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ABSTRACT1

Since its first experimental signatures, the so called ‘critical brain hypothesis’ has been2
extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted3
teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the4
noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas5
should be critical. We investigated whether a single barrel column of the somatosensory cortex6
of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across7
all cortical layers in terms of both spikes and population local field potentials, and their behavior8
during spontaneous activity compared to the one evoked by a controlled single whisker deflection.9
By applying a maximum likelihood statistical method based on timeseries undersampling to10
fit the avalanches distributions, we show that neuronal avalanches are power law distributed11
for both spikes and local field potentials during spontaneous activity, with exponents that are12
spread along a scaling line. Instead, after the tactile stimulus, activity switches to an across-layers13
synchronization mode that appears to dominate during cortical representation of the single14
sensory input.15

Keywords: brain; criticality; avalanches; LFP; spikes; evoked; somatotopy; sensory; coding16

1 INTRODUCTION
The human cortex operates in a state of restless activity, whose meaning and functionality are not yet17
understood. The critical brain hypothesis suggests that this is the result of the brain operating in the vicinity18
of the critical point of a phase transition, leading to a rich and variable dynamics at rest. In general, it19
has been argued that criticality provides biological systems with an optimal balance between robustness20
against perturbations and the flexibility to adapt to changing conditions. In the case of the brain, this would21
confer optimal computational capabilities (e.g., by optimizing the correlation length and the dynamic range,22
leading to the existence of large dynamical repertoires accompanied by maximal transmission and storage23
of information [1, 2, 3, 4, 5]). In this context, Hidalgo et al. [2] have shown that complex adaptive systems24
that have to cope with a great variety of stimuli are much more efficient when operating in the vicinity of a25
critical point, and thus they benefit from dynamically tuning themselves to that point.26

By analyzing LFPs of cortical neurons in culture, the seminal work of J. Beggs and D. Plentz [6] provided27
the first evidence of power law distributed neuronal avalanches, i.e. cascades of activity interspersed by28
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periods of quiescence typical of critical systems. In particular, the exponents of these power laws were29
remarkably close to the ones of a critical branching process, hence suggesting a scenario in which neuronal30
networks are characterized by a marginal propagation of the activity at the critical point between an31
active and an absorbing phase. Since then, such power laws have been observed repeatedly in different32
experimental settings [7, 8, 9, 10, 11, 12], thus strengthening the critical brain hypothesis. Despite that,33
ambiguities, inconsistencies and open questions remain.34

A first problem concerns the experimental definition of avalanche. In order to estimate avalanches, one35
needs to define discrete events. While neuronal spikes are events by nature, the conversion of coarse-36
sampled brain signals such as LFPs into a discrete form (e.g. by simply applying a threshold) is ambiguous37
and difficult to interpret in terms of neural correlates. As the relation between events and actual underlying38
neural activity becomes more uncertain, the definition of neural avalanches becomes fuzzy [13, 14, 15].39
Moreover, an avalanche should describe a cascade where individual units are causally activated, but in40
experiments causal information is not easily accessible and one needs to resort to various approximation41
strategies [16]. For example, temporal proximity between events is traditionally considered as a proxy for42
causality and avalanches are estimated by choosing a discrete time bin ∆t that, in turn, depends on the43
choice of the threshold.44

An additional limiting factor is spatial sampling of experimental recordings. Studies using coarse-45
sampled activity like LFPs typically yielded power-law distributions both in vivo and in vitro, but several46
experiments relying on spikes in awake animals did not [17, 18, 19]. One possible cause is insufficient47
spatial sampling of recording in awake conditions. Avalanches are a population phenomenon, but spikes are48
sparsely recorded in these experiments and reflect a subpopulation of neurons, in fact missing a consistent49
fraction of the real activity [18]. On the other hand, LFPs are average and composite signals that indeed50
reflect neuronal populations although they are difficult to interpret in terms of single neurons [20, 21, 22],51
a problem worsened by the event-extraction process [23].52

Also because of these shortcomings, the real nature of the network processes and of the associated53
phase transition that generate neuronal avalanches has remained elusive. A recent study [24] showed that54
a statistical meta-analysis of many experiments suggests that the avalanche exponents are not universal,55
but rather spread along a scaling line. Intriguingly, and in contrast to the classical view of avalanches56
seen as generated by a quiescent-to-active phase transition, this work suggests that the critical transition57
in the brain occurs at the edge of synchronization alternatively originating avalanches, oscillations and58
UP/DOWN states [25].59

Up to now, most of the work on neuronal avalanches has focused on spontaneous activity, while much60
remains to be understood about their behavior after perturbations caused by incoming inputs. Investigating61
the response to sensory stimuli in primary cortical areas is a clear-cut strategy to address this point. First,62
these brain regions can be expected to benefit from operating around a critical point to encode the sensory63
stimuli themselves. Moreover, sensory inputs, which are under direct experimental control, propagate64
to cortical networks across a limited number of well characterized processing stages (contrary to, e.g.,65
associative or motor areas). Avalanches were studied in the turtle visual cortex ex-vivo while the retina was66
exposed to a movie acting as a continuous visual stimulus [26, 27]. Based on neural avalanches extracted67
from LFPs, results suggested that the cortical network self-adapts to a critical state after a short period from68
the stimulus. However, in these experiments, LFPs were sparsely measured and reflected populations of69
neurons scattered across the visual processing cascade and downstream to important processing structures70
including the retina. Work on the primary auditory cortex hinted, instead, at a critical behavior both in71
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resting and post-stimulus conditions [28]. Noteworthy, measurements were confined to either layers 2/3 or72
4 and limited by the slow dynamics of calcium imaging to obtain an indirect estimate of neural activity.73

