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Abstract

We present a novel Deep Learning method for the Unsupervised Classification of DNA
Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or
(taxonomic) identifiers. DeLUCS uses Chaos Game Representations (CGRs) of primary
DNA sequences, and generates “mimic” sequence CGRs to self-learn data patterns
(genomic signatures) through the optimization of multiple neural networks. A majority
voting scheme is then used to determine the final cluster label for each sequence.
DeLUCS is able to cluster large and diverse datasets, with accuracies ranging from 77%
to 100%: 2,500 complete vertebrate mitochondrial genomes, at taxonomic levels from
sub-phylum to genera; 3,200 randomly selected 400 kbp-long bacterial genome segments,
into families; three viral genome and gene datasets, averaging 1,300 sequences each, into
virus subtypes. DeLUCS significantly outperforms two classic clustering methods
(K-means and Gaussian Mixture Models) for unlabelled data, by as much as 48%.
DeLUCS is highly effective, it is able to classify datasets of unlabelled primary DNA
sequences totalling over 1 billion bp of data, and it bypasses common limitations to
classification resulting from the lack of sequence homology, variation in sequence length,
and the absence or instability of sequence annotations and taxonomic identifiers. Thus,
DeLUCS offers fast and accurate DNA sequence classification for previously
unclassifiable datasets.

Introduction 1

Traditional DNA sequence classification algorithms rely on large amounts of labour 2

intensive and human expert-mediated annotating of primary DNA sequences, informing 3

origin and function. Moreover, some of these genome annotations are not always stable, 4

given inaccuracies and temporary assignments due to limited information, knowledge, or 5

characterization, in some cases. Also, since there is no taxonomic “ground truth,” 6

taxonomic labels can be subject to dispute (see, e.g., [1–3]). In addition, as methods for 7

determining phylogeny, evolutionary relationships, and taxonomy evolved from physical 8

to molecular characteristics, this sometimes resulted in a series of changes in taxonomic 9

assignments. An instance of this phenomenon is the microbial taxonomy, which recently 10

underwent drastic changes through the Genome Taxonomy Database (GTDB) in an 11

effort to ensure standardized and evolutionary consistent classification [4–6]. 12

The applicability of existing classification algorithms is limited by their intrinsic 13

reliance on DNA annotations, and on the “correctness” of existing sequence labels. For 14
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example, alignment-based methods crucially rely on DNA annotations indicating the 15

gene name and genomic position. Similarly, supervised machine learning algorithms rely 16

on the training data having stable taxonomic labels, since they carry forward any 17

current misclassifications into erroneous future sequence classifications. To avoid these 18

limitations, and given the ease of extensive sequence acquisition, there is a need for 19

highly accurate unsupervised machine learning approaches to sequence classification 20

that are not dependent on sequence annotations. 21

We propose a novel Deep Learning method for the Unsupervised Classification of 22

DNA Sequences (DeLUCS), that is independent of sequence labels or annotations, and 23

thus is not vulnerable to their inaccuracies, fluctuations, or absence. DeLUCS is, to the 24

best of our knowledge, the first highly-effective/light-preparation DNA sequence 25

clustering method, in that it achieves high classification accuracies while using only a 26

minimum of data preparation and information. Indeed, the only information DeLUCS 27

uses about the sequences to be classified is the implicit requirement that all sequences 28

be of the same type (nuclear DNA, mtDNA, plastid, chloroplast), and that the selection 29

of the dataset be based on some taxonomic criteria. Importantly, DeLUCS does not 30

need any DNA annotations, does not require sequence homology or similarity in 31

sequence lengths, and does not use any taxonomic labels or sequence identifiers. 32

DeLUCS compensates for the absence of information external to the primary DNA 33

sequence by leveraging the capability of deep learning to discover patterns (genomic 34

signatures) in unlabelled raw primary DNA sequence data. DeLUCS is alignment-free 35

and can accurately cluster/classify large and diverse datasets such as: 2,500 vertebrate 36

complete mitochondrial genomes at multiple taxonomic levels, with accuracy ranging 37

from 79% to 100%; 3,200 randomly selected bacterial genome segments, with a length 38

average of 400 kbp, into families, with accuracy of 77% (inter-phylum) and 90% (intra- 39

phylum); several datasets of viral gene sequences and of full viral genomes, averaging 40

1,300 sequences each, into virus subtypes, with accuracy of 99%, and 100% respectively. 41

To the best of our knowledge, these are the largest real datasets classified to date, in 42

clustering studies of genomic data: The biggest dataset analyzed in this paper totals 43

over 1 billion bp of data, a full order of magnitude bigger than previous studies [7–13]. 44

In addition, all but the viral gene dataset would be impossible to classify with 45

alignment-based methods, due either to the prohibitive time cost of multiple sequence 46

alignment or to the lack of sequence homology. 47

A direct comparison shows that DeLUCS significantly outperforms two classic 48

algorithms for clustering unlabelled datasets (K-means and Gaussian Mixture Models, 49

GMM), sometimes by as much as 48%. For the majority of the computational tests, the 50

DeLUCS classification accuracy is also comparable to, and sometimes higher than, that 51

of a supervised machine learning algorithm with the same architecture. 52

DeLUCS is a fully-automated method that determines cluster label assignments for 53

its input sequences independent of any homology or same-length assumptions, and 54

oblivious to sequence taxonomic labels. DeLUCS can thus be used for successful ab 55

initio classification of datasets that were previously unclassifiable by alignment-based 56

methods, as well as datasets with uncertain or fluctuating taxonomy, where supervised 57

machine learning methods are biased by their reliance on current taxonomic labels. 58

Prior Approaches 59

The time-complexity limitations of alignment-based methods, [14], in addition to their 60

reliance on extraneous sequence information such as sequence homology, have motivated 61

the development of numerous alignment-free methodologies [15,16]. Of these, methods 62

based on k-mer counts have been among the fastest and the most widely used [16]. In 63

parallel to alignment-free approaches, machine learning methods have emerged as 64
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promising alternatives for solving classification problems both in genomics and 65

biomedicine [17]. 66

Fig 1 illustrates a summary of methods that combine alignment-free approaches with 67

machine learning for genomic classification/clustering tasks. (The difference between 68

classification and clustering is that, while in classification methods the cluster labels are 69

given a priori, in clustering methods the clusters are “discovered” by the method.) 70

Fig 1. Machine learning-based alignment-free methods for classification/clustering of
DNA sequences. DeLUCS is the first method to use deep learning for accurate
unsupervised classification/clustering of unlabelled raw DNA sequences. The novel use
of deep learning in this context significantly boosts the classification accuracy, compared
to other unsupervised machine learning clustering methods.

