1).   

Whatever the intuitive appeal of these hypotheses, they can’t be assessed 

quantitatively because the PCA didn’t allow for the direct comparison of representational 

geometries between functional states. This is because the PCA had no information about 

stimulus identity (or any other task variables of potential interest). 

dPCA of LSTM activity patterns  

 Unlike PCA, dPCA would allow for the identification of subspaces in the data that are 

specific to stimulus representation. We performed dPCA at multiple timesteps to obtain 

snapshots of stimulus representational geometry at different points in time. More 

specifically, it would identify the dimensionality-reduced subspace occupied at timesteps of 

interest. This would allow us to test quantitatively the hypothesis that, for a given item n, 

its representational format while a UMI is incompatible for readout for the decision about n 

+ 1, and that it then transitions into a format that is amenable for readout for the decision 

about n + 2.  

RNN with 7 LSTM units 
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 To isolate the transformations observed in the PCA (Figure 4), we applied dPCA to 

the 7D data from the RNNs to identify the top two UMI-selective dPCs (at the delay 1:2 

timestep) and the top two PMI-selective dPCs (at the delay 2:2 timestep. The first and 

second dPCs of the UMI subspace accounted for 92.0% and 4.2% of the total stimulus 

variance of the trial-averaged data, respectively. The first and second dPCs of the PMI 

subspace accounted for 97.4% and 2.4% of the total stimulus variance, respectively (see 

Supplementary Materials S2 for additional information). Comparison of the UMI mean (i.e., 

timestep delay 1:2 in UMI row of Figure 5A) and the PMI mean (i.e., timestep delay 2:2 in 

PMI row of Figure 5A) in the same subspace showed that although both represent stimulus 

identity along their 1st dPC, they do so in reversed order (i.e., for the network illustrated in 

Figure 4A, in both subspaces, the ordering along the 1st dPC of delay 1:2 is orange-yellow-

purple-pink-teal-green, and the ordering along the 1st dPC of delay 2:2 is green-teal-pink-

purple-yellow-orange). (Note that for RNN simulations, stimuli were not metrically related, 

and so, e.g., the ordering of colors was different for each network’s UMI mean. Nonetheless, 

for every network this ordering was reversed for PMI mean relative to UMI mean.) 

Iteratively projecting trial-averaged activity from each timestep on onto these two dPC 

subspaces suggested that the evolution of stimulus representational format across the trial 

is such that its projection onto the 1st dPC of the PMI – the axis that is critical for readout of 

the memory item against which the impending probe is to be compared -- is minimal at 

timestep n + 1. 

Quantitative elements of the representational trajectory across the trial are 

captured by the scaling parameter of each timestep relative to a subspace, which captures 

the rate and direction of change, and the dispersion of means at each timestep, which 
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indexes relative discriminability. Relative to the UMI subspace (i.e., the dPCA of timestep 

delay 1:2), an item’s representational format was relatively stable (i.e., unchanging) for the 

first half of the trial, then, after timestep n + 1, shifted to a steady rate of transformation for 

the remainder of the trial, with the 0-crossing of the scaling parameter (indicating the 

reversal of the stimulus coding axis) occurring at timestep delay 2:1. Across this trajectory, 

individual stimulus identities first expanded, then contracted to a minimum dispersion 

value (i.e., point of least discriminability) at timestep delay 2:1, then expanded again 

(Figure 5C). Relative to the PMI subspace, in contrast, the process of representational 

transformation began early in the trial -- at timestep delay 1:1 -- and continued at roughly 

the same rate for the remainder of the trial. Across this trajectory, stimulus identities first 

contracted -- achieving their lowest dispersion values at timesteps delay 1:2 and n + 1 -- 

then expanded dramatically across timesteps delay 2:1 and delay 2:2; Figure 5F). Together, 

these results confirm that an item’s representational transformation across the trial 

proceeds at a relatively steady rate (consistent with the smooth rotation observed with the 

PCA (Figure 3)), via a trajectory that minimizes discriminability at timestep n + 1, thereby 

achieving the goal of minimizing the likelihood that the UMI can interfere with the decision 

about item n + 1.  

RNN with 60 LSTM units 

Although the results from the 7D RNN data produced quantitative predictions about 

the priority-based transformation of information held in WM, their direct applicability to 

the EEG data from Wan et al. (2020) would be complicated by the difference in 

dimensionality between the two datasets. Therefore, our next step was to repeat the 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.05.13.443973doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443973
http://creativecommons.org/licenses/by/4.0/


25 
 

procedure described up to this point, but with 10 RNNs with 60 LSTM units each. Results 

with the resultant 60D data would constitute the hypotheses that we would then test with 

the EEG data from Wan et al. (2020). 

