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Abstract 28 

Highly polymorphic interactions of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates 29 

the effector functions of natural killer (NK) cells and some T cells. This genetically determined 30 

diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts 31 

the course of cancer treatment, including transplantation. KIR3DL1 is an inhibitory receptor, and 32 

KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 33 

diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is 34 

hampered by complex sequence and structural variation that distinguishes individuals and 35 

populations, requiring targeted approaches to generate and analyze high-resolution allele data. To 36 

overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles 37 

at high-resolution from whole-genome SNP data, and designed to represent a substantial 38 

component of human genetic diversity. We show that our Global model is effective at imputing 39 

KIR3DL1/S1 alleles with an accuracy ranging from 89% in Africans to 97% in East Asians, with 40 

mean specificity of 99.8% and sensitivity of 99% for named alleles >1% frequency. We used the 41 

established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer 42 

cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-43 

genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 and HLA-A and B to be 44 

analyzed using complementary techniques on a single data source. The use of PONG thus negates 45 

the need for targeted sequencing data in very large-scale association studies where such methods 46 

might not be tractable. All code, imputation models, test data and documentation are available at 47 

https://github.com/NormanLabUCD/PONG. 48 

  49 
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Author Summary 50 

Natural killer (NK) cells are cytotoxic lymphocytes that identify and kill infected or malignant 51 

cells and guide immune responses. The effector functions of NK cells are modulated through 52 

polymorphic interactions of KIR3DL1/S1 on their surface with the human leukocyte antigens 53 

(HLA) that are found on most other cell types in the body. KIR3DL1/S1 is highly polymorphic 54 

and differentiated across human populations, affecting susceptibility and course of multiple 55 

immune-mediated diseases and their treatments. Genotyping KIR3DL1/S1 for direct medical 56 

application or research has been encumbered by the complex sequence and structural variation, 57 

which requires targeted approaches and extensive domain expertise to generate and validate high-58 

resolution allele calls. We therefore developed Pulling Out Natural Killer Cell Genomics (PONG) 59 

to impute KIR3DL1/S1 alleles from whole genome SNP data, and which we implemented as an 60 

open-source R package. We assessed imputation performance using data from five broad 61 

population groups that represent a substantial portion of human genetic diversity. We can impute 62 

KIR3DL1/S1 alleles with an accuracy ranging from 89% in Africans and South Asians to 97% in 63 

East Asians. Globally, imputation of KIR3DL1/S1 alleles having frequency >1% has a mean 64 

sensitivity of 94% and specificity of 99.8%. Thus, the PONG method both enables highly sensitive 65 

individual-level calling and makes large scale medical genetic studies of KIR3DL1/S1 possible.  66 

 67 

  68 
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Introduction 69 

The KIR3DL1/S1 gene encodes highly polymorphic receptors that are expressed by natural killer 70 

(NK) cells and some T cells to modulate their effector functions in immunity (1, 2). The receptors 71 

interact with HLA class I ligands that are expressed by most nucleated cells to signify their health 72 

status to the immune system (3, 4). KIR3DL1 allotypes are inhibitory receptors, specific for 73 

subsets of highly polymorphic HLA-A and B (5, 6). The KIR3DS1 allotypes are activating 74 

receptors, specific for non-polymorphic HLA-F and a smaller subset of HLA-A and B (7-9). 75 

Sequence diversity of KIR3DL1/S1 and HLA class I allotypes diversifies human immune 76 

responses to specific infections, cancers, cancer treatment and transplantation (10-19). 77 

Accordingly, this genetically determined diversity also associates with differential susceptibility 78 

and severity for multiple immune-mediated diseases (20-26). Although these factors render it 79 

imperative to genotype KIR3DL1/S1 allotypes accurately for medical research and applications 80 

that include therapy decisions (27, 28), the high complexity of the genomic region presents 81 

obstacles for standard ascertainment methods (29). The ability to impute alleles from whole-82 

genome SNP genotype (WG-SNP) data will decrease expense and effort, and greatly increase the 83 

capacity of research or applications where knowledge of KIR3DL1/S1 and HLA class I 84 

combinatorial diversity is critical. 85 

 86 

The KIR locus, on human chromosome 19, is highly divergent in sequence and structure (29). As 87 

defined by the extensively curated ImmunoPolymorphism Database (IPD), KIR3DL1/S1 has 220 88 

alleles characterized (release 2.10.0: December 2020), with large numbers continuing to be 89 

discovered (30). As observed for polymorphic HLA, the KIR3DL1/S1 alleles both distinguish 90 

individuals and characterize broad ancestral human populations (31, 32). As a likely consequence 91 
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of selective pressure providing resistance to infectious diseases (33), specific combinations of 92 