Supervised Machine Learning Approaches 71

Among supervised learning algorithms, Artificial Neural Networks (ANNs) have proven 72

to be the most effective, with ANN architectures with several layers of neurons (“deep 73

learning”) being the top performers [18]. 74

In the context of genome classification, alignment-free methods that employ 75

supervised machine learning have been shown to outperform alignment-based methods 76

in the construction of high-quality whole-genome phylogenies [19], profiling of microbial 77

communities [20], and DNA barcoding at the species level [21]. In recent years, 78

alignment-free methods have successfully applied supervised machine learning 79

techniques to obtain accurate classification of HIV subtypes, [22], as well as accurate 80

and early classification of the SARS-CoV-2 virus (COVID-19 virus) [23]. The increasing 81

success of machine learning, and in particular deep learning, techniques is partly due to 82

the introduction of suitable numerical representations for DNA sequences and the ability 83

of the methods to find patterns in these representations (see [22,24], respectively [20]). 84

Other classification tasks in genomics such as taxonomic classification [25], and the 85

identification of viral sequences among human samples from raw metagenomic 86

segments [26,27] have also been explored from the deep learning perspective. 87

One limitation of supervised deep learning is that the performance of the ANNs is 88

heavily dependent on the number of labelled sequences that are available during 89

training. This can become a limiting factor, even though raw sequencing data can now 90

be obtained quickly and inexpensively, [28]. The reason for this is the intermediate 91

process that lies between obtaining a raw DNA sequence and uploading that sequence 92
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onto a public sequence repository, namely the “invisible” work that goes into assigning a 93

taxonomic label and attaching biological annotations. This is a laborious, expensive, 94

and time consuming multistep process, comprising ad hoc wet lab experiments and 95

protocols that cannot be automated due to the human expertize required. Another 96

limitation of supervised learning is its sensitivity to perturbations in classification, since 97

any present misclassifications in the training set are “learned” and propagated into 98

future classification errors. In addition, supervised learning is guaranteed to misclassify 99

any test sequence that belongs to a category/cluster it has not been exposed to during 100

the supervised training. 101

To overcome these limitations, one can attempt to use unsupervised learning, which 102

operates with unlabelled sequences and compensates for the absence of labels by 103

inferring identity-relevant patterns from unlabelled training data. Moreover, 104

unsupervised learning does not perpetuate existing labelling errors, as the algorithms 105

are oblivious to labels. It can correctly classify sequences of a type never seen during 106

training, by assigning the sequences to dynamically defined new clusters. 107

Unsupervised Machine Learning Approaches 108

Unlike supervised learning, in unsupervised learning training samples are unlabelled, 109

i.e., the cluster label associated with each DNA sequence is not available (or is ignored) 110

during training. In general, clustering large datasets using unsupervised learning is a 111

challenging problem, and the progress in using unsupervised learning for classification of 112

genomic sequences has not been as rapid as that of its supervised counterparts. The 113

effort made so far in the development of unsupervised alignment-free clustering 114

algorithms for genomic sequences has been mainly focused on using generic clustering 115

algorithms such as K-means or Gaussian Mixture Models (GMM) for different 116

numerical representations of DNA sequences. For example, Bao et al., [7] used a 117

representation of DNA sequences based on their word counts and Shannon entropy, 118

whereby each sequence is represented by a 12-dimensional vector and the clustering is 119

performed using K-means with Euclidean distance. James et al., [8] grouped DNA 120

sequences based on four different similarity measures obtained from an alignment-free 121

methodology that used k-mer frequencies and an adaptation of the mean shift 122

algorithm, normally used in the field of image processing. Similar work [9, 13,29] also 123

builds on the K-means algorithm and k-mer counts. Another approach is the use of 124

digital signal processing [10–12], whereby Fourier spectra calculated from a numeric 125

representation of a DNA sequence are used as their quantitative description, and the 126

Euclidean distance is used as a measure of dissimilarity to be employed by either the 127

K-means or the GMM clustering algorithms. 128

Although K-means is a simple and versatile algorithm, it is dependent on several 129

restrictive assumptions about the dataset, such as the need for manual selection of the 130

parameter K, and the assumption that all clusters have the same size and density. It is 131

also heavily dependent on the selection of initial cluster centroids, meaning that for 132

large datasets, numerous initializations of the centroids are required for convergence to 133

the best solution and, moreover, that convergence is not guaranteed [30]. Although 134

GMM is more flexible in regards to the distribution of the data and does not assume 135

that all clusters are spherical, the initialization of clusters is still challenging, especially 136

in high dimensional data, [31,32]. 137

A potential solution to these drawbacks could lie in recent developments in the field 138

of unsupervised deep learning for computer vision, specifically in the concepts at the 139

core of invariant information clustering (IIC), one of the successful methods for the 140

classification of unlabelled images [33]. These methods are effective for visual tasks and, 141

as such, are not applicable to genomic data. In this paper, we propose the use of Chaos 142

Game Representations (CGR) of DNA sequences and the novel notion of mimic 143
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sequences, to leverage the idea behind IIC. In our approach, CGR pairs of sequences 144

and of their mimics are generated, and used as input for a de novo simple but general 145

Artificial Neural Network (ANN) architecture, specifically designed for the purpose of 146

DNA sequence classification. Finally, majority voting over several independently trained 147

ANN copies is used, to obtain the accurate cluster label assignment of each sequence. 148

Materials and Methods 149

In this section, we first give an overview of our method and the computational pipeline 150

of DeLUCS. We then describe the core concepts of invariant information clustering, and 151

detail how these concepts are adapted to DNA sequence clustering/classification, by 152

introducing the notion of “mimic sequences”. This is followed by a description of the 153

architecture of the neural networks employed, the evaluation scheme used for assessing 154

the performance of DeLUCS, and all of the implementation details. Finally we give a 155

description of all the datasets used in this study. 156

Method Overview 157

DeLUCS employs a representation of DNA sequences introduced by Jeffrey in [34], 158

called Chaos Game Representation (CGR). A CGR is a graphical representation 159

whereby a DNA sequence is represented by a two-dimensional unit square image, with 160

the intensity of each pixel representing the frequency of a particular k-mer in the 161

sequence [35]. Several studies have demonstrated that the CGR of a genomic sequence 162

can serve as its genomic signature, defined by Karlin and Burge [36] as any numerical 163

quantity that is more similar for DNA sequences of closely related organisms, while 164

being dissimilar for DNA sequences of more distantly related organisms, see Fig 2. 165

C G

A T

C C GG

T TA A

a) b) c)

Fig 2. Chaos Game Representation of (a) the complete mitochondrial genome of Rana
Chosenica (a frog), 18,357 bp – Accession ID: NC 016059.1; (b) the first 80,000 bp of
the Bacillus mycoides genome – Accession ID: NZ CP009691.1; (c) the complete
genome of Dengue Virus 2, 10,627 bp – Accession ID: GU131948.1

The general pipeline of DeLUCS, illustrated in Fig 3, consists of three main steps: 166

1. For each DNA sequence in the dataset several artificial mimic sequences are 167

constructed, and considered to belong to the same cluster. These mimic sequences 168

are generated using a probabilistic model based on transversions and transitions. 169

The k-mer counts for both the original sequence and its mimic sequences are then 170

computed, to produce their respective CGRs. In this study, k = 6 was empirically 171

assessed as achieving the best balance between high accuracy and speed. 172
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2. Pairs consisting of the CGR of the original DNA sequence and the CGR of one of 173

its mimic sequences are then used to train several copies of an Artificial Neural 174