10 networks were trained in order to generate 10 that performed the 2-back task 

at > 99.5% correct. dPCA of the resultant 60D data from the RNNs identified the top two 

UMI-selective dPCs (at the delay 1:2 timestep) and the top two PMI-selective dPCs (at the 

delay 2:2 timestep). The first and second dPCs of the UMI subspace accounted for 78.7% 

and 15.1% of the total stimulus variance of the trial-averaged data, respectively. The first 

and second dPCs of the PMI subspace accounted for 86.1% and 9.9% of the total stimulus 

variance, respectively (see Supplementary Materials S2 for additional information).  

Results with the 60D RNN data also served as the hypotheses that we would test on 

the EEG data from Wan et al. (2020), and so are organized here in terms of hypothesis.  

• Comparison of UMI mean vs. PMI mean (i.e., timestep delay 1:2 of Figure 5D vs. timestep 

delay 2:2 of Figure 5D in both UMI and PMI rows). As with the 7D RNN data, ordering of 

stimulus identity along their first dPCs was reversed.  

• Scaling across the trial, relative to UMI subspace. The scaling parameter increased at a 

relatively slow rate from timestep n to delay 1:2, then decreased for the remainder of the 

trial, reversing sign timestep delay 2:1 (Figure 5E).  

• Dispersion across the trial, relative to UMI subspace. The 60D RNN data showed a pattern 

of expansion from timestep n to timestep delay 1:2, then contraction until reaching it 
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minimum dispersion value at timestep delay 2:1, before rebounding slightly at timestep 

delay 2:2 (Figure 5F). 

• Scaling across the trial, relative to PMI subspace. The scaling parameter was relatively flat 

from timestep n to delay 1:2, then decreased at a steady rate for the remainder of the trial, 

reversing sign at timestep n + 1 (Figure 5E).  

• Dispersion across the trial, relative to PMI subspace. Dispersion value of the 60D 

representation was low, and unchanging, from timestep n to timestep n + 1, before rapidly 

expanding across timesteps delay 2:1 and delay 2:2. 

• Relative orientation of subspaces. In addition to minimizing discriminability, a second way 

to minimize the ability of the UMI to interfere with the processing of n + 1 would be to 

orient its subspace orthogonal to the probe subspace. Indeed, an angle of 82.87 (SD = 

5.32) separated the UMI and decision subspaces. In contrast, the PMI and decision 

subspaces were separated by a much smaller angle of 35.10 (SD = 6.08), consistent with 

the prediction from the PCA (Figure 3) that, as the time of presentation of item n + 2 drew 

near, the PMI was rotating into an orientation that would facilitate the n vs. n + 2 

comparison. The angle separating the UMI and PMI subspaces was 85.09 (SD = 2.74). 

dPCA of EEG activity patterns  

The EEG data from Wan et al. (2020) were markedly noisier than the RNN data: The 

first and second dPCs of the UMI subspace accounted for 45.4% and 23.7% of the total 

stimulus variance of the trial-averaged data; and the first and second dPCs of the PMI 
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subspace accounted for 46.2% and 23.2% of the total stimulus variance of the trial-

averaged data.  

Hypothesis tests: 

• Comparison of UMI mean vs. PMI mean (Figure 6A). The circular organization of the six 

stimuli meant that their distribution relative to the 1st dPCs would not be expected to align 

along their 1st dPC in a manner similar to the RNN data. Nonetheless, inspection of the data 

from a representative subject (Figure 6A) shows no suggestion of a reversal akin to what 

was observed in the RNN data.  

• Scaling across the trial, relative to UMI subspace. The trajectory of the scaling parameter 

qualitatively matched that from the 60D RNN, increasing from timestep n to delay 1:2, 

holding a constant value across timesteps delay 1:2 and n + 1, then decreased for the 

remainder of the trial. Unlike the RNN data, however, the scaling parameter never reversed 

sign (Figure 6B).  

• Dispersion across the trial, relative to UMI subspace. The time course of dispersion was 

also qualitatively matched to that from the 60D RNN, expanding early in the trial, 

plateauing across late delay 1 and the processing of item n + 1, then contracting for the 

remainder of the trial (Figure 6C). 

