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Markov state models (MSMs) have become one of the preferred methods for the analysis and interpretation of molecular
dynamics (MD) simulations of conformational transitions in biopolymers. While there is great variation in terms of
implementation, a well-defined workflow involving multiple steps is often adopted. Typically, molecular coordinates
are first subjected to dimensionality reduction and then clustered into small “microstates”, which are subsequently
lumped into “macrostates” using the information from the slowest eigenmodes. However, the microstate dynamics
is often non-Markovian and long lag times are required to converge the MSM. Here we propose a variation on this
typical workflow, taking advantage of hierarchical density-based clustering. When applied to simulation data, this type
of clustering separates high population regions of conformational space from others that are rarely visited. In this way,
density-based clustering naturally implements assignment of the data based on transitions between metastable states.
As a result, the state definition becomes more consistent with the assumption of Markovianity and the timescales of the
slow dynamics of the system are recovered more effectively. We present results of this simplified workflow for a model
potential and MD simulations of the alanine dipeptide and the FiP35 WW domain.

I. INTRODUCTION

Atomistic molecular dynamics (MD) simulations of
biomolecular systems are part of the essential toolbox of mod-
ern biophysics1. Traditionally, this technique has faced multi-
ple challenges in terms of accuracy and precision, due to prob-
lems in energy functions ("force fields") and the short integra-
tion time-step required in the simulations, respectively. How-
ever, in the last decades we have witnessed enormous progress
in both fronts2–5. These improvements leave us with the ad-
ditional burden of having to analyze extremely large data sets
including Cartesian coordinates of many-atom systems with
(potentially) femtosecond resolution. In the last 15 years,
Markov State Models (MSMs) have become established as a
useful approach for both the analysis and interpretation of MD
simulations6–8. Starting from one or multiple MD trajectories,
MSMs provide an integrated framework for constructing a
network model of metastable states such that biomolecular dy-
namics are described as memory-less jump processes. From
the network model, equilibrium and dynamic properties are
accessible, which allows comparison against experiment. Us-
ing transition path theory6, one can recover an intuitive grasp
of the mechanism of the rare events of interest. Today, a vari-
ety of software packages are available for the construction of
MSMs9–11.

Although Markov state modelling is an area of very active
development, typically, the construction of an MSM involves
a well-defined number of steps12,13. These include featuriza-
tion, dimensionality reduction, clustering and discretization
into fine grained microstates, estimation and, finally, coarse-
graining into intuitively understandable models. Each of these
steps require decisions from the practicioner. One potential
problem in this protocol is that the microstates will often not
fulfil the Markovian assumption that the methodology builds
upon, as they do not match true metastable basins where the
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molecule loses memory before visiting the next microstate.
This issue was addressed by Noé and co-workers in the con-
struction of hidden Markov models and observable operator
models14,15, and by Guarenera and Vanden Eijnden in the con-
text of milestoning16. Furthermore, any MSM is affected of a
systematic error due to the discretization of the state space12.
Prinz et al. concluded that this discretization error can be di-
minished by choosing a fine discretization and using