Network (ANN) independently, by maximizing the mutual information between 175

the network predictions for the members of each pair. 176

3. As the training process of the ANNs is a randomized algorithm which produces 177

different outcomes with high variance, a majority voting scheme over the 178

outcomes of the ANNs in Step 2 is used to determine the final cluster assignment 179

for each sequence. 180

Indepedent training of several 

ANN copies, to predict cluster 

label assignments

Assignment of final cluster 

labels, determined by  

majority voting

Fig 3. General DeLUCS pipeline. The input consists of the original DNA sequences to
be clustered. (1a): Artificial mimic sequences are generated from the original sequences,
by using a probabilistic model based on transitions and transversions. (1b): CGRs of all
original and mimic sequences are computed, and data pairs of the form “CGR of DNA
sequence, CGR of one of its mimics” are divided in batches for the training process. (2):
Several copies of the ANN are trained independently, with the loss function being the
negative mutual information between the network predictions for a sequence and that of
its mimic. (3): Majority voting is used to obtain the final cluster label assignment for
each sequence.
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Invariant Information Clustering (IIC) 181

Steps 1 and 2 in the DeLUCS pipeline build upon the underlying concepts of IIC, [33], 182

which leverages some information theory notions described in this subsection. 183

Given a discrete random variable X that takes values x ∈ X and has probability 184

mass function p(x) = P (X = x), the entropy H(X) is a measure of the average 185

uncertainty in the random variable and is defined by 186

H(X) = −
∑
x∈X

p(x) log2 p(x). (1)

H(X) also represents the average number of bits required to describe the random 187

variable X. 188

Given a second random variable X̃ that takes values x̃ ∈ X̃ , we can also define the 189

conditional entropy H(X|X̃), for a pair sampled from a joint probability distribution 190

p(x, x̃) = P (X = x, X̃ = x̃), as the entropy of a random variable X conditional on 191

having some knowledge about the variable X̃. The reduction in the uncertainty of X 192

introduced by the additional knowledge provided by X̃ is called mutual information and 193

it is defined by 194

I(X, X̃) = H(X)−H(X|X̃) =
∑
x,x̃

p(x, x̃) log
p(x, x̃)

p(x)p(x̃)
. (2)

The mutual information measures the dependence between the two random variables, 195

and it represents the amount of information that one random variable contains about 196

another. I(X, X̃) is symmetric, always non-negative, and is equal to zero if and only if 197

X and X̃ are independent. 198

In invariant information clustering, the main goal is learning from paired data, i.e., 199

from pairs of samples (x, x̃) ∈ X × X̃ taken from a joint probability distribution p(x, x̃). 200

If, for each pair, x̃ is an artificially created copy of x, it is possible to find a mapping Φ 201

that encodes what is common between x and x̃, while dropping all the irrelevant 202

information. If such a mapping Φ is found, the image Y = Φ(X ) becomes a compressed 203

representation of the original space X . 204

To find the best candidate for Φ, one way is to make Φ(x) represent a random 205

variable, and then maximize the predictability of sample x from sample x̃ and vice 206

versa, that is, find a mapping Φ(x) that maximizes I(Φ(x),Φ(x̃)) – the mutual 207

information between the encoded variables – over all x ∈ X . 208

This idea suggests that Φ can be calculated using a deep neural network with a 209

softmax as the output layer. For a dataset with an expected number of c clusters, c ∈ N, 210

the output space will be Y = [0, 1]c, where for each sample x we have that Φ(x) 211

represents the distribution of a discrete random variable over the c clusters. The mutual 212

information can be modified with the introduction of a hyper-parameter λ ∈ R that 213

weighs the contribution of the entropy term in Eq (2). However, instead of maximizing 214

the weighted mutual information, we use a numerical optimizer to minimize its opposite 215

(mathematically, the negative weighted mutual information) during the training process 216

of the ANN. Hence, the loss function to be minimized becomes: 217

L(x, x̃) = −λ ·H(Φ(x)) +H(Φ(x) | Φ(x̃)). (3)

In Eq (3), the entropy term H(Φ(x)) measures the amount of randomness present at 218

the output of the network, and it is desirable for that value to be as large as possible, in 219

order to prevent the architecture from assigning all samples to the same cluster. The 220

conditional entropy term H(Φ(x) | Φ(x̃)) measures the amount of randomness present 221

in the original sample x, given its correspondent x̃. This conditional entropy should be 222

as small as possible, since the original sample x should be perfectly predictable from x̃. 223
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Generation of Mimic Sequences 224

The success of the method described in the previous section is fundamentally dependent 225

on the way x̃ is artificially generated from x. In the particular case of our application, 226

where the samples x are DNA sequences to be classified, we refer to the artificially 227

created x̃ as mimic sequences (sometimes called simply mimics). In this context, the 228

generation of mimic sequences poses the additional challenge that they should be 229

sufficiently similar to the originals so as not to be classified into a different cluster. 230

Given a set X = {x1, . . . , xn} of n DNA sequences, we construct the set of pairs 231{(
xi, x

1
i

)
,
(
xi, x

2
i

)
,
(
xi, x

3
i

)
, . . . , (xi, x

m
i ) | 1 ≤ i ≤ n

}
, (4)

where m ≥ 3 is a parameter representing the number of mimic sequences generated for 232

each original sequence xi, 1 ≤ i ≤ n. We use a simple probabilistic model based on 233

DNA substitution mutations (transitions and transversions) to produce different mimic 234

sequences, as follows. Given a sequence xi and a particular position j in the sequence, 235

we fixed independent transition and transversion probabilities pts [j] and ptv [j] 236

respectively. Next, we produce the following mimic sequences, probabilistically: x1i with 237

only transitions, x2i with only transversions, and xji with both transitions and 238

transversions, for all 3 ≤ j ≤ m. The parameter m is determined, for each experiment, 239

based on the particulars of its dataset. Its default value is 3, to account for the use of 240

the two individual substitution mutations and their combination, but may have to be 241

increased if the number of available sequences per cluster is insufficient to obtain a high 242

classification accuracy. 243

The rationale behind using transition and transversion probabilities to generate 244

sequence mimics is biologically inspired. That being said, we use this method only as a 245

mathematical tool without attributing any biological significance, to create minimally 246

different sequences through randomly distributed base substitutions. In this paper we 247

use probabilities pts = 10−4 and ptv = 0.5× 10−4, assessed empirically to result in the 248

best classification accuracies. Although the mutation rates used are biologically inspired, 249

they are not biologically precise given that mutation rates vary regionally, with 250

species [37,38], and with the estimation method [39]. Lastly, in practice, with no 251

taxonomic label, it is impossible to select species-specific mutation rates. 252

Artificial Neural Network (ANN) Architecture 253

The pairs of CGRs of the original DNA sequences and their mimic sequences are used 254

as inputs, to train several independent copies of an ANN. Since the size of the genomic 255

datasets under study is at least an order of magnitude smaller than what is used in 256

computer vision, we noted that the common architectures that have proven effective in 257

the application of deep learning for various visual tasks were not suitable for our 258

datasets. Hence, we designed, de novo, a simple but general architecture that is suitable 259

for classification of DNA sequences. The complete architecture is presented in Fig 4 and 260

it consists of two fully connected layers, Linear (512 neurons) and Linear (64 neurons), 261

each one followed by a Rectified Linear Unit (ReLU) and a Dropout layer with dropout 262

rate of 0.5. The output layer Linear (c clusters), where c is a numerical parameter 263

representing the upper bound of the number of clusters, is followed by a Softmax 264

activation function. Note that, in the case of the K-means algorithm the input 265

parameter K represents the exact number of expected clusters, while in our case the 266

input parameter c is an upper bound for the expected number of clusters. 267

The network receives as input pairs of CGRs (two-dimensional representations of 268