KIR3DL1/S1 and HLA associate, differentially across populations, with severity of specific viral 93 

infections or autoimmune diseases (34-41). Likewise, specific combinations of KIR3DL1/S1 with 94 

HLA class I influence cancer susceptibilities non-uniformly across populations (42). In this regard, 95 

two key areas of human health significantly impacted by the population differentiation of 96 

KIR3DL1/S1 and HLA combinatorial diversity are HIV research and treatment, and cancer 97 

therapy  (43-46). In particular, specific combinations of KIR3DL1/S1 and HLA allotypes influence 98 

rejection and relapse rates following transplantation (47-50). For these reasons, it is critical to 99 

establish methods for elucidating genetic variation in KIR3DL1/S1 that can accommodate the full 100 

range of human genetic diversity. 101 

 102 

KIR3DL1 specifically binds to subsets of HLA-A or B that carry a five amino acid motif, termed 103 

Bw4, on their external facing α1-helix (51). Expression of KIR3DL1 gives NK cells the ability to 104 

detect diseased cells that may have lost or altered expression of these HLA class I molecules, and 105 

likely serves as an immune checkpoint inhibitor for functionally mature T cells (52-54). KIR3DL1 106 

polymorphism, and polymorphism both within and outside the Bw4 motif of HLA affects the 107 

specificity and strength of the interaction (55-57). Polymorphism also determines the expression 108 

level or signal transduction abilities of the receptor (58, 59). KIR3DL1/S1 segregates into three 109 

ancient lineages (015, 005 and 3DS1) that have distinct expression and function phenotypes (31). 110 

The 015 lineage comprises inhibitory receptors having high expression and high affinity for 111 

Bw4+HLA-B. The 005 lineage are inhibitory receptors having low expression and preferential 112 

affinity for Bw4+HLA-A. The 3DS1-lineage are activating receptors specific for HLA-F and some 113 

Bw4+HLA-B allotypes expressed by infected cells (60-62). As defined by these phenotypes, the 114 
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lineages differentially associate with distinct pathological phenotypes (15, 63-65). Exceptions to 115 

these broad rules (e.g. 3DL1*007 belongs to the 015 lineage but has low expression) contribute to 116 

a hierarchy of receptor allotype strengths and reinforce the need to genotype KIR3DL1/S1 to high 117 

resolution (66-68). 118 

 119 

Multiple methods are available to impute HLA class I genotypes with high accuracy from WG-120 

SNP data (69-73). We chose to adapt one of these programs so that KIR3DL1/S1 and HLA-A and 121 

B genotypes could be imputed from the same data source, using an identical algorithm. In the 122 

current study we have adapted the HIBAG framework (73) to impute KIR3DL1/S1 alleles, in a 123 

modification we have named Pulling Out NK cell Genomics (PONG). There are two components 124 

to the process: 1) model building that employs machine-learning to determine which combinations 125 

of SNPs correlate with known alleles, and 2) imputation that uses this model to determine allele 126 

genotypes from study cohorts (73, 74). Construction of the imputation models required high-127 

resolution KIR3DL1/S1 alleles and WG-SNP data obtained from the same set of individuals. 128 

PONG thus serves as a complement to PING (Pushing Immunogenetics to the Next Generation), 129 

which can determine KIR3DL1/S1 alleles from high throughput sequence data (75). With a goal to 130 

create a model representing a substantial component of human genetic diversity, we compiled and 131 

rigorously tested the imputation using data from the 1,000 Genomes populations (76). The R 132 

package PONG is freely available, as are the data sets and imputation models described in this 133 

study.  134 

 135 

  136 
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Materials and Methods 137 

Method Overview 138 

KIR3DL1/S1 exhibits exceptional sequence polymorphism as well as variation in gene content 139 

(Figure 1A). Here, we adapted and optimized the framework of HIBAG (73) to impute 140 

KIR3DL1/S1 alleles, in a modification we have named Pulling Out NK cell Genomics (PONG). 141 

The development of PONG was focused on building a robust training model that could be used to 142 

impute unknown KIR3DL1/S1 alleles from WG-SNP data across diverse global populations. 143 

Training an imputation model requires an input of individuals having known KIR3DL1/S1 144 

genotypes, coupled with high-density SNP data from the KIR region, as typically obtained through 145 

whole-genome SNP analysis (Figure 1B). We optimized the process using 1,000 Genomes 146 

individuals, because we had previously determined their KIR3DL1/S1 alleles (77) and high density 147 

SNP data is available from this cohort (76). We distributed the 1,000 Genomes individuals into 148 

the designated five major population groups (termed ‘superpopulations’ by 1,000 Genomes): 149 

Africa and African-descent (AFR), Americas (AMR), East Asia (EAS), Europe (EUR) and South 150 