In this work we contribute to verify the critical brain hypothesis with a systematic study of neuronal74
avalanches in the rat barrel cortex (the region of the rat primary somatosensory cortex that encodes tactile75
sensory inputs from the whiskers). We run our measurements across cortical layers in single barrel columns76
of the rat anesthetized with tiletamine. This common preparation for electrophysiology [29] displays rich77
cortical spontaneous activity, including UP and DOWN states and oscillations that have been linked to78
avalanches and criticality [30, 25]. Given the current challenges to test the critical brain hypothesis and79
the different results that different kinds of recorded signal can generate [17, 18, 19], we explored activity80
across a wide frequency range, covering both spikes and LFPs (i.e., up to 3000 Hz). Moreover, analysis81
was performed both on spontaneous and evoked activity and neural avalanches analyzed through a protocol82
based on state-of-the-art maximum likelihood statistical method [31].83

2 MATERIALS AND METHODS
2.1 Electrophysiological recordings and surgical procedures84

Extracellular spikes and LFPs recordings. Spikes were recorded using a neural probe with a linear85
array of thirty two Iridium Oxide (IrOx) microelectrodes with 65 µm pitch (E32+R-65-S1-L6 NT; Atlas86
Neuroengineering) (Figure 1). Raw signals were acquired by an Open Ephys Acquisition Board (OEps87
Tech, Lisbon, Portugal) at 25 KHz sampling frequency and band-pass filtered (300 - 3000 Hz). LFPs were88
recorded at high density using a CMOS based neural probe with an array of 256 microelectrodes (7.4 µm89
in diameter size and organized in four vertical columns and sixty-four horizontal rows) [32] with 32 µm90
pitch along both the horizontal and vertical axis (Figure 1). Raw multiplexed signals were acquired through91
a NI PXIe-6358 (National Instruments) board (sampling frequency 1.25MS/s at 16bit) and demultiplexed92
using a home-made LabVIEW software. The resulting whole-array LFP signal was sampled at 976.56 Hz93
and band-pass filtered (2-300 Hz). Once inserted in the barrel column, both arrays were spanning across all94
the six cortical layers (from 0 to – 1800 µm).95

Surgical implantation and single whisker stimulation. Wistar rats were maintained under standard96
environmental conditions in the animal research facility of the Department of Biomedical Sciences -97
University of Padova. All the procedures were approved by the local Animal Care Committee (O.P.B.A.)98
and the Italian Ministry of Health (authorization number 522/2018-PR). Rats of both genders, aged 3699
to 50 days (P36 - P50) and weighting between 150 and 230 g, were anesthetized with an intra-peritoneal100
induction mixture of tiletamine-xylazine (2 mg and 1.4 g/100 g body weight, respectively), followed by101
additional doses (0.5 mg and 0.5 g/100 g body weight) every hour. The anesthesia level was constantly102
monitored by testing the absence of eye and hind-limb reflexes and whiskers’ spontaneous movements.103
Before starting with surgery, the rat was fixed on a stereotaxic apparatus by teeth and ear bars. The body104
temperature was monitored continuously with a rectal probe and maintained at 37 ◦C by a heating pad. The105
skull was exposed through an anterior-posterior opening of the skin in the center of the head and a window106
was drilled over the right somatosensory barrel cortex at stereotaxic coordinates −1÷−4 AP, +4÷+8107
ML referred to bregma [33]. A slit in the meninges was made with dedicated fine forceps at coordinates108
−2.5 AP, +6 ML for the subsequent insertion of the recording probe, and the brain was constantly bathed109
in Krebs’ solution (in mM: NaCl 120, KCl 1.99, NaHCO3 25.56, KH2PO4 136.09, CaCl2 2, MgSO4 1.2,110
glucose 11).111

The recording probe was fixed to a dedicated holder connected to a Patchstar micromanipulator112
(Scientifica Ltd, East Sussex, UK), which was used for inserting the probe into the cortex orthogonal to the113
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Figure 1. (A) Experimental setting for recording with the anesthetized rat immobilized on the stereotaxic
apparatus. The Atlas probe for spikes recording is inserted in the barrel cortex through the dedicated cranial
window. The cortical surface is bathed by Krebs’ solution that is grounded through the immersed Ag/AgCl
reference electrode. The piezoelectric bender with cannula used to control single whisker deflection is
visible on the left. An identical arrangement, but with the custom high-density probe, was adopted for LFPs
recording. (B) Custom 2D 64× 4 array used for LFPs and commercial 1D array used for spikes spanning
across cortical layers as during recording. The actual number of electrodes inserted in the barrel cortex is
220 for LFPs (organized in a 55× 4 matrix form) and 27 for spikes. Examples of spikes (C) and LFPs (D)
traces (from three representative channels each).

cortical surface. The depth was set at 0 µm when the electrode proximal to the chip tip touched the cortical114
surface. An Ag/AgCl electrode bathed in Krebs’ solution in proximity of the probe was used as reference.115