DNA sequence composition) and flattens them into one-dimensional representations, 269

which are then fed sequentially to the first Linear layer. The inclusion of ReLUs is 270

essential for the training process, as they help mitigate the problems of vanishing 271

May 3, 2021 8/24

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.444008doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444008
http://creativecommons.org/licenses/by/4.0/


gradients and other back-propagation errors. The dropout layers prevent the model 272

from over-fitting, which in unsupervised learning comes in the form of degenerate 273

solutions, i.e., all the samples being assigned to the same cluster. Finally, the Softmax 274

layer gives as output a c-dimensional vector Φ(x) ∈ [0, 1]c, such that Φcj (x), 1 ≤ cj ≤ c, 275

represents the probability that an input sequence x belongs to a particular cluster cj . 276

Fig 4. Architecture of the deep Artificial Neural Network used in this paper. The
input CGRs are flattened into one-dimensional representations prior to entering the first
Linear layer. The parameter in each linear layer except the output layer represents the
number of neurons. For the Dropout layer, the parameter represents the dropout rate.
The parameter c (in c clusters) of the output linear layer, represents the expected upper
bound of the number of clusters. The Softmax layer is used to obtain a probability
distribution as the output of the network.

Note that this general architecture was designed so as to be successful for the 277

classification of all the diverse datasets presented in this study. However, the main 278

pipeline of DeLUCS allows it to be used also with other architectures, including 279

architectures that make use of the two-dimensional nature of the CGR patterns and are 280

performant for specific types of genomic data (e.g., Convolutional Neural Networks). 281

Evaluation 282

To assess the performance of DeLUCS, we follow the standard protocol, [40], for finding 283

the optimal mapping f that assigns to each cluster label cj , 1 ≤ cj ≤ c (found by the 284

algorithm), a taxonomic label f(cj). We then use this optimal assignment to calculate 285

the unsupervised clustering accuracy 286

ACC =

∑n
i=1O {li = f (ci)}

n
, (5)

where n is the total number of sequences. In addition, for each DNA sequence xi, 287

1 ≤ i ≤ n, we have that li is its true taxonomic label, ci is the cluster label found by the 288

algorithm, f(ci) is the taxonomic label assigned to ci by the optimal mapping f , and O 289

is a comparison operator that returns 1 if the equality in the argument holds, and 0 290

otherwise. 291

For each test, we compare the performance of DeLUCS with that of the K-means 292

algorithm, the Gaussian Mixture Models (GMM) algorithm. Note that the use of the 293

true taxonomic labels is for evaluation purposes only, as true labels are never used 294

during the training process. We also include the accuracy obtained using a supervised 295

learning method, for comparison. For this purpose, the same neural network architecture 296

described in the previous section is trained, using labelled data and the cross-entropy 297

loss function. To calculate the accuracy, we take 70% of the data for training and 30% 298

of the data for testing, and report the accuracy obtained for the testing set. 299
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Implementation 300

During the training procedure, all the hyperparameters of the method are fixed and 301

common to all of the tests, and were empirically selected as yielding the best 302

performance. All the flattened CGRs were normalized before being fed into the network, 303

by using the L1 norm, i.e., by dividing the values of each k-mer count vector by their 304

sum. This normalization brings all of the inputs of the ANN into the same range of 305

values, which contributes to the reliability of the ANN convergence. 306

The networks are initialized using the Kaiming method [41], to avoid exponential 307

reduction or magnification of the input magnitudes. This is crucial for our method 308

because a poor initialization may lead to degenerate solutions, as one of the terms in 309

the loss function becomes dominant. We use the Adam optimizer, [42], with a learning 310

rate of 5× 10−5, and the networks were trained for 150 epochs with no early stopping 311

conditions. Another vital consideration during training is the selection of the batch size 312

(empirically determined to be 512), because the marginalization that is performed to 313

find the distribution of the output is done over each batch of pairs. If the batch size is 314

not large enough to represent the real distribution of the data, the entropy term in the 315

loss function becomes dominant, leading to sub-optimal solutions. Lastly, we fix the 316

value of the hyperparameter λ to 2.5 (in Eq 3). 317

DeLUCS is fully implemented in Python 3.7, and the source code is publicly 318

available in the Github repository https://github.com/pmillana/DeLUCS. Users may 319

reproduce the results obtained in this paper, or use their own datasets for the purpose 320

of classifying new sequences (see S1 Appendix. Instructions for reproduction of the tests 321

using DeLUCS). All of the tests were performed on one of the nodes of the Cedar 322

cluster of Compute Canada (2 x Intel E5-2650 v4 Broadwell @ 2.2GHz CPU, 32 GB 323

RAM) with NVIDIA P100 Pascal(12G HBM2 memory). 324

Datasets 325

We used three different datasets in this study to confirm the applicability of our method 326

to different types of genomic sequences (mitochondrial genomes, randomly selected 327

bacterial genome segments, viral genes, and viral genomes), and all data was retrieved 328

from publicly available databases. Tables 1, 2 and 3, summarize the dataset details for 329

each of the 11 computational tests performed (see S2 Appendix. Query options for data 330

download, for more information). 331

Mitochondrial genomes (Table 1): The first dataset consists of complete 332

vertebrate mitochondrial genomes. We used the software Geneious 2020.2.4 to obtain a 333

list with 13,300 accession numbers. Sequences were downloaded from the National 334

Center for Biotechnology Information (NCBI) on November 16, 2020, after removing all 335

of the sequences shorter than 14,000 bp and longer than 24,500 bp. For this dataset, the 336

goal was to assess the performance of DeLUCS at different taxonomic levels, starting at 337

the sub-phylum level, down to the genus level. To do so, the cluster with the largest 338

number of sequences available at each taxonomic level was selected for the next 339

classification task, to ensure that we could reach as deep as possible into the 340

phylogenetic tree. A decision tree illustrating the cluster choices at different taxonomic 341

levels is included in Supplementary Material (see S4 Appendix. Detailed description of 342

the mtDNA datasets, and Fig 1 therein). 343

DeLUCS reaches optimal classification performance when a dataset consists of 344

balanced clusters, that is, clusters that are similar in size, and when each cluster has 345

more than a minimum number of sequences (herein 20 sequences). These two 346

requirements, together with the number of sequences per cluster available on NCBI, 347

were used to determine the minimum and maximum cluster size for each test. 348
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After determining the minimum cluster size for a test (the size of the smallest cluster 349

larger than 20), the clusters that were smaller than this test minimum were discarded. 350

In addition, sequences that belonged to the parent taxon, but lacked a sub-taxon 351

identifier (cluster label) were excluded (see S4 Appendix. Detailed description of the 352

mtDNA datasets, for details). 353

Some clusters were larger than the test maximum (a number bigger than – but not 354

more than 20% bigger than – the test minimum, to ensure cluster balance). For such 355

clusters, sequences were randomly selected until the test maximum was reached. Note 356

that since the minimum and maximum cluster size are test dependent, the number of 357

sequences in a cluster is also test dependent (for example, Test 1 uses 500 358

Actinopterygii sequences, while Test 2 uses only 113). Moreover, for similar reasons, the 359

number of sequences per cluster is usually smaller than the total number of sequences 360

with that cluster label that are available on NCBI. 361

Table 1. Details of the datasets used in computational tests 1 through 6 (full vertebrate mitochondrial genomes).