Asia (SAS). We first optimized the model building parameters using the EUR group. We randomly 151 

divided each population group into two parts, building an imputation model using the first part and 152 

testing the imputation accuracy with the second part. We then built a global model by combining 153 

all the 1,000 genomes individuals and repeating the process. Finally, we tested the global model 154 

on an independent population having both high-resolution sequence and WG-SNP data. 155 

 156 

Samples and Genomic Data  157 

We obtained high density SNP data for the KIR genomic region (chromosome 19: 55247563 – 158 

55361930, Hg19) from the 1,000 Genomes Project Phase 3 individuals (76). The data had been 159 
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obtained using the Illumina Omni 2.5 platform, which has 4,093 SNPs in the KIR genomic region 160 

(76). To determine the KIR3DL1/S1 alleles present in each individual we used the Pushing 161 

Immunogenetics to the Next Generation (PING) pipeline, as previously described (77). Included 162 

were a subset of 143 individuals from whom Sanger sequences of KIR3DL1/S1 were obtained (77). 163 

In total, there were 2,083 individuals from the 1,000 Genomes data set from whom we had 164 

independently derived KIR sequence and chromosome 19 SNP data available (Table S1a), and 165 

these were divided into the designated five major population groups as indicated (Table S1b). We 166 

also analyzed SNP data obtained using the Infinium Immunoarray 24v2 (78) from 397 Norwegians 167 

(79), from whom we also determined high resolution KIR3DL1/S1 genotypes through targeted 168 

sequencing (Table S2). 169 

 170 

Modifications to HIBAG to Impute KIR3DL1/S1 171 

We modified the HIBAG package version 1.2.4. The package name and relevant C++ functions 172 

were changed from HIBAG to KIRpong to avoid any conflict when both programs are installed. 173 

We removed genome build Hg18 and included Hg19 and Hg38 instead. We maintained many of 174 

the HIBAG functions while adjusting the selected chromosome positions to target the KIR gene 175 

cluster on chromosome 19. We modified the ‘hlaBED2Geno’ function to sample chromosome 19 176 

positions 50247563 – 59128983 for Hg19 and 46457117 – 58617616 for Hg38. The ‘hlaLociInfo’ 177 

function was updated to target the KIR gene cluster and was specified as 55247563 – 55361930 178 

for Hg19 and 54734034 – 54853884 for Hg38. Also in this function, the name of the gene was 179 

changed to KIR3DL1/S1. Finally, the printout messages were changed from HIBAG and HLA to 180 

PONG and KIR3DL1/S1 to avoid confusion if both programs are active. The HIBAG functions 181 
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were maintained, as extensive documentation for these functions is available. The modified 182 

package is available on Github (https://github.com/NormanLabUCD/PONG).  183 

 184 

Optimization and Testing of Model Building 185 

The input data for model building is a text file containing the KIR3DL1/S1 allele information, and 186 

SNP data in PLINK (80) binary format (.bed, .bim, .fam files) from the same individuals (Figure 187 

1B). The first column of the text file contains the sample name (Sample.ID), the second column, 188 

KIR3DL1/S1 allele 1 (Allele1) and the third column, allele 2 (Allele2). We optimized the model 189 

parameters using the 1,000 Genomes European populations group (EUR), comprising 353 190 

individuals from five countries (76) and having 26 distinct KIR3DL1/S1 alleles (77). We then 191 

expanded model building and testing to include populations from Africa (AFR, 558 individuals, 192 

46 distinct KIR3DL1/S1 alleles), the Americas (AMR, 298 individuals, 34 KIR3DL1/S1 alleles), 193 

East Asia (EAS, 406 individuals, 28 KIR3DL1/S1 alleles) and South Asia (SAS, 467 individuals, 194 

30 KIR3DL1/S1 alleles). The cohort of 397 individuals from Norway contained 18 distinct 195 

KIR3DL1/S1 alleles (Table S2), 14 of which were also present in the 1,000 Genomes data set. 196 

 197 

We randomly selected 50% of individuals from the EUR group to be used for model building. The 198 

remaining 50% of individuals were used to test the accuracy of the model. We first optimized the 199 

parameters to be used for filtering SNPs prior to model building. We compared the imputation 200 

accuracy of models built after removing SNPs with minor allele counts (MAC) < 2, or < 3, or a 201 

minor allele frequency (MAF) < 1% or < 5%. We also tested the impact of removing individuals 202 

carrying any KIR3DL1/S1 allele having MAC < 3 in the full EUR group (model + test). Once a 203 

robust model was established for the EUR population, we expanded the model to include all 204 
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populations using the pre-filtering parameters and procedures established above. Each model was 205 

evaluated based on the time needed for model building as well as the accuracy of imputation. 206 

 207 

Imputation of KIR3DL1/S1 alleles from Immunochip data  208 

To increase SNP density for the Norwegian cohort, we first imputed 1,000 Genomes WG-SNP 209 

data using the Michigan imputation server (81). Although this process produced 2,882 SNPs in the 210 