Contralateral whiskers were trimmed at around 10 mm from the mystacial pad. To control deflection,116
single whiskers were inserted for 8 mm inside a cannula glued to a piezoelectric bender with integrated117
strain gauges (P-871.122; Physik Instrumente (PI) GmbH & Co. KG) and driven by a home-made closed-118
loop control system. Each stimulus, delivered by a waveform generator (Agilent 33250A 80 MHz, Agilent119
Technologies Inc., Colorado, USA), was consisting of a voltage pulse of 5 ms duration and 100 µs rise/fall120
time applied to the piezoelectric bender. The principal (maximally responding) whisker identified on the121
basis of the amplitude of evoked LFP responses was selected for the recording session.122

2.2 Avalanches analysis123

Spikes and high-density LFPs recordings were performed separately in four and five rats, respectively.124
The minimum time interval between consecutive whisker stimuli was set to two seconds to avoid receptors125
and central adaptation phenomena. Accordingly, two seconds of recording after the stimuli were excluded126
from the analysis of basal activity. Due to the different duration of the stimulus-evoked avalanches in127
the LFPs and spikes domains (Fig. 2), post-stimulus intervals were set for analysis at 2 s or 500 ms for128
LFPs and spikes, respectively. In total, 2 minutes long recordings of LFPs basal activity and 5 minutes129
long recordings of spikes basal activity were analyzed for each rat. Forty stimulations of the whisker were130
considered for each rat in the analysis of LFPs evoked activity, while in spikes data the recordings of each131
rat included at least 60 stimulations of the whisker.132
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Figure 2. Evoked response by whisker stimulation: LFPs and spikes. Example of LFP (A) and spike (B)
traces with the 3 standard deviations (SD) thresholds used for events detection (indicated by dots). The
corresponding raster plots are shown in (C) and (D). The 2D array in (C) was rearranged in one dimension
(groups of four sensors in a row are reported consecutively along the vertical axis). The early response to
the stimulus occurred within few tens of milliseconds and was characterized by a high degree of events
synchronization across channels both for LFPs and spikes. The typical LFP evoked response consisted in a
first negative peak followed by a slower positive wave. Both were detected as events which is reflected in
the raster plot. After the early response large and frequent avalanches typically followed, taking the form
of oscillations of synchronous events across channels fading after a few hundreds of milliseconds from the
stimulus. Correspondingly, epochs of high frequency firing (bursts) were observed in the spikes domain (C
and D).

For the detection of LFP events, the standard deviation (SD) and the mean of the signal was computed133
for each channel. Both negative and positive deflections of the potential trace were considered events when134
above a threshold of three SD. Moreover, each deflection was considered terminated only after it crossed135
the mean of the signal.136

Noteworthy, in order to distinguish real events from noise, the choice of three SD was based on the137
distribution of the signal amplitudes which significantly deviated from a Gaussian best fit above that138
threshold (see Supplementary Material). For both post stimulus and basal (resting state) activity, an average139
inter event interval (〈IEI〉) was calculated and used for temporal binning to estimate avalanches. Avalanches140
were defined as sequences of 〈IEI〉 time bins presenting activity in the form of events, with the end of the141
avalanche identified by the first empty bin. The number of events in each avalanche accounted for its size,142
while the duration was the number of temporal bins comprising the avalanche.143

For extracellular spikes detection we used as threshold three SD of the noise [34]. Events recorded at the144
same time frame by different microelectrodes were ascribed to the same neuron and thus counted as one145
event, although avalanches results were not significantly affected by this correction. Statistics of neuronal146
avalanches were studied in the four rats, in resting state recordings and in recordings with a stimulation147
session.148
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2.3 Power law fitting and statistical testing149

The avalanches sizes and durations distributions are fitted using the maximum likelihood method. The150
fitting function for both avalanche sizes and duration is a discrete power-law:151

p(y;α) =
y−α∑x=xmax

x=xmin
x−α

. (1)

The parameter xmax is set to the maximum observed size or duration. Then the tails of the distributions152
are fitted by selecting as parameter xmin the one that minimizes the Kolmogorov-Smirnov distance (KS),153
following the method proposed by Clauset et al. [35]:154

KS = max
y≥xmin

|S(y)− P̂ (y)| (2)

where S(y) is the cumulative distribution function (CDF) of the data and P̂ (y) is the CDF of the theoretical155
distribution fitted with the parameter that best fits the data for y ≥ xmin.156

After finding the best-fit power law, to assess goodness-of-fit we compared the experimental data against157
1000 surrogate datasets drawn from the best-fit power law distribution with the same number of samples158
as the experimental dataset. The deviation between the surrogate datasets and a perfect power law was159
quantified with the KS statistic. The p-value of the power-law fit was defined as the fraction of these160
surrogate KS statistics which were greater than the KS statistic for the experimental data. Note that the161
data were considered power law distributed if the null hypothesis could not be rejected, namely if the the162
p-value turned out to be greater than the significance level, which was set to a conservative value of 0.1.163

However, when estimating the parameters and evaluating the p-value, we take into consideration another164
aspect that has been recently pointed out in [31]. A point often ignored is that maximum likelihood methods165
rely on two assumptions:166

1. the observations y are distributed as p(y;α), where α is the power law exponent;167