Test
#

Dataset
Total
no.of
seq.

Min
clus.
size

Max
clus.
size

Min.
seq.len.
(bp)

Avg.
seq.len.
(bp)

Max
seq.len.
(bp)

1 Subphylum Vertebrata (Actinopterygii (Fish): 500, 2,500 500 500 14,127 16,951 24,317
Amphibians: 500, Birds: 500, Mammals: 500,
Reptiles: 500)

2 Class Actinopterygii (Neopterygii: 40, 113 33 40 15,531 16,623 18,062
Polypteriformes: 33, Chondrostei: 40)

3 Subclass Neopterygii (Ostariophysi: 250, 1,475 226 250 15,564 16,688 19,801
Clupeomorpha: 250, Elopomorpha: 226,
Acanthopterygii: 250, Paracanthopterygii: 249
Protacanthopterygii: 250)

4 Superorder Ostariophysi (Cypriniformes: 130, 383 123 130 15,664 16,635 17,998
Characiformes: 123, Siluriformes: 130)

5 Order Cypriniformes (Cyprinidae: 80, 545 70 80 16,061 16,610 17,282
Cobitidae: 80, Balitoridae: 75, Nemacheilidae: 80,
Xenocyprididae: 80, Acheilognathidae: 70,
Gobionidae: 80)

6 Family Cyprinidae (Acheilognathus: 47, 447 26 47 16,070 16,632 17,426
Acrossocheilus: 46, Carassius: 45, Labeo: 45,
Microphysogobio: 35, Notropis: 26,
Onychostoma: 29, Rhodeus: 28,
Schizothorax: 31, Sarcocheilichthys: 45,
Cyprinus: 43, Sinocyclocheilus: 27)

The choice of computational Tests 1 to 6 (datasets within the sub-phylum Vertebrata) follows a decision-tree approach
whereby, at each classification level, one particular cluster (in blue) is selected for further in-depth classification. Note that,
since the minimum and maximum cluster sizes are different for each test, the number of sequences selected from a given taxon
can differ from one test to another. For example, in Test 3 only 250 out of the total 2,723 available Ostariophysi sequences
were selected, due to the need to achieve cluster balance, while the min/max cluster size parameters of Test 4 allowed for 383
Ostariophysi sequences to be used. The remaining Ostariophysi sequences could not be selected in either test since most of
them belonged to the over-represented Order Cypriniformes (2,171 available sequences). Test 1 and 2 illustrate a different
scenario: 500 of the total 7,876 available Actinopterygii sequences were used in Test 1, since this cluster size was sufficient to
achieve high accuracy, while in Test 2 only 113 Actinopterygii sequences could be used, due to the under-representation of
class Polypteriformes (33 available sequences) and over-representation of class Neopterygii (7,715 available sequences).
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Bacterial genomic sequences (Table 2): The second dataset consists of 3,200 362

randomly selected genomic segments of bacterial DNA from the eight different families 363

analyzed in [10]. These bacterial families belong to three different phyla: Spirochaetes 364

(Treponemataceae), Firmicutes (Bacillaceae, Clostridiaceae, and Staphylococcaceae), and 365

Proteobacteria (Enterobacteriaceae, Rhodobacteriaceae, Desulfovibrionaceae, and 366

Burkholderiaceae). 367

To construct a balanced dataset that captured as much diversity as possible, we 368

considered all of the available species per family, according to GTDB (release 95), [43], 369

and first excluded those species for which none of the sequences had a contig that was 370

of the minimum length (herein, 150 kbp). For these computational tests, the cluster size 371

was selected to be 400 sequences per cluster. This led to the following cases and 372

corresponding experiment design choices: 373

1. The number of available species in a family is larger than 400 374

(Rhodocacteriaceae and Burkholderiaceae) 375

We selected 400 species at random and, for each of the selected species, we 376

randomly selected one genome. Then we selected a random segment of at most 377

500 kbp from each genome. If there was only one genome available for a particular 378

species, and the length of its largest contig was between 150 kbp and 500 kbp, the 379

entire contig was selected. The selection strategy was designed to include as many 380

families as possible in the final dataset. 381

2. The number of available species in a family is less than 400 382

A. The total number of genomes in that family is larger than 400 383

(Bacillaceae, Clostridiaceae, Staphylococcaceae, Enterobacteriaceae) 384

We calculated the median M of the number of genomes per species, for that 385

family, and randomly chose at most M genomes per species (M = 2 for 386

Bacillaceae, M = 1 for Clostridiaceae, M = 7 for Staphylococcaceae, and 387

M = 2 Enterobacteriaceae). We then selected a random segment of at most 388

500 kbp from each genome. If there were fewer than M genomes representing 389

a species, and the length of their largest contig was between 150 kbp and 390

500 kbp, then the entire contig was selected. Since after this selection more 391

sequences were still required to reach the required 400 sequences per cluster, 392

we chose the rest of the genomes at random from the family, without 393

repetition, and selected a segment of 500 kbp from each such genome. 394

B. The total number of genomes in the family is less than 400 395

(Treponemataceae and Desulfovibrionaceae) 396

For every genome, whenever possible, contigs were divided into successive 397

segments of at most 500 kbp, that were added to a “pool”. If the length of a 398

contig was between 150 kbp and 500 kp, the entire contig was added to the 399

pool. From this pool, 400 segments were selected for inclusion in the final 400

dataset. This selection strategy ensured that all of the species were 401

represented, and that the shortest segments were selected last. 402

A description of the final composition of each cluster is presented in Table 2. In 403

addition to the inter-phylum classification of bacterial sequences into families (Test 7), 404

we assessed the performance of DeLUCS for an intra-phylum classification into families, 405

within the Proteobacteria phylum only (Test 8). The dataset for Test 8 was simply the 406
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subset of the dataset in Test 7 that included only the segments from genomes in 407

bacterial families from phylum Proteobacteria. 408

Table 2. Details of the datasets used in computational test 7 and 8 (randomly selected bacterial genome
segments, 400 segments per family, each of length between 150 kbp and 500 kbp).

Test
#

Phylum Family
No.
Species

No.
Genomes

Total
No. of
Seg.