KIR region, it was insufficient to adequately improve accuracy of imputation (53% to 75%; data 211 

not shown). We therefore expanded the target region to chr19: 55,100,000 – 55,500,000 (hg19) to 212 

match that used for the KIR*IMP  program that can be used to impute KIR gene content genotypes 213 

(82), and built and tested KIR3DL1/S1 allele imputation models as described above. 214 

 215 

Computational Capabilities 216 

All experiments were performed using a server with 512 GB 2400MHz RAM, running Ubuntu 217 

18.04, R 3.5.1, R-server 1.1.456, and using a single core from a 2.3GHz Xeon E5-2697 CPU. 218 

 219 

Evaluation of imputation models 220 

Overall accuracy of a given imputation model was determined as the number of correct allele calls 221 

made per individual (0, 1 or 2) divided by 2N. Sensitivity and specificity of a given model were 222 

determined per KIR3DL1/S1 allele. Sensitivity was measured as the percentage of individuals 223 

known to be positive for a given allele who were also called positive for that allele by imputation. 224 

Specificity was determined as the percentage of individuals known to be negative for a given allele 225 

that were also called as negative for that allele by imputation.    226 
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Results 227 

Parameters for frequency filtering of SNP and allele data  228 

We designed, tested and optimized a model to impute KIR3DL1/S1 alleles from WG-SNP data 229 

using a modification to the HIBAG framework and algorithm (73). We used SNP data from the 230 

1,000 Genomes project (76) and KIR3DL1/S1 genotypes that we had previously determined from 231 

sequence data from the same individuals (77). We focused first on the EUR group, comprised of 232 

353 individuals and having 26 distinct KIR3DL1/S1 allele sequences, ranging from 0.14% to 20% 233 

allele frequency (Figure 2A). We randomly selected 50% of the EUR individuals to be used for 234 

model building and used the other 50% to test the accuracy of the model. With the goal of 235 

maximizing the imputation accuracy of the test dataset, while preserving computational efficiency 236 

in model building, we first determined the effect of removing low-frequency SNPs. We measured 237 

the imputation accuracy of models that were built following removal of SNPs having a minor allele 238 

count (MAC) of < 2 (1,286 SNPs remaining in the KIR region) or MAC < 3 (1,044 SNPs remaining 239 

in the KIR region) in the full set of 353 individuals. We also measured the accuracy following 240 

removal of SNPs with a minor allele frequency (MAF) < 1% (941 SNPs remaining in the KIR 241 

region) or < 5% (645 SNPs remaining in the KIR region) in the full set of 353 individuals. A model 242 

was also built with no filtering of the genotype data for comparison (4,089 SNPs in KIR region). 243 

The KIR region SNPs used for testing the model accuracy were not filtered, and the models took 244 

from 6-9 seconds to impute KIR3DL1/S1 alleles from the test data set of 177 individuals. 245 

 246 

For the purposes of this test, accuracy was determined from the number of correct allele calls per 247 

individual in the test set. The lowest imputation accuracy was obtained using a MAF < 5%, with 248 

91% of KIR3DL1/S1 alleles called correctly, whereas models built with all other filtering 249 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.05.13.443975doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.443975
http://creativecommons.org/licenses/by/4.0/


12 
 

parameters imputed the alleles with 92% accuracy (Figure 2B, Table S3). Thus, imputation 250 

accuracy was similar across all SNP frequency filtering parameters tested (Figure 2B). The model 251 

building run time ranged from 29 minutes, when SNPs were filtered at MAF < 5%, to 84 minutes 252 

when no filtering was used. We selected MAC < 3 as this was the fastest build time (66 minutes) 253 

for models of 92% accuracy (Figure 2B). Of the 26 KIR3DL1/S1 alleles observed in the full EUR 254 

group (N=353), twelve were observed less than three times (Figure 2A). Following removal of 255 

individuals possessing at least one of these twelve infrequent alleles, 14 KIR3DL1/S1 alleles and 256 

339 individuals remained in the population. As above, we removed SNPs having MAC < 3, divided 257 

this population in half, built a model and tested it on the other half. Compared with using MAC < 258 

3 alone, the time required to build this model decreased from 66 minutes to 44 minutes, and the 259 

time to run the model reduced to 5 seconds (165 individuals), whereas the imputation accuracy 260 

increased from 92% to 96% (Figure 2B). Thus, this combination of filtering parameters produced 261 

the fastest time for model building and running, with the highest accuracy for imputing 262 

KIR3DL1/S1 alleles. We therefore implemented these parameters in all subsequent analyses. 263 

 264 

We next evaluated the sensitivity and specificity of the final EUR imputation model, as described 265 

in Methods. Of 14 alleles in the model data set, 13 were also present in the test set (Figure 2C). 266 