2. the empirical observations yi, i = 1, ..., N , are independent.168

While the first assumption corresponds to our choice of a statistical law, statistical tests rely on the second169
one, which for instance is implicitly assumed when the log-likelihood is computed as

∑i=N
i=1 log p(yi).170

However, complex systems are often characterized by strong temporal and spatial inter-dependencies,171
thus often violating the independence assumption. This may lead to false rejections of the statistical laws172
and to over-optimistic uncertainties of the estimated parameters. The authors of [31] propose a method to173
distinguish between these assumptions, and we exploit it here to estimate the parameters and evaluate the174
goodness-of-fit. Briefly, we take the timeseries of sizes or durations of consecutive avalanches, and we175
estimate the time τ∗ after which to observations (e.g. the avalanche sizes) are independent from each other.176
In practice, τ∗ is obtained by computing the time at which the autocorrelation of the timeseries reaches an177
interval around zero (1-percentile of the random realization). Then, the original sequence of length N is178
randomized, N∗ = N/τ∗ observations are selected and the standard statistical analysis is applied to the179
new sample. This guarantees that the new sample of dimension N∗ < N comprises only uncorrelated180
avalanches.181

Indeed, in our timeseries of sizes and durations we find non negligible values of τ∗ (see Supplementary182
Material), and we verify that the acceptance rate of the statistical law increases for uncorrelated avalanches.183
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Because of the variability of the different realizations of the subsampling procedure, the exponents and the184
p-values shown in Tables 1 and 2 are obtained averaging over 20 repetitions of this subsampling.185

3 RESULTS
3.1 Preliminary considerations186

The standard approach to infer criticality is to search for neuronal avalanches whose sizes and durations
follow scale-free distributions in resting state (i.e., unperturbed) conditions. Indeed, at criticality, it is
expected that such distributions scale as the power laws

P (S) ∼ S−τ , (3)

P (T ) ∼ T−τt , (4)

where S is the number of events in an avalanche (i.e., the size), T is its duration (also called avalanche187
lifetime) and τ and τt are the related critical exponents. Power laws, however, can also stem from non188
critical systems and generative mechanisms. Thus, a more robust test of criticality is to verify whether the189
so-called crackling noise relation holds. This scaling relation was first developed in the context of crackling190
noise [36], hence the name, but nonetheless it is expected to hold in general in all systems close to their191
critical point [37], and in particular in systems with absorbing states [38]. The relation predicts that the192
critical exponent δ, which relates the duration of an avalanche to its mean size as193

〈S〉(T ) ∼ T δfit (5)

obeys the scaling relation194

δpred =
τt − 1

τ − 1
. (6)

We estimated δ in two independent ways, as δpred and as δfit, i.e., the slope of the least square fit of the195
average sizes given their durations. In principle, if these two estimates are compatible, then the system is196
compatible with criticality. Proving such relation is however challenging. First, it is sensitive to the fitting197
methods of the distributions of avalanche sizes and lifetimes, as it has been recently shown [39]. Second,198
in the case of LFPs, the range of avalanche lifetimes typically extends over one order of magnitude only,199
which undermines reliability of power law fitting.200

A complementary approach is to look for criticality by perturbing the system, that is by shifting activity201
to a subcritical or supercritical regime and then measure the distance from a critical state [5, 40]. Thus,202
when measuring neural activity across a cortical barrel column of the rat brain, we also provided sensory203
stimuli consisting of impulsive deflections of the corresponding whisker and therefore representing strong,204
well defined, and accurately reproducible perturbations.205

Neural avalanches sizes and durations were fitted with a discrete power law through the maximum206
likelihood method (see Section 2.3). As mentioned in the Materials and Methods section, we found non207
negligible values of the correlation time τ∗ both for spikes and LFPs, suggesting that events were not208
independent. Therefore, to test if avalanches were power law distributed, we corrected for dependencies209
between avalanches by subsampling the data of sizes and durations as described in Section 2.3.210

3.2 Avalanches in LFP Data211

We first analyzed avalanches in LFP recordings and found similar results across five animals (Table212
1). First of all, we focused on spontaneous (i.e., resting, non stimulated) activity. We estimated τ∗213
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Figure 3. LFP avalanches. Representative probability densities of avalanches sizes in one rat after the
sensory stimulus (A), or in resting state conditions (B). A bump deviating from the power law can be
recognized in the post-stimulus distribution in correspondence of large avalanche sizes, pointed to by an
arrow. Distributions of the avalanches’ durations do not display clear alterations instead (C-D). Durations
are expressed in ms by multiplying the number of bins by 〈IEI〉. In the randomized dataset the exponential
distribution provides a better fit in all cases (dashed gray lines). The shuffling procedure consists in
randomizing the occurrence times of the events of each channel, so that the events rate of each channel is
preserved. (E-F) The crackling noise relation is verified in both cases within the experimental errors (i.e.,
δpred is compatible with δfit). Once more, notice in (E) the presence of a bump (indicated by an arrow) in
the post-stimulus regime.

and subsampled the sizes and the lifetimes accordingly to ensure that individual observations were214
uncorrelated (thus not violating the assumption of the maximum likelihood method). Following this215
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Figure 4. Exponents obtained after subsampling in Local Field Potential data (τ is the exponent for the
sizes, τt for the durations, δfit is the fitted exponent from 〈S(T )〉 ∼ T δfit). The exponents predicted by the
critical branching process are shown in the plot as gray dashed lines. The line δ = 1.28 is also plotted,
which is reported in [24] as a universal exponent found in many different experiments. It is noteworthy
that, as seen in the plot on the right, the exponents δfit are always far from the hallmark of the branching
process, except for one case after stimulation, where the presence of large bumps in the size distribution
makes the slope of the line in the (〈S(T )〉, T ) plane steeper.