• Scaling across the trial, relative to PMI subspace. The trajectory for the EEG data was a 

steady increase from timestep n to delay 1:2, after which the scaling parameter was 

unchanged for the remainder of the trial (Figure 5E). This indicates that stimulus 

representations begin transforming toward their configuration in the PMI subspace and 
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fully achieve it by epoch n + 1 (at which time they have UMI status), then maintain this end-

state configuration for the remainder of the trial. This trajectory is opposite of the 60D 

RNN, for which configuration relative to the PMI was unchanging until after delay 1:2, then 

rapidly changing across the second half of the trial. Also different from the RNN, the EEG 

scaling trajectory did not reverse sign.  

• Dispersion across the trial, relative to PMI subspace. The stimulus representation expanded 

at a steady rate across almost the entirety of the trial, before asymptoting during delay 2. 

This is also markedly different from the pattern observed with the 60D RNN, for which the 

dispersion time course closely followed its scaling time course. 

• Relative orientation of subspaces. An angle of 73.62 (SD = 12.73) separated the UMI and 

decision subspaces, and an angle of 75.72 (SD = 13.93) separated the PMI and decision 

subspaces, a finding inconsistent with the pattern observed with the 60D RNN. The angle 

separating the UMI and PMI subspaces, 60.70(SD = 19.02), was markedly smaller that for 

the RNN data. 

Discussion 

Results from previous neuroimaging studies have given rise to the idea that 

representations in working memory undergo a “priority-based remapping” when they 

obtain the status of UMI (van Loon et al., 2018; Wan et al., 2020; Yu, Teng & Postle, 2020), 

but the mechanism underlying this transformation was unknown. Here, using neural 

network modeling and dimensionality reduction techniques, we have identified a transition 

through representational space that may reflect a general solution to the computational 
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problem of needing to hold information in an accessible state (i.e., “in WM”) but in a 

manner that won’t influence ongoing behavior. However, noteworthy differences between 

RNNs and human EEG suggest important differences in implementational specifics, 

highlighting important questions for future work. 

The 2-back task requires information to evolve through three distinct functional 

states: a probe requiring comparison with the mnemonic representation of item n – 2 and 

an overt match/nonmatch report; unprioritized (a state that should minimize interference 

with the concurrent n – 1 vs. n + 1 comparison and report); and prioritized. PCA of hidden-

layer activity of RNNs underwent a smooth rotation through 180 of the 2D space defined 

by the first two PCs. dPCA of RNNs characterized distinct subspaces corresponding to these 

states, and the trajectories between them. For the 60D RNN data, the UMI and decision 

subspaces were separated by mean angle of 82.87, consistent with an orthogonal 

orientation that would minimize the influence of the UMI on concurrent processing of the 

probe. By contrast, the PMI and decision subspaces were separated by an angle of just 

35.10, consistent with close alignment that would facilitate comparison of the two.  

The organization of these functional subspaces is reminiscent of recent findings 

from nonhuman primates performing a retrocuing WM task. Subjects first encoded two 

stimuli – one above fixation and one below -- into WM, then viewed a cue indicating which 

one to report. Prior to the cue, PCA indicated that the above and below items were initially 

represented in subspaces of neural activity separated by a median angle of 79.1, but that 

after the cue, the selected item transitioned into a different subspace, and the selected-

from-above and the selected-from-below subspace were closely aligned -- separated by only 
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20.1. They interpreted this as a transition of the selected item from a representational 

format that emphasized the distinction between the two items to a “template” format that 

abstracted over location (no longer a relevant parameter) and facilitated read-out 

(Panichello & Buschman, 2021). In our 2-back task, the UMI-to-PMI transition can be 

understood as the implicit selection of the UMI that occurs after a response is made to item 

n + 1. An important difference between our 2-back task and the retrocuing task of 

Panichello and Buschman (2021), however, is that their task lacked a UMI state. Rather, 

after the retrocue, there was no possibility that the uncued item might be needed. 

Nonetheless, in the PFC, a representation of the uncued item persisted, and its uncued 

subspace was orthogonal to the template subspace. Therefore, one important question for 

future work is whether, and if so how, the transition to UMI differs from the transition to 

no-longer-needed (i.e., “dropping” an item from WM).   