We observed a modal specificity of 100%, and a mean of 99%. The two alleles having 98% 267 

specificity were KIR3DL1*00101 and KIR3DS1*01301, thus for every 100 individuals imputed to 268 

have either allele, two were not shown as present through sequencing. We observed similarly high 269 

modal sensitivity of 100%, with a mean of 77%. All alleles with a frequency in the EUR group 270 

greater than 1.6% were imputed with >99% sensitivity. Below 1.6% allele frequency, two alleles 271 

(3DL1*00402 and 3DS1*049N) were imputed with 50% sensitivity and two (KIR3DL1/S1 neg, 272 
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and 3DL1*009) with 0% sensitivity. KIR3DL1*00402 and 3DS1*049N are each distinguished 273 

from their closest (parental) alleles by a single or a doublet nucleotide substitution, respectively 274 

(30). Accordingly, in each case these alleles were imputed as the parental allele (not shown). 275 

KIR3DL1*009 represents a double recombination having exons 2-3 identical to 3DS1*01301 and 276 

exons 1 and 4-9 identical to 3DL1*001 (83, 84). The haplotype that lacks KIR3DL1/S1 represents 277 

a large-scale deletion encompassing up to seven KIR genes (Figure 1A), and likely has very few 278 

identifying SNPs within the KIR locus. Thus, we observe a clear relationship between KIR3DL1/S1 279 

allele frequency and accuracy of imputation, with all high-frequency alleles being imputed with 280 

high accuracy, and those imputed with lower accuracy attributed both to their low frequency and 281 

lack of additional identifying characteristics. 282 

 283 

Development of a trained Global model for KIR3DL1/S1 imputation 284 

After establishing the most robust filtering parameters for model building in the EUR population 285 

group, we expanded the analysis to the four other major population groups from the 1,000 286 

Genomes project (Africa - AFR, Americas - AMR, East Asia - EAS and South Asia - SAS). We 287 

also combined all five population groups to form an additional ‘Global’ group (Table 1). As above, 288 

KIR locus SNPs and KIR3DL1/S1 alleles having MAC < 3 in each respective group were removed, 289 

imputation models were then built using 50% individuals, and tested on the remaining 50%. 290 

Following the filtering based on KIR3DL1/S1 allele counts, the African population group had the 291 

highest diversity with 31 alleles and the East Asian group the lowest with 13 alleles (Figure 3A). 292 

A total of 90 distinct KIR3DL1/S1 alleles were present in the Global group, 42 of these occurred 293 

more than twice in total and were therefore included in model building. This allele filtering process 294 

resulted in 58 of the 2,082 individuals being removed. The Global model included 1,017 295 
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individuals and took 10 weeks to build. This process also increased the number of target alleles 296 

within all the individual population groups (Figure 3A). 297 

 298 

Table 1. Number of KIR3DL1/S1 alleles and individuals in data sets. 299 
 Number of Individuals in Data Set 

1000 Genomes 
Population 
Group 

All Global 
KIR3DL1/S1 

MAC < 3 

In Model 
Set 

In Test Set 

Africa (AFR) 558 541 272 269 
Americas 
(AMR) 

298 292 146 146 

East Asia 
(EAS) 

406 389 196 193 

Europe (EUR) 353 345 174 171 
South Asia 
(SAS) 

467 457 229 228 

Global 2,082 2,024 1,017 1,007 
 300 

 301 

In testing models built within each respective population group, imputation accuracy ranged from 302 

87.8% in the SAS group to 96.6% in EAS group (Figure 3B and Table S3). When using the Global 303 

model, however, imputation accuracy increased for all groups, ranging from 89.0% in SAS and to 304 

97.2% in EAS (Figure 3B). When the test group was comprised of individuals drawn from all five 305 

of the population groups, an accuracy of 92.3% was achieved. This latter finding gives an estimate 306 

of the accuracy of KIR3DL1/S1 allele imputation for individuals of unknown genetic ancestry. 307 

Using the Global model, the imputation time ranged from 2 min 9 s for AMR (N=146) to 4 min 5 308 

s for SAS (N =228), and it took 16 min 1 s to impute the Global test set of 1,007 individuals (Table 309 

S3). 310 

 311 
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We next evaluated the specificity and sensitivity of the Global imputation model. The mean 312 

specificity across the 42 alleles was 99.8%, with 40 of them having a specificity above 99% 313 

(Figure 3C). The lowest specificities were observed for 3DS1*01301 at 96% and 3DL1*01502 at 314 