τ p-values τ (sub.) p-values (sub.) τt p-values τt (sub.) p-values (sub.)
Rat 1 Post stim. 1.85 0.04 1.87 0.48 2.44 0.16 2.45 0.50

Resting state 1.82 < 0.001 1.80 0.33 2.38 0.40 2.36 0.63
Rat 2 Post stim. 1.59 0.1 1.59 0.50 1.87 0.004 1.88 0.14

Resting state 1.60 0.02 1.60 0.38 1.84 < 0.001 1.84 0.24
Rat 3 Post stim. 1.60 0.13 1.60 0.41 2.19 0.05 2.18 0.36

Resting state 1.57 0.07 1.58 0.60 1.87 < 0.001 1.87 0.03
Rat 4 Post stim. 1.98 0.27 1.97 0.56 2.78 0.41 2.75 0.7

Resting state 2.16 0.54 2.15 0.72 2.67 0.30 2.65 0.58
Rat 5 Post stim. 1.74 0.30 1.73 0.71 2.19 0.07 2.19 0.45

Resting state 1.72 0.56 1.73 0.78 2.18 0.09 2.20 0.55

Table 1. Exponents before and after subsampling in LFP data, with the corresponding p-values. Note that
the p-values obtained after subsampling are always greater than the significance level 0.1 both for τ and τt,
except for the τt p-value of rat 3.

correction, avalanches resulted power law distributed across the five rats, except for one case for the216
avalanches durations (see Figure 4 and Table 1).217

Then, we analyzed stimulus-evoked responses over two seconds after the stimulus and confirmed power218
law scaling (accepted by statistical tests). However, at a more careful look, the size distribution was altered219
by the presence of a bump (also known as heap [25]), Figure 3. Clearly, the bump derived from an excess of220
large size avalanches (i.e., involving a large number of microelectrodes). As suggested by Figure 2, these221
avalanches were not only large, but also composed by highly synchronous events across cortical layers.222
Correspondingly, the bump vanished in the duration distribution, confirming that the increase in avalanche223
sizes was not accompanied by a corresponding increase of lifetimes and the events remained concentrated224
within a few time bins.225
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Figure 5. Avalanches in spikes data. Avalanches sizes probability density in one rat after a stimulus
(A), and during resting state (B). Notice the bump in the post-stimulus distribution. (C-D) The same, for
avalanche durations. Durations are expressed in ms by multiplying the number of bins times 〈IEI〉. In the
randomized datasets the exponential distribution provides a better fit in all cases. The shuffling procedure
consists in randomizing the occurrence times of the events of each channel, so that the events rate of each
channel is preserved. (E-F) The crackling noise relation is verified in both cases within the experimental
errors. Once more, notice in (E) the presence of a bump in the post-stimulus regime.

In general, we found that the crackling noise relation was verified both at resting state and post-stimulus226
(Figure 3 and see Supplementary material for the avalanches results on all the rats). Nevertheless, after227
the stimulus, a localized deviation from the expected trend was observed in correspondence of the bump228
found in the size distribution and therefore also attributed to large and synchronized waves of activity229
unleashed by whisker deflection. As anticipated previously, avalanches durations, and consequently also230
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Figure 6. Exponents obtained after subsampling in spikes data (τ exponent for the sizes, τt for the
durations, δfit the fitted exponents of the crackling-noise relation). The exponents predicted by the critical
branching process are also plotted. The line δfit = 1.28 is also plotted, which is found in [24], and which
turns out to be remarkably close to our results.

τ p-values τ (sub.) p-values (sub.) τt p-values τt (sub.) p-values (sub.)
Rat 1 Post stim. 1.98 0.077 1.97 0.63 2.27 0.27 2.30 0.79

Resting state 2.23 0.2 2.23 0.66 2.52 0.34 2.52 0.67
Rat 2 Post stim. 2.00 0.73 1.95 0.74 2.25 0.41 2.27 0.74

Resting state 2.04 0.003 2.03 0.43 2.23 < 0.001 2.23 0.1
Rat 3 Post stim. 2.05 0.72 2.04 0.75 2.34 0.84 2.29 0.73

Resting state 2.18 0.004 2.18 0.42 2.41 < 0.001 2.41 0.26
Rat 4 Post stim. 1.98 0.06 2.00 0.91 2.51 0.01 2.33 0.63

Resting state 2.50 0.12 2.50 0.19 2.67 < 0.001 2.60 < 0.001

Table 2. Exponents before ad after subsampling in spikes data, with the corresponding p-values. Note that
the p-values obtained after subsampling are always greater than the significance level 0.1 both for τ and τt,
except for the τt p-value of rat 4.