Avg.No.
Seg./

Genome

Avg.
Seg.len.
(bp)

7 Spirochaetes Treponemataceae 46 153 400 2.3 387,939
Bacillaceae 47 400 400 1 493,999

Firmicutes Clostridiaceae 136 400 400 1 443,267
Staphylococcaceae 77 400 400 1 404,889
Enterobacteriaceae 379 400 400 1 446,887

Proteobacteria Rhodobacteriaceae 400 400 400 1 464,632
Desulfovibrionaceae 73 99 400 2.5 359,337
Burkholderiaceae 400 400 400 1 465,707

8 Proteobacteria Enterobacteriaceae 379 400 400 1 446,887
Rhodobacteriaceae 400 400 400 1 464,632
Desulfovibrionaceae 73 99 400 2.5 359,337
Burkholderiaceae 400 400 400 1 465,707

Test 7 comprises randomly selected genome segments from bacterial families across several phyla (min.
segment length 150,499 bp, average segment length 433,613 bp, max. segment length 500,000 bp). Test 8
consists of the genome segments in Test 7 that belong to phylum Proteobacteria (min. segment length
150,499 bp, average segment length 434,150 bp).

Viral genomes (Table 3): The third group of datasets consists of three different sets 409

of viral genome sequences. The minimum and maximum cluster sizes were determined 410

in a manner similar to that of the mitochondrial DNA datasets, i.e., for all the tests, the 411

minimum cluster size was fixed to the size of the smallest cluster available and the 412

maximum cluster size was fixed manually to a number exceeding the minimum cluster 413

size by no more than 20%, to ensure cluster balance. 414

To asses the performance of DeLUCS at the gene level, the dataset of Test 9 415

comprises 949 sequences of segment 6 of the Influenza A virus genome (encoding the 416

neuraminidase protein, average length 1,409 bp). The sequences were downloaded from 417

NCBI, [44], and classified into subtypes H1N1, H2N2, H5N1, H7N3, and H7N9, as 418

per [10]. The dataset of Test 10 comprises 1,633 Dengue virus full genome sequences 419

downloaded from NCBI, [45], and classified into subtypes. Finally, the dataset for Test 420

11 comprises 1,562 Hepatitis B virus (HBV) full genome sequences, downloaded from 421

the Hepatitis Virus Database, [46], and classified into subtypes. A description of the 422

final composition of each cluster is presented in Table 3. 423

Results 424

Classification Results 425

We first used a qualitative measure to assess DeLUCS’s ability to group DNA sequences 426

into meaningful clusters within the previously described datasets. Fig 5 illustrates how, 427

during the training stage, the ANN discovers meaningful clusters as the learning process 428

evolves. The progress of DeLUCS is demonstrated in terms of the number of epochs 429

(one epoch means a single pass of the ANN through the entire dataset, trying to 430

discover new patterns). In Fig 5, the number of clusters is c = 5 and it corresponds to 431
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Table 3. Details of the datasets used in computational tests 9, 10 and 11 (Influenza virus NA-encoding
gene, Dengue virus full genomes, Hepatitis B virus full genomes).

Test
#

Dataset
Total
no.of
seq.

Min
clus.
size

Max
clus.
size

Min.
seq.len.
(bp)

Avg.
seq.len.
(bp)

Max
seq.len.
(bp)

9 Influenza A (NA-encoding gene) 949 187 193 1,345 1,409 1,469
(Subtypes H1N1: 191, H2N2: 187,
H5N1: 188, H7N3: 193, H7N9: 190)

10 Dengue complete genomes 1,633 407 409 10,161 10,559 10,991
(Subtypes 1: 409 , 2: 409, 3: 408,
4: 407)

11 Hepatitis B complete genomes 1,562 258 263 3,182 3,210 3,227
(Subtypes A: 258, B: 262, C: 263,
D: 260, E: 261, F: 258)

the number of vertices in the regular polygon, whereby each vertex represents a 432

taxonomic label. The coordinates of each point are calculated using a convex 433

combination of the components of the c-dimensional probability vector (see section 434

Artificial Neural Network (ANN) Architecture), [33]. When the learning process starts, 435

all the sequences are located at the center of the polygon, which means that each 436

sequence is equally likely to be assigned any of the five cluster labels. As the learning 437

process continues, the network starts assigning the sequences to clusters (with similar 438

sequences being grouped together closer to their respective vertex/cluster), with higher 439

and higher probability. Note that if two sequences are assigned the same probability 440

vectors, their corresponding points in Fig 5 will overlap. 441

Epoch 0 Epoch 2  Epoch 4 Epoch 8 Epoch 16 Epoch 149

Amphibians Birds Fish Mammals Reptiles 

Fig 5. Learning process for the classification of 2,500 vertebrate mtDNA full genomes
into c = 5 different classes, each corresponding to one corner of the pentagon. Each
point represents a sequence, and its position indicates the probability that it is assigned
to different classes. Hence, a point in the center has equal probabilities to be assigned
to all 5 vertices/clusters, while a point located in a vertex has probability of 1 of
belonging to that vertex/cluster. With successive epochs, the learning progresses until,
at epoch 149, all sequences are correctly placed in their respective vertex/cluster. Note
that points in the figure overlap if they have the same probability vector.

For a quantitative assessment of DeLUCS, we used the unsupervised classification 442

accuracy as described in the previous section. For the vertebrate mtDNA dataset, 443

Table 4 shows that, at each taxonomic level, down to the genus level, our unsupervised 444

deep learning algorithm outperforms the other two unsupervised clustering methods. 445

Surprisingly, DeLUCS also outperforms a supervised learning algorithm that uses the 446

same architecture in some tests (e.g., in Test 2, Class to Subclass), sometimes by a 447
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significant margin (e.g., in Test 6, Family to Genus, by 11%). Note that, in order to 448

obtain a reasonable classification accuracy, the number m of mimics had to be increased 449

for the tests/datasets with less than 150 sequences per cluster. 450

Table 4. Classification accuracies for the mtDNA dataset in Table 1, Tests 1 to 6.

Test Classification Number of Supervised Unsupervised
# Mimics GMM K-Means DeLUCS
1 Subphylum 3 99% 72% 84% 93%
2 Class to Subclass 8 98% 92% 95% 100%
3 Subclass to Superorder 3 99% 70% 81% 85%
4 Superorder to Order 8 100% 68% 75% 94%
5 Order to Family 8 87% 66% 77% 79%
6 Family to Genus 8 80% 84% 83% 91%

For unsupervised learning, reported accuracy values are the average over 10 runs of the
algorithm. For supervised learning, the accuracy is that of classifying the test set.