98.5%. Of the individuals falsely imputed as having 3DS1*01301, 84% were due to a KIR3DL1/S1 315 

deletion haplotype. This finding is consistent with the suggestion that the parental haplotype for 316 

the deletion carried 3DS1*01301 (84). The individuals falsely imputed as having 3DL1*01502, 317 

possessed either 3DL1*01702, *051 or *025 (33% each). All these alleles fall into the same 318 

ancestral lineage as 3DL1*015, and likely exhibit similar phenotypes of high expression and ligand 319 

binding (1). In the final Global population group (2N = 4,068) there were 15 KIR3DL1/S1 alleles 320 

with a frequency above 1% and 27 alleles with a frequency below 1% (Figure 3C). For those 321 

KIR3DL1/S1 alleles having allele frequency below 1%, we observed a modal sensitivity of 0%, 322 

and a mean of 29%. Conversely, KIR3DL1/S1 alleles with a frequency above 1% had a modal 323 

sensitivity of 100% and a mean of 94%. The sensitivity rose to 99% when the allele representing 324 

the absence of KIR3DL1/S1 was excluded. Despite a frequency of less than 1% the alleles *006, 325 

*092, *035 and *089 were imputed with 100% sensitivity (Figure 3C). 326 

 327 

In total 27 KIR3DL1/S1 alleles had a frequency less than 1% in the Global population. When the 328 

global frequency was above 1%, PONG was able to impute the alleles 91 to 100% of the time 329 

(Figure 3D). Thus, similar to the model built using the European population group, low frequency 330 

alleles were more likely to be incorrectly imputed than high frequency alleles. An exception to this 331 

was the allele representing the absence of KIR3DL1/S1 (*00000) in which the frequency was 4% 332 

but PONG was only able to impute the absent allele correctly 35% of the time. Together this shows 333 

that PONG is effective for imputing common KIR3DL1/S1 alleles and some rare alleles across a 334 
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diverse set of human populations. Consistent with their overall lower accuracy, the African and 335 

South Asian population groups had the highest number of KIR3DL1/S1 alleles with a frequency 336 

less than 1% (17 and 9, respectively). By contrast, only three low frequency alleles were present 337 

in the East Asian population. In summary, the accuracy of PONG is affected by the frequency of 338 

KIR3DL1/S1 alleles and is therefore less effective in more diverse human populations given a 339 

similar-sized training sample.  340 

 341 

Testing the Global model using less dense genotyping datasets. 342 

We analyzed a cohort of 397 individuals from Norway, from whom we generated Infinium 343 

Immunoarray SNP and high-resolution KIR3DL1/S1 allele sequence data. For this test, we 344 

extended the window in which classifiers are sampled to match that of the KIR*IMP program 345 

(chr19: 55,100,000 – 55,500,000: hg19), which contains 294 SNPs on this chip. We observed a 346 

strong correlation between allele frequencies in Norway and the 1,000 Genomes EUR group (r = 347 

0.96). In total, 18 KIR3DL1/S1 alleles were identified in the Norwegian cohort through nucleotide 348 

sequencing, including one rare allele (3DL1*044: 0.02%) that is absent from the 1,000 Genomes 349 

Global population. After filtering for MAC < 3, there were 13 KIR3DL1/S1 alleles present. In 350 

testing the model built using 50% of the Norwegian cohort against the other 50% of the cohort, we 351 

observed 92% accuracy, sensitivity of mode 100% and mean 75%, and specificity of mode 100%, 352 

mean 99% (Figure 4). As in previous analyses, KIR3DL1/S1 alleles having allele frequency > 1% 353 

have greater imputation accuracy than those < 1% (Figure 4). In this analysis the modal sensitivity 354 

of alleles with a frequency < 1% was 0% with a mean of 33%. By contrast, KIR3DL1/S1 alleles 355 

with a frequency > 1% had a modal sensitivity of 100% and a mean of 85%. These experiments 356 
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show that high resolution KIR3DL1/S1 genotypes can be imputed from low-density SNP arrays, 357 

and with similar accuracy to high-density arrays.  358 

 359 

Obtaining and Running PONG  360 

The PONG program is installed using the command line and opened as a library in R (R version 361 

2.14.0 – 4.0.0.) (85). PONG can be run using WG-SNP data mapped either to hg19 or hg38. The 362 

imputation algorithm does not require data to be phased (73). The Global model (hg19) and the 363 

model built with the EUR group (hg38) are available for download. Other models will be added 364 

as they become available. Using our Global model, we estimate that 1,000 individuals could be 365 

imputed every 15 minutes using a single core on a laboratory server, such as the one we have used. 366 

Users can also create their own models when WG-SNP data and KIR3DL1/S1 allele genotypes are 367 

available, and modify the data input and filtering parameters, as described in the tutorial.  368 

• The imputation models are available at https://github.com/NormanLabUCD/PONG   369 