〈S〉(T ), extended over about two orders of magnitude. In fact, since LFPs are average signals that integrate231
over space and time single neuron events, it is expected that the maximum size of the avalanches extracted232
from LFPs is of the order of the array size (see Supplementary material for an analysis of finite size effects233
in LFPs avalanches) [6]. Specifically, a cutoff in P (S) around a value NC ≈ NE , with NE the number234
of the recording electrodes, is commonly observed experimentally, meaning that during an avalanche235
each electrode is typically activated just once. This cutoff in P (S) implies that 〈S〉(T ) < NC , and, from236

〈S〉(T ) ∼ T δ, it also implies T < N
1
δ
C [20]. Thus, if δ > 1, the cut-off in P (S) causes a much earlier237

cut-off in both P (T ) and 〈S〉(T ).238

3.3 Avalanches in Spikes Data239

Spikes avalanches were analyzed for four rats. Albeit grossly similar to LFPs, results unveiled important240
differences, first of all the fact that they were almost not affected by the finite size of the recording array.241
In fact, despite the low number of microelectrodes (twenty-seven sites spanning across the cortex in the242
vertical direction), avalanches could be observed with size greater than 102 events. The reason is that, in243
spikes, the same avalanche can reach an electrode repeatedly and in quick succession, contrary to LFPs244
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where single neuron contributions are integrated over space and time within the brain tissue and coalesce245
to generate the recorded signal [20].246

Similarly to LFPs, we found a power law distribution of avalanches both in terms of size and duration,247
except for one rat deviating from this general trend with respect to duration alone (Table 2 and Figure 6).248
Moreover, we confirmed the emergence of the bump of activity in the post-stimulus size distribution caused249
by the abundant number of large-sized avalanches (Figure 5).250

The exponents τ and τt were greater than the ones found in LFPs (Table 2), but also greater than the ones251
predicted for a critical branching process (Figure 6). Interestingly, the exponent δ was consistently close252
to the value δ ≈ 1.28 which was found in [24] to be universal, i.e. to hold across different experimental253
conditions, from cultured slices to freely moving or anesthetized mammals.254

Finally, as avalanche size and duration were less affected by finite size effects with respect to LFPs,255
spikes allowed us to reliably test the crackling noise relation, which was verified in all dataset (Figure 5,256
see also Supplementary materials). In particular, from the results on spikes data, that are believed to be257
more robust in this respect [37], we concluded that post-stimulus avalanches statistics is also compatible258
with the results recently reported by Fontenele and collaborators [24]. Nevertheless, also in this case, the259
waves of large and synchronized activity triggered by whisker deflection generated a local bump deviating260
from the crackling noise relation.261

4 DISCUSSION AND CONCLUSIONS
In this work we investigated criticality in the rat barrel cortex, which offers several advantages over other262
sensory systems. First, there is a clear and well characterized somatotopic representation of the whiskers in263
this primary sensory cortex, where single whiskers are basically mapped to single cortical columns with a264
one-to-one correspondence. This differentiates the barrel cortex from, e.g., the primary visual cortex where265
the spatial mapping of the inputs does not follow a simple vertical columnar organization.266

Second, whisker receptors, which are transducers placed around the follicle, directly activate primary267
sensory neurons, that therefore encode whisker deflections without interposed processing. In other268
circumstances, such as in the visual system, the transduced stimulus is subject to extensive processing269
already at the periphery (e.g., by the retina network) which makes it difficult to disentangle the dynamics270
and the contributions of cortical and pre-cortical networks in response to sensory inputs. Moreover, the271
processing pipeline of the whisker somatosensory system is relatively simple and well characterized in272
mammals, with the trigeminal brainstem nuclei and the thalamus being the only two intermediate stages273
before the cortex [41, 42]. Third, single-whisker deflection can be controlled with high accuracy through274
closed-loop piezoelectric systems enabling a tight experimental control over delivered repetitions of sensory275
stimuli.276

As for other sensory cortical areas, it can be hypothesized that the barrel cortex takes advantage of277
criticality to efficiently map tactile stimuli. This holds also for the single barrel column that faces the severe278
challenge to represent the parameters related to deflection of its corresponding whisker (e.g., amplitude,279
direction and velocity of displacement) as transduced by the follicle receptors, in an efficient, noise-tolerant280
manner and in real-time. According to a simplified general model of the processing in the barrel column, it281
is believed that layer IV acts as main input stage of sensory information propagating from the thalamus,282
whereas layer V is the main output. However, the few thousands neurons composing a single barrel form283
complex microcircuits of excitatory and inhibitory connections across layers. These microcircuits generate284
a rich dynamics that has been shown, both in-vitro and in-vivo, to include avalanches or synchronization285
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states, such as UP and DOWN states and oscillations, and whose significance in terms of tactile information286
mapping and processing is far from being understood [43, 44].287

We run our investigation in an anesthetized condition (tiletamine) which, contrary to the awake animal,288
allowed us to precisely control whisker deflection by a piezoelectric actuator. With this anesthetic,289
spontaneous activity remains rich and contains periods of oscillations and UP and DOWN states, while the290
activity evoked by whisker stimulation shows clear similarities with the response of the awake animal. In291
the context of our study, another advantage of the anesthetized animal with respect to awake conditions was292
that, by reducing cortico-cortical communication, the anesthetic was insulating the somatosensory barrel293
region from external ‘contaminating’ the waves of activity propagating from other brain areas [29, 45, 46].294