Although the EEG data also showed a progression through priority states, only parts 

of its transformational trajectory resembled that of the RNN data. In particular, human 

subjects seemed to have recoded item n into its UMI and PMI configuration simultaneously, 

then prepared for n + 2 by collapsing the UMI subspace during delay 2. Perhaps relatedly, 

whereas UMI and PMI subspaces in the RNN data were separated by an angle of 85 

(approaching orthogonality), in the EEG data there were separated by an angle of only 60, 

indicating considerable overlap. (Although we currently do not have an understanding of 

why the PMI subspace evolves differently in EEG relative to RNN, its overlap with the UMI 

subspace may help explain why, with fMRI and EEG data, multivariate models trained on 

the PMI can successfully recover information about the UMI (van Loon et al., 2018; Wan et 

al., 2020; Yu, Teng & Postle., 2020). 
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It is important to note that the RNN modeling is not intended to simulate EEG data, 

nor the human brain, which has vastly different structural and functional architecture from 

our RNNs. For example, because of the relative simplicity of the RNN architecture, and the 

absence of many sources of noise that are characteristic of EEG (e.g., physiological noise, 

uncontrolled mental activity, measurement noise), the variability and SNR of the two 

signals differ markedly. This limits what can be interpreted from direct comparisons 

between the two sets of results. Nonetheless, an important role for these RNN stimulations 

has been to establish the validity and interpretability of our approach with dPCA. This, in 

turn, allowed us to use dPCA to evaluate neural coding in an EEG data set in which 

multivariate methods failed to find evidence for an active representation of the PMI (Figure 

2). It may be this approach, or one like it, will be helpful with other data sets for which the 

absence of multivariate evidence has led to speculation about putative activity-silent 

mechanisms in WM. 

It is also important to note that the RNNs we simulated have a simple architecture, 

with a homogeneous LSTM layer, which is, of course, very different from the brain with its 

heterogeneous patterns of connectivity between neurons with varied functional and 

structural properties. The RNN simulations of Masse et al. (2019), employing different cell 

types and explicitly simulating factors like receptor time constants and presynaptic 

depletion of neurotransmitter, offer one promising example for developing more 

biologically plausible models. Also missing from our RNN architecture is an explicit source 

of control, such as that exerted by prefrontal and posterior parietal circuits in the 

mammalian brain. Through extensive training, our RNNs gradually learned to adjust their 

connection weights so as to achieve a high level of performance, but this was only possible 
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because each item presented to the network always followed the same functional 

trajectory (probe, then UMI, then PMI). A hallmark of WM in the real world is the ability to 

flexibly respond to unpredictable changes in environmental exigencies. Thus, an important 

future goal will be to extend the present work to a network with separate modules with 

different connectivity patterns and governed by different learning rules (e.g., Kruijne et al., 

2020; O’Reilly & Frank, 2006), and to a task that requires truly flexible behavior.  

Our work complements extant models of attentional prioritization in WM. First, it 

sheds light on the prioritization mechanisms of a continuous-performance WM task (2-

back), a design that has recently received less attention than tasks employing retrocuing. 

Second, compared with the aforementioned computational accounts (Lorenc et al., 2020; 

Manohar et al., 2019), our use of dPCA provides a data-driven dimensionality reduction 

approach that does not make assumptions about the representational structure of stimuli. 

This allows one to examine the unmodeled structure of stimuli in the representational 

space. Third, our dPCA analyses were applied on a subject-by-subject basis, without 

assuming that the same representational and/or computational scheme is employed across 

individuals. Indeed, recent research has shown that representational biases of stimulus 

features vary among individuals in higher-order brain areas (Gong & Liu, 2020). Therefore, 

this approach may be helpful for explaining individual differences across many types of 

cognition. 

To conclude, we used ANN simulations to validate the idea, at the level of 

representational codes, that shifts of priority status trigger the transformation of stimulus 

representations in WM. Applying dimensionality reduction to activity patterns from LSTM 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 28, 2022. ; https://doi.org/10.1101/2021.05.13.443973doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443973
http://creativecommons.org/licenses/by/4.0/


33 
 

units in RNNs revealed the organization of functionally specific subspaces, and the 

trajectories between them. This approach translated to EEG data from subjects performing 

the same task, revealing similarities and differences between human and machine, and 

highlighting fruitful directions for future research.  
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Figure 1. 2-back task structure in the Wan et al. (2020) EEG study. The presentation of 

each stimulus is followed by a 50 ms blank screen, a 200 ms radial checkerboard mask, a 

variable delay from 2.8 to 3.2 s (only the first 2.8 s, which is common to all stimulus events, 

was used for analysis), and then the next stimulus was presented, upon which the match vs. 

non-match response is to be made. 
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Figure 2. IEM reconstruction of the 2-back task. In IEM, voltage from each EEG electrode is 

construed as a weighted sum of responses from six orientation channels (modelled by a 

half-wave-rectified sinusoid raised to the 6th power), each tuned to a specific stimulus 

orientation, comprising the basis set. Left panel: IEM reconstruction of the stimulus during 

the delay in a separate one-item delayed-recognition task. This model was used to 

reconstruct the stimulus in the 2-back task.  Right panel: Concatenation of the item n and 

item n + 1 stimulus events to form a trial, across which n transitions from probe to UMI to 