• The 1,000 Genomes test data can be found in ref (77) and Table S1. 370 

• A tutorial describing the pipeline for model building and testing is available at: 371 

https://github.com/NormanLabUCD/PONG/inst/doc/  372 

  373 
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Discussion 374 

Knowledge of KIR3DL1/S1 diversity can help predict the course of specific infections, immune-375 

mediated diseases, and their therapies (86-92). However, by virtue of the polymorphic and 376 

structural complexity at the locus, it is often ignored in genome-wide association studies. The 377 

primary goal of this study was to develop a model trained to impute KIR3DL1/S1 alleles rapidly 378 

from WG-SNP data encompassing a wide range of human genetic diversity. We built imputation 379 

models using high-density WG-SNP data (76) and high-resolution KIR3DL1/S1 allele calls (77) 380 

from the five broadly defined 1,000 Genomes population groups, and then built a model for the 381 

Global group. To achieve these goals, we adapted the coding framework and algorithm from 382 

HIBAG (73) in a modification that we have named PONG. We determined that the imputation 383 

models are most effective when both the WG-SNP data and KIR3DL1/S1 alleles have been filtered 384 

to remove alleles that occur infrequently. The former filter to reduce the model building run time 385 

and the latter to increase imputation accuracy. The resulting range of imputation accuracies of the 386 

final Global model was 89% for Africans and South Asians, to 97% for East Asians. The 1,000 387 

Genomes WG-SNP data has a dense set of genotypes, including 1,832,506 SNPs from 388 

chromosome 19 (76). Other genotype chips used for disease association studies have less dense 389 

sets of SNPs, including the Infinium Immunoarray, which targets markers associated with 390 

autoimmune disease and inflammatory disorders (78). Because KIR3DL1/S1 diversity is 391 

associated with development or severity of multiple autoimmune diseases (20, 22, 23, 25, 93), we 392 

tested the accuracy of imputation using results generated from this genotyping chip, and achieved 393 

similar imputation accuracy as achieved from the high-density array.  394 

 395 
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Although PONG is effective in imputing KIR3DL1/S1 alleles, there are a few limitations to this 396 

program that we are optimistic will improve over time. As observed for HLA (94), we found a 397 

negative correlation between the accuracy of PONG and the diversity of KIR3DL1/S1 alleles in a 398 

population. For example, African populations have the highest number of distinct KIR3DL1/S1 399 

alleles as well as the highest number with a frequency below 1%. The result is that imputation 400 

accuracy is lowest in Africans. Conversely, the East Asian group has the lowest number of 401 

KIR3DL1/S1 alleles of allele frequency below 1%, and the highest imputation accuracy. Therefore, 402 

PONG is most effective at imputing the most frequent alleles. The imputation accuracy of the 403 

model will improve over time as more immunogenetic studies of KIR3DL1/S1 are conducted, thus 404 

expanding our sample set for building more robust and diverse models. Given that the model is 405 

open source, and that PONG has a model building function available, this can be achieved both by 406 

the developers and users. PONG is also less accurate at imputing the absence of the KIR3DL1/S1 407 

gene (which we designated *00000), and we were only able to impute this null KIR3DL1/S1 allele 408 

at an accuracy of 35% using a global model. However KIR*IMP, which is targeted to KIR gene 409 

content diversity, is able to impute the presence or absence of KIR3DL1/S1 with an accuracy above 410 

90% (82). Therefore, PONG can be coupled with KIR*IMP to improve the accuracy of imputing 411 

the ‘KIR3DL1/S1 absent’ allele.  412 

 413 

Accurate sequencing and assembly can be challenging for highly polymorphic and structurally 414 

diverse regions of the genome (95). Both these phenomena are characteristics of the KIR locus 415 

(29). Therefore, PONG relies on high quality WG-SNP data with robust quality control measures 416 

implemented in SNP calling pipelines. New techniques to improve the identification of structural 417 

variation are being created, including long-range optical mapping, which uses the optical signal 418 
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strength from each SNP genotype to identify deletions and duplications (96). Together, an 419 

increased sampling of individuals having rare KIR3DL1/S1 alleles and better characterization of 420 

structural variation from WG-SNP data will likely improve the imputation accuracy of PONG. 421 

 422 

Highly polymorphic interactions of KIR3DL1/S1 with HLA-A and B modulate the critical 423 

functions of NK cells in immunity, which include the destruction of infected or cancerous cells 424 

(2). Combinatorial diversity of KIR3DL1/S1 with HLA-A and B allotypes thus affects the 425 

susceptibility and course of multiple immune-mediated diseases. Several methods are available to 426 

impute HLA alleles (70-73), but large-scale genetic studies often exclude analysis of KIR3DL1/S1 427 

due to the exceptional polymorphism and structural diversity of the genomic region. A secondary 428 

goal of this study was thus to produce imputation models that could be used in conjunction with 429 

existing models to impute the combinatorial diversity of KIR3DL1/S1 and HLA allotypes. By 430 

comparison with KIR3DL1/S1, the mean imputation accuracy for HIBAG across seven HLA genes 431 

was 81.2% in African populations and 91.1% in East Asians (73). In African populations, HLA-432 