We measured neural activity across the six cortical layers of a single barrel both in the domain of spikes295
and LFPs, thus extending the avalanches analysis over a wide frequency range and covering both single296
neuron and population dynamics. For LFPs, we used a high-density 2D array of microelectrodes developed297
at the purpose to monitor at high spatial resolution the electrical potential within a planar section of the298
barrel column [47]. Contrary to previous work based on imaging methods [48], and in analogy to findings299
on spikes and LFPs [9, 18], we found signatures of criticality during spontaneous activity also in the300
anesthetized animal. Avalanche sizes and lifetimes followed power laws during basal activity, both in the301
case of spikes and of LFPs. Instead, after the stimulus power laws displayed localized bump-like alterations302
pointing at the emergence of high synchronization across layers.303

Although we did observe inter-rats variability in the power-law exponents (Fig. 4 and 6), the exponent of304
the crackling noise relation consistently converged to δ ≈ 1.28, hinting at a critical behavior of the neural305
network activity across the cortical barrel column at rest [24] (Fig. 6). On the other hand, the spectrum of306
alternative hypotheses is broad. As recently pointed out [49, 20], this value may also emerge as a spurious307
result when subsampling spikes data in presence of an underlying process belonging to the branching308
process universality class. Moreover, different models with different phase transitions [15, 50, 25] may309
yield non-trivial exponents compatible with the ones found here. In general, the exponents we obtained are310
anomalous – in the sense that they differ for what reported in awake mammals such as, e.g., in monkey311
[7] – both for spikes and LFPs. A possible reason is the action of the anesthetic drug tiletamine, as similar312
deviations were reported previously [9].313

At the same time, it is of the utmost importance to note that, with respect to the generative mechanism of314
the observed avalanches and exponents, it is not clear how a critical branching process could describe our315
experimental results. First, it assumes a clear separation of time scales between avalanches, and refers to316
slowly driven systems [51]; the barrel cortex, instead, receives continuous inputs from the thalamus, in317
addition to other cortical areas such as the secondary somatosensory cortex and the motor cortex. Second,318
it has still to be clarified how mean field exponents can arise in biologically realistic, non trivial networks319
[52, 53], and in the presence of feed-back loops such as the ones intrinsic to the barrel cortex. A number of320
feed-back connections within and among layers are present, and the connectivity is therefore remarkably321
different from the feed-forward one that was originally assumed to support the critical branching process322
[6]. We also note that generative mechanisms with absorbing states, such as the branching process, implies323
no correlation between avalanches [15]. However, in our data, we found non-negligible values of τ∗ hinting324
at the existence of temporal correlations between subsequent avalanches. Our results, on the other hand,325
are thus in agreement with previous works in which long range temporal correlations emerged through a326
detrended fluctuations analysis (DFA) of the signals [18, 54, 55]. Although the nature of such correlations327
remains unknown, we speculate that they may derive from a variety of neuronal and circuital mechanisms328
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including, e.g., a neuromodulation of the barrel column, acting at time scales that are large compared to329
avalanches lifetimes.330

Moreover, in the light of carefully investigating the underlying phase transition, avalanches331
characterization is sensitive to several parameters: exponents depend on the temporal bin chosen, and332
sampling effects may definitely bias the avalanches distribution. The first aspect is linked to the fact that,333
in absence of a clear separation of time-scales, it is not guaranteed that the avalanches found with the334
method of temporal binning reveal the underlying causal avalanches. For example, avalanches revealed by335
a time binning do not reproduce causal avalanches if they initiate simultaneously, or in the case of high336
stimulation rate [19, 56]. Recent works are indeed showing that both LFPs and spikes based avalanches337
may be problematic: in the former case, they may not be able to distinguish between a critical, a subcritical338
or supercritical phase [20, 23]; in the latter, it has been shown that the exponents of the distributions appear339
to be distorted [20, 49]. Recently, some first attempts were made to characterize criticality in neural systems340
in a broader sense [57, 58, 59], but as of now, and despite all these unsolved issues, power law avalanches341
are still the most employed approach to test the critical brain hypothesis.342

Nonetheless, let us note that in our work we consistently find bumps in the avalanche sizes distributions343
in the periods after stimuli. These bumps mark avalanches with large sizes that appear with a higher344
probability than what would be predicted by the power law scaling - in the case of LFPs, these sizes345
are of the order of the array size. This interesting but seemingly simple observation has quite profound346
implications. In fact, the bumps are clearly related to large synchronization events that take place after347
stimuli, with avalanches characterized by highly synchronous activity across microelectrodes (see Fig. 2).348
These avalanches are related to the strong response to the stimulus that emerges prominently first in layer IV349
and then quickly spreads among the other layers, along a prevalent vertical direction, thus eliciting a global350
activity in the barrel. Therefore, the presence of the bumps is clearly related to the synchronization behavior351
of the barrel cortex and thus suggests that synchronization waves and oscillations play a fundamental role352
in shaping the neural activity during a time window dedicated to map the tactile stimulus in the brain. In353
recent years, some efforts in this direction were made [24, 25] but a comprehensive model of this kind of354
transition remains elusive.355