To test the ability of DeLUCS to classify bacterial genome segments, and achieve a 451

direct accuracy comparison with other unsupervised learning methods, we first 452

attempted the classification of a dataset comprising genome segments, averaging 400,000 453

bp, from the eight different bacterial families considered in [10] (Table 5, Test 7). The 454

DeLUCS classification accuracy of 77% is 19% to 21% higher than the accuracies of the 455

other two unsupervised learning methods (GMM 58%, and K-means 56%). The 456

relatively low classification accuracies for all three unsupervised methods may be due in 457

part to this dataset having a very heterogeneous evolutionary composition, with recent 458

changes in the taxonomy of all eight bacterial families resulting during the 459

reclassification and transition from NCBI to GTDB. In particular, Bacillaceae/ 460

Staphylococcaceae and Clostridiaceae (formerly all Firmicutes) are now split into two 461

different phyla, and similarly Enterobacteriaceae/ Burkholderiaceae/ Rhodobacteraceae 462

and Desulfovibrionaceae (formerly all Proteobacteria) are now split into two different 463

phyla. The heterogeneity of the dataset makes the classification a challenging task, as 464

the algorithm attempts to determine cluster labels simultaneously for both closely 465

related families and distantly related families. The patterns observed in the confusion 466

matrix (see S3 Appendix. Confusion matrices) support the hypothesis of heterogeneity 467

in genetic distance between members of the dataset. Indeed, misclassification between 468

phyla are a minority, and most of the misclassifications occur among families that were 469

previously placed within the same phylum, but are now placed in different phyla. 470

To verify that the lower classification accuracy could be partially caused by the 471

heterogeneity of the dataset, we next considered an intra-phylum classification of a 472

subset of this dataset, comprising only sequences belonging to phylum Proteobacteria 473

(Table 5, Test 8). As predicted, the classification accuracy of DeLUCS shows a 474

significant increase, from 77% to 90%, now outperforming the other two unsupervised 475

learning methods by 40% and 48% respectively. The majority of the misclassified 476

genome segments in Test 8 belong to the family Desulfobivrionaceae. This may be 477

partly due to this family having the shortest genome segments: The average 478

Desulfobivrionaceae genome segment length is 359,337 bp, significantly shorter than the 479

average genome segment length in Test 7, which is 433,613 bp. 480

Note that, in both Tests 7 and 8, we used the default value m = 3 for the number of 481

mimic sequences. This is because the number of available sequences (genome segments 482

of the required size) per cluster was large, and the classification accuracy did not 483

increase by increasing the number of mimic sequences. 484

To test the ability of DeLUCS to classify closely related sequences, we next classified 485

three viral sequence datasets, Influenza A virus NA-encoding gene, Dengue virus 486

complete genomes, and Hepatitis B virus complete genomes, into virus subtypes. The 487
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Table 5. Classification accuracy for the bacterial datasets in Table 2, Test 7 and 8.

Test Classification Number of Supervised Unsupervised
# Mimics GMM K-Means DeLUCS
7 Bacteria into families 3 98% 58% 56% 77%
8 Proteobacteria into families 3 99% 50% 42% 90%

For unsupervised learning, reported accuracy values are the average over ten runs. For
supervised learning, the reported accuracy is that of classifying the test set.

classification accuracies presented in Table 6 show that all machine learning methods, 488

supervised or unsupervised, perform well, in spite of the fact that the viral sequences 489

are very similar. In Tests 9, 10, 11 the default value m = 3 for the number of mimic 490

sequences was used, since this was sufficient to obtain near perfect classification 491

accuracy. 492

Table 6. Classification accuracy for the viral sequences datasets, Table 3, Tests 9, 10, and 11.

Test Classification Number of Supervised Unsupervised
# Mimics GMM K-Means DeLUCS
9 Influenza A 3 100% 96% 99% 99%
10 Dengue 3 100% 100% 100% 100%
11 HBV 3 100% 100% 100% 100%

For unsupervised learning, reported accuracy values are the average over ten runs. For
supervised learning, the reported accuracy is that of classifying the test set.

Together, these computational tests show that, in spite of the absence of any 493

information external to the primary sequences, DeLUCS is capable of learning 494

meaningful clusters from unlabelled, raw, and sometimes non-homologous DNA 495

sequences. Moreover, DeLUCS outperforms classical unsupervised clustering algorithms 496

that use k-mer counts as input features, often by a significant margin. 497

Methodology Results 498

Number of mimic sequences 499

The default number of mimic sequences was chosen to be m = 3, to correspond to the 500

three different mechanisms used to generate mimic sequences from the original 501

sequences: transitions, transversions, or combinations of both. 502

For the datasets in this study it was empirically determined that, if the cluster sizes 503

are similar, and each cluster has more than 150 sequences, then the default value of 504

m = 3 results in optimal performances (as is the case in Tests 1, 3, 7, 8, 9, 10 and 11). 505

For the datasets with less than 150 sequences per cluster, we tested the hypothesis 506

that the classification accuracy could be improved by generating more artificial mimic 507

sequences per original DNA sequence. Our observations confirmed this hypothesis in 508

Tests 2, 4, 5, and 6, where increasing the number of mimics to m = 8 resulted in 509

improved classification accuracies. 510

Note that, for the datasets with more than 150 DNA sequences per cluster (e.g., 511

Tests 1, 3, 7, 8), increasing the number of mimics did not always result in increased 512

classification accuracy. Fig 6 illustrates the effect of increasing the number of mimic 513

sequences on classification accuracy for four different tests (Tests 2, 4 and 6, with fewer 514

than 150 sequences/cluster, and Test 3 with more than 150 sequences/cluster). Note 515

also that Tests 9, 10, 11 had more than 150 sequences per cluster, as well as near 516

perfect classification accuracies, and thus no increase in the number of mimic sequences 517

was explored. 518
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In general, the optimal number of mimics per sequence may depend on the number 519

of available sequences per cluster, as well as on other particulars of the dataset being 520

analyzed. The values of m mentioned above (m = 3, respectively m = 8) are suggested, 521

but further optimization may be possible through a hyperparameter search. 522
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Fig 6. The effect of the number of mimic sequences on classification accuracy. Blue -
Class Actinopterygii (Test 2); Red - Subclass Neopterygii (Test 3); Yellow - SuperOrder
Ostariophysi (Test 4); Green - Family Cyprinidae (Test 6). In Tests 2, 4, and 6, with
fewer than 150 sequences per cluster, increasing the number of mimics per sequence
results in a marked increase in classification accuracy. In Test 3 (red), where the number
of available sequences per cluster is sufficiently high (226 to 250), increasing the number
of mimics to more than 3 does not result in an increase the classification accuracy.

Adding Gaussian Noise 523

We now provide further insight into the performance of our method by showing the 524

relationship between the loss function and the DeLUCS clustering accuracy. The 525

learning curves presented in Fig 7 illustrate the optimization process of a single ANN. 526

During each epoch, the entire set of training sequences is utilized for optimizing the 527

network parameters, and we observe an inverse correlation between the classification 528

accuracy and the unsupervised loss function for each epoch (Fig 7, top). The same 529

graph illustrates that the ANN sometimes tends to converge to a suboptimal solution, 530

and this is because the mutual information might still be high for suboptimal solutions 531

where relatively many related sequences are similarly misplaced (i.e., assigned to the 532

wrong cluster, while still being close to each other within their subgroup). 533

To prevent the model from converging to suboptimal solutions, we added Gaussian 534

noise to the network parameters every 50 epochs. We confirmed empirically that the 535

introduction of noise is beneficial, as the accuracy increases after the introduction of 536
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noise every 50 epochs (Fig 7, bottom). 537
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Fig 7. Learning curves for the training process of a single ANN in Step 2 of the
Method, for the dataset in Test 1 (vertebrate mtDNA genomes) with (top), and without
(bottom) the addition of Gaussian noise to the parameters of the networks every 50
epochs. Each graph displays the relation between the unsupervised loss function that is
being minimized and the overall accuracy of the method. The true labels of the
sequences are only used to evaluate the accuracy at each epoch, but they do not
influence the learning process. The graph illustrates the positive effect that the periodic
addition of Gaussian noise has on the prevention of convergence to suboptimal solutions,
and on the classification accuracy (from ≈ 82% top, to ≈ 96%, bottom).