PMI in the 2-back. On the right are IEM reconstructions corresponding to the two 2 s 

windows centered in the 2.8 s post-mask ISIs before and after item n + 1, respectively. “*” 

indicates p < .01 (two-tailed t test), FDR-corrected for multiple comparisons. As the figure 

shows, IEM reconstruction of stimulus n is “flipped” relative to the training data (IEM 

reconstruction from delayed recognition) when it is a UMI and transformed again when its 

status becomes PMI, demonstrating priority-based remapping. For delayed-recognition 

IEM reconstruction (940 – 1040 ms from stimulus onset), t(41) = 4.12, p < 0.001. For UMI 

reconstruction of 2-back (-2400 – -400 ms relative to n + 1 onset), t(41) = -3.02, p = 0.009; 

for PMI reconstruction of 2-back (1150 – 3150 ms from n + 1 onset), t(41) = -1.60, p = 

0.117.  
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Figure 3. RNN model architecture. (A) One-hot vectors corresponding to each of the 6 

stimulus types are fed into the input layer, which projects to an LSTM layer with 7 hidden 

units. This hidden layer in turn projects to an output unit with a binary target activation (0 

= non-match, 1= match). (B) Example input and target output sequences. Two delay 

timesteps were installed after each stimulus presentation timestep to emulate the delay 

period in the 2-back EEG task. 
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Figure 4. PCA visualization of LSTM hidden layer activity of an example network (#7). 

Shown is a 9-timestep time course of the 2-back task, running from stimulus n to delay 3:2. 

Column 1 and 2: timestep labels and example input vectors. Column 3: Each dot in the 

figure indicates the representation of stimulus n. Column 4: Same as Column 3 but now 

each color corresponds to one of the six stimulus types, and the black dashed line 

illustrates the “schematic” stimulus coding direction. Column 6: Same as Column 5 except 

that the colors now correspond to an item’s status for the n-to-n + 2 comparison that occurs 

at timestep n + 2 (green: match trials, blue: non-match trials). Black dashed line at timestep 

n + 2 illustrates the decision-based structure. As can be seen in Column 5, the stimulus 

coding direction rotates counterclockwise (in the image plane) over time such that it 

becomes “perpendicular” to the decision structure at timestep n + 1 and aligns with it at 

timestep n + 2. 

 

 

 

 

Figure 5. (A) the stimulus averages of RNN hidden layer activity projected into UMI and 

PMI subspaces over the course of a trial (stimulus n to delay 2:2) for an example 7-unit 

network. On the right, the time courses of (B) scaling value and (C) dispersion metric that 

capture the representational transformation. Blue vertical line indicates the presentation of 

stimulus n + 1. Light blue shading shows the timesteps that were used to identify the dPCs. 

The gray shading around the curve shows standard error from all 10 trained RNNs. (D, E, F) 

Same as (A, B, C) but for the 60-unit RNNs. 
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Figure 6. (A) the stimulus averages of EEG signal projected into UMI and PMI subspaces 

over a 2-delay time course (-2800ms to 3550ms relative to stimulus n + 1 onset) for an 

example subject. Data points of adjacent stimulus angles are connected by a gray line. On 

the right, the time courses of (B) scaling value and (C) dispersion metric that capture the 

representational transformation. Blue vertical line indicates the onset of stimulus n + 1. 

Light blue shading shows the time windows that were used to identify the dPCs. The gray 

shading around the curve shows standard error from all 42 EEG subjects. 

 

 

 

 

Figure 7. Angles between UMI, PMI and decision subspaces for (A) RNN and (B) EEG data. 

Black bars show standard error. 
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Supplementary Materials 

 

 

Figure S1. Example RNN trained with input following the basis function used to build IEMs 

in Wan et al. (2020). Shown is the 2D visualization of the LSTM hidden layer activity of this 

RNN. This is identical to simulation reported in the main text except that the inputs are not 

one-hot vectors; instead, they are specified by the IEM basis function: 𝑅 = sin6(𝑥) (e.g., for 

stimulus #3, input vector is [0.0156, 0.4219, 1, 0.4219, 0.0156, 0]). Results are qualitatively 

similar to RNNs reported in the main text (Figure 4). 
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Figure S2. Cumulative percent variance explained (PEV) by top dPCs of the UMI and PMI 

subspaces for 7-unit RNN, 60-unit RNN and EEG data. The percentages of both stimulus and 

global variance explained are shown. 
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