In conclusion, on the one hand we believe that, in future works, it will be important to include other356
markers of criticality in the analysis that go beyond neuronal avalanches. For instance, we used the same357
LFP data to study the spatial correlations in the resting state and look for long-range correlations that are358
an hallmark of criticality [60], but one could also consider patterns of dynamic functional connectivity,359
e.g. obtained by computing the instantaneous phase difference between signals at different locations [61].360
These kind of analysis should be extended to include the behavior during and after the sensory input, going361
beyond the usual resting state studies. On the other hand we also believe that sound models of the possible362
self-organizing mechanisms of the cortex will have to necessarily take into account its oscillatory behavior,363
whose signature in the present work is the emergence of the bump in the avalanche size distribution due364
to the major synchronizations within the cortical network. In perspective, avalanches and oscillations365
may represent two faces of the cortical brain dynamics medal, two intertwined and functionally relevant366
processes that will have to be dealt with together in future theoretical and experimental investigations on367
the sensory coding in the brain.368
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of branching process statistics: Random walks in balanced logarithmic potentials. Phys. Rev. E,472
95:032115, 2017.473

[39]Alain Destexhe and Jonathan D. Touboul. Is there sufficient evidence for criticality in cortical systems?474
eNeuro, 8(2), 2021.475

[40]Christian Meisel. Antiepileptic drugs induce subcritical dynamics in human cortical networks.476
Proceedings of the National Academy of Sciences, 117(20):11118–11125, 2020.477

[41]Dirk Feldmeyer, Michael Brecht, Fritjof Helmchen, Carl C.H. Petersen, James F.A. Poulet, Jochen F.478
Staiger, Heiko J. Luhmann, and Cornelius Schwarz. Barrel cortex function. Progress in Neurobiology,479
103:3–27, 2013. Conversion of Sensory Signals into Perceptions, Memories and Decisions.480

[42]Mathew E. Diamond, Moritz von Heimendahl, Per Magne Knutsen, David Kleinfeld, and Ehud Ahissar.481
’where’ and ’what’ in the whisker sensorimotor system. Nature Reviews Neuroscience, 9:601–612,482
2008.483

[43]Dirk Feldmeyer. Excitatory neuronal connectivity in the barrel cortex. Frontiers in Neuroanatomy,484
6:24, 2012.485

[44]C.C.H. Petersen. Sensorimotor processing in the rodent barrel cortex. Nat. Rev. Neurosci., 20:533–546,486
2019.487

[45]Rachel Aronoff, Ferenc Matyas, Celine Mateo, Carine Ciron, Bernard Schneider, and Carl C.H.488
Petersen. Long-range connectivity of mouse primary somatosensory barrel cortex. European Journal489
of Neuroscience, 31(12):2221–2233, 2010.490

[46]Logan J. Voss, Paul S. Garcı́a, Harald Hentschke, and Matthew I. Banks. Understanding the Effects491
of General Anesthetics on Cortical Network Activity Using Ex Vivo Preparations. Anesthesiology,492
130(6):1049–1063, 06 2019.493

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.444047doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444047
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mariani et al.

[47]Roland Thewes, Gabriel Bertotti, Norman Dodel, Stefan Keil, Sven Schröder, Karl-Heinz Boven,494
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SUPPLEMENTARY MATERIAL

Figure S1. LFPs events threshold definition. The red curve depicts the grand average of the signals
amplitude distributions over all channels and trials in LFPs of one rat. Note that the signal from each
channel is z-normalized by subtracting its mean and dividing by the SD. The dashed line depicts the best fit
of a Gaussian distribution to the data for the range between + 4.5 SD and - 4.5 SD. The Gaussian fit starts
deviating from the average signal at around ± 2 SD. Hence, in order to avoid false positives, we set the
event threshold at ± 3 SD. A logarithmic scale is used for the y-axis.

Figure S2. Power law finite size effects analysis for LFP avalanche sizes at resting state. We verify
that the cutoff in LFP avalanches distribution is dependent on the size of the array. For this purpose,
we repeat the avalanche analysis considering only halves and quarters of the array. For example, when
considering quarters, only single columns of the array 55× 4 are considered in the analysis: the array is
split along the direction of the barrel column, in order not to create halves/quartets with different behaviors
due to the inclusion of different layers. The results from the four columns are averaged to produce the
analysis for a quarter of the array. The same procedure is applied to the two halves of the array. We verify
that the maximum size of the avalanches (called here NC) is dependent on the number of electrodes (NE)
of the array. It results that NC ≥ NE when considering both positive and negative excursions of the signals
as events (Fig. S2 A), as in the main text [26], and it results that NC ≈ NE when only negative excursions
are considered as events (Fig. S2 B). As noted in the main text, this cutoff in the avalanche sizes induces a
much earlier cutoff in avalanche durations. Also, the exponents do not change when reducing the number
of electrodes.

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.444047doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444047
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mariani et al.

Figure S3. Are avalanches correlated? As these plots show, subsequent avalanches are correlated. The
autocorrelation function of the logarithm of avalanche sizes during resting state is computed following
[31]. (A) Avalanches in LFPs data display a characteristic autocorrelation time of τ∗ = 19, i.e. on average
τ∗ consecutive avalanches are correlated. (B) In spikes data, τ∗ = 14.
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Figure S4. Distribution of avalanche sizes (in blue), durations (in red) and crackling noise relation (in
green) in LFPs data obtained as described in the main text, both at resting and post stimulus for four
different rats. Detailed avalanche statistics results are presented for all rats in the main text.
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Figure S5. Distribution of avalanche sizes (in blue), durations (in red) and crackling noise relation (in
green) in spikes data obtained as described in the main text, both at resting and post stimulus for three
different rats. Detailed avalanche statistics results are presented for all rats in the main text.
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