Majority Voting for Variance Mitigation 538

The training process of an ANN is a randomized algorithm, with the randomness 539

introduced by the initialization of the ANN, and the selection of random batches of 540

training data in each epoch. The random selection of batches is beneficial for the 541

marginalization that is performed to calculate the loss function. However, we also 542

observed a high variance in the outcomes of training several independent copies of the 543

ANN over the same dataset, likely due to the aforementioned randomness. To overcome 544

this challenge, for each dataset, we independently trained ten ANNs, and integrated the 545

obtained classification results using a majority voting scheme. Fig 8 compares the 546

classification accuracy of six tests that use an ensemble of 10 ANNs, with majority 547

voting, compared to six tests that use a single ANN. Each test was repeated ten times 548

to compare the variance of the two approaches. As Fig 8 shows, majority voting not 549

only reduced the variance of predictions but also improved the overall classification 550

accuracies. 551
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Fig 8. Comparison between training a single ANN (yellow), versus training an ensemble
of 10 ANNs (blue) and using majority voting to decide the final cluster label for each
sequence (Tests 1-6). All tests were repeated 10 times. The minimum, first quartile
(Q1), median, third quartile (Q3), and maxima of the distributions are shown. The
diamonds outside the boxes represent outliers. Note that the result variance for single
ANNs is larger than the result variance for the corresponding ensembles of 10 ANNs. In
addition, the classification accuracy is higher for the majority voting, in all cases.

Discussion 552

The use of CGR as a numerical representation of genomic sequences, in combination 553

with invariant information clustering (a deep unsupervised learning method for 554

computer vision), allows DeLUCS to accurately cluster/classify large datasets of 555

genomic sequences. The largest computational experiment in this paper comprises 3,200 556

randomly selected bacterial genome segments, totalling more than 1 billion bp, a 557

dataset which is a full order of magnitude larger than previous studies clustering 558

genomic data [7–13]. 559

In addition, DeLUCS achieves significantly higher classification accuracies compared 560

to other unsupervised machine learning clustering methods (K-means and GMM), in 561

comparable time. The running time of the whole pipeline of DeLUCS, considering both 562

training and testing time, is less than 40 minutes for the largest bacterial dataset. 563

Note that for datasets comprising sequences with minimal homology (Tests 1-6, and 564

10-11) using alignment-based methods would be near impossible, while for datasets 565

comprising non-homologous sequences (Tests 7, 8) using alignment-based methods 566

would be impossible. Indeed, in the former case (vertebrate mitochondrial genomes, and 567

virus genomes respectively), the time complexity of multiple-sequence alignment is 568

prohibitive. In the latter case (bacterial genome segments averaging 400 kbp), the 569

random sampling of genome segments from bacterial genomes almost guarantees 570

non-homologous regions, thus making alignment impossible even if time complexity 571
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were not an issue. Test 9, of the NA-encoding gene of Influenza A virus, where an 572

alignment-based method would be possible and probably successful, was included to 573

showcase the applicability of our method to a variety of genomic data. Lastly, note that 574

unlike K-means, where K is a predetermined parameter representing the exact number 575

of clusters, the mathematical formulation of IIC allows DeLUCS some flexibility in the 576

selection of the parameter c (expected upper bound of the number of clusters). This 577

being said, preliminary computational experiments suggest that the closer c is to the 578

exact number of clusters, the better the performance of DeLUCS becomes. 579

This study serves as a proof of concept of the ability of unsupervised deep learning 580

to effectively cluster unlabelled raw DNA sequences. Future work can address some of 581

the current limitations of this approach, as described below. 582

First, in order to achieve accurate clustering, DeLUCS requires its training dataset 583

to have balanced and well-represented clusters, with at least a minimum number of 584

sequences per cluster. The minimum and maximum cluster size were determined 585

individually for each computational test, based on the number of available sequences 586

and the aforementioned requirements. As a result, many available sequences were not 587

included in the training data, either due to the fact that under-represented clusters were 588

discarded, or due to the fact that the excess sequences from over-represented clusters 589

were not used. This limitation could be addressed, e.g., by adjusting the loss function to 590

be able to deal with unbalanced training databases, that is, datasets where clusters are 591

of different sizes. 592

Second, we observe that the classification accuracy of an ANN is heavily dependent 593

on the initialization of the parameters, which is random for each run of the experiment. 594

In other words, the classification accuracy for a dataset can vary from run to run of an 595

ANN, sometimes by a large amount. On the other hand, one of the reasons behind 596

DeLUCS’ successful classification lies in this randomness in the parameter initialization. 597

We attempted to address this trade-off between performance and reproducibility by 598

training several copies of the same ANN, and using majority voting to determine the 599

final cluster labels. The overall classification accuracy stabilized and increased as a 600

result, with the downside being that this approach increased the running time of the 601

training step, since ten ANNs were sequentially trained. More time-efficient solutions, 602

such as training the ANNs in parallel, would lead to a tenfold improvement of the 603

running time. 604

Third, we observed that for the datasets with fewer than 150 sequences per cluster, 605

an increase in the number of mimics resulted in classification accuracy improvements 606

(Tests 2, 4, 5, 6). However, this was not the case for some of the datasets with more 607

than 150 sequences per cluster (Tests 1, 3, 7, 8). Some other tests, e.g., Tests 9, 10, 11, 608

resulted in near perfect accuracy from the start and needed no further optimization. For 609

experiments in this paper, the number of mimic sequences per cluster was empirically 610

determined to be optimal with respect to the cluster size. Further exploration is needed 611

to determine the relationship between cluster size and the number of mimics per 612

sequence, as well as to find other mechanisms to boost classification accuracy for 613

specific datasets, such as the use of Convolutional Neural Networks which make full use 614

of the two-dimensional aspect of the CGR representation. 615

Conclusions 616

In this work we introduce DeLUCS, a novel unsupervised deep learning clustering 617

method for DNA sequences. DeLUCS leverages deep learning to discover 618

identity-relevant patterns in raw, primary DNA sequence data, without requiring 619

homology, biological annotations, or the time-consuming and laborious step of defining 620

taxonomic labels for the training data. DeLUCS obtains high classification accuracies 621
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by the novel fusion of bioinformatics approaches with recent developments in the field of 622

deep learning for computer vision, through the use of Chaos Game Representation of 623

original and mimic DNA sequences as input for invariant information clustering. 624

This is, to the best of our knowledge, the first effective alignment-free method that 625

utilizes deep ANNs for unsupervised clustering of unlabelled DNA sequences. DeLUCS 626

classifies diverse datasets comprising thousands of homology-free, identifier-free 627

sequences (vertebrate mtDNA full genomes at various taxonomic levels; random 628

segments of bacterial genomes into families; viral genomes into virus subtypes). 629

Classification is of the highest sensitivity at the species into subtypes level (99% to 630

100%), while in all other tests classification accuracy is double-digit higher than that of 631

classic unsupervised machine learning clustering methods. 632
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