DPB1 had the lowest imputation accuracy at 74.2% and HLA-A had the highest observed accuracy 433 

at 92.4%. The corresponding imputation accuracies of these HLA genes in East Asians were 89.8% 434 

and 92.1% respectively (73). Therefore, the mean accuracy of KIR3DL1/S1 allele imputation 435 

described herein is equivalent, and likely better than that obtained for HLA class I and II using the 436 

same underlying algorithm. We therefore propose that using this algorithm to impute both 437 

KIR3DL1/S1 and HLA-A and B genotypes from WG-SNP data presents a considerable advantage 438 

over other approaches. This approach is particularly applicable for studies of Biobank data, where 439 

targeted sequencing of KIR3DL1/S1 and HLA-A and B from many thousands of individuals is not 440 
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currently tractable. Utilizing our pre-built models, PONG can be implemented to make genetic 441 

association studies of KIR3DL1/S1 in combination with HLA-A and B possible at very large scale.  442 
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Figure legends 475 
  476 
Figure 1. Genomic location of KIR3DL1/S1 and overview of allele imputation workflow. 477 

A. Shows the location of the KIR3DL1/S1 gene on five examples of common KIR haplotypes. 478 

KIR3DL1/S1 is shaded in blue, and other KIR genes are shaded grey. The KIR3DL1/S1 gene can 479 

be absent (haplotype 4) or fused in-frame with KIR3DL2 (haplotype 5) (84). The human genome 480 

coordinates (build hg19) from which classifiers were drawn for imputation are given at the top.  481 

B. Schematic of model building, testing and output for the imputation of KIR3DL1/S1 alleles using 482 

PONG. Shown are the required input files and their format for model building (blue) and testing 483 

(green). Red boxes give an example of the output from the imputation. 484 

 485 
 486 
Figure 2.  Optimization of KIR3DL1/S1 allele imputation using data from Europeans. 487 

A. Bar graph shows the KIR3DL1/S1 allele frequencies in the combined EUR population group 488 

comprised of 353 individuals from Italy, Finland, United Kingdom, Spain, or Utah. The alleles 489 

were determined from high-throughput sequence data (77). 490 

B. Shown is a summary of the results obtained using models tested during optimization. From left 491 

to right are the filtered criteria (SNPs or KIR3DL1/S1 alleles), the filtering threshold values, 492 

resulting model build time, and accuracy of the imputed genotypes. Grey dotted arrow indicates 493 

that the final model that was built using MAC < 3 for SNPs and for KIR3DL1/S1 alleles. 494 

C. Shows the imputation accuracy for each KIR3DL1/S1 allele present in the final filtered EUR 495 

data set. Blue bars indicate the sensitivity (% of times a given allele was called as present when 496 

known to be present). Red line indicates specificity (% of times a given allele was called as absent 497 

when known to be absent).   498 

 499 
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Figure 3. Accurate imputation of KIR3DL1/S1 alleles using a Global population model. 500 

A. Bar graphs shows the number of KIR3DL1/S1 alleles present in each of the five broad 501 

population groups of the 1,000 Genomes database. The bar colors indicate: (pink) the number of 502 

alleles present before filtering, (ruby) by MAC < 3 filtering, and (burgundy) by combining the five 503 

groups to form a Global population and then MAC < 3 filtering. The population groups are East 504 

Asian (EAS), European (EUR), South Asian (SAS), American (AMR) and African (AFR). 505 

B. Shows the imputation accuracy obtained for each of the population group and the Global 506 

models. (Within group) the model was built using 50% of the indicated group and tested on the 507 

other 50%. (Global) the model was built using 50% of all individuals and tested on the remaining 508 

50% of the specified group. 509 

C. and D. Show the imputation efficacy for each allele present in the final Global data set. Blue 510 

bars indicate the sensitivity (% of times a given allele was called as present when known to be 511 

present). Red line indicates specificity (% of times a given allele was called as absent when known 512 

to be absent). Blue dots indicate the KIR3DL1/S1 allele frequencies in the Global population. 513 

 514 

Figure 4. Accurate imputation of KIR3DL1/S1 alleles from Immunochip SNP data. 515 

Bar graph shows the efficiency of KIR3DL1/S1 allele imputation using a model built and tested on 516 

a cohort from Norway who also had their KIR3DL1/S1 alleles genotyped to high resolution. Blue 517 

bars indicate the sensitivity (% of times a given allele was called as present when known to be 518 

present). Red line indicates specificity (% of times a given allele was called as absent when known 519 

to be absent).  520 

 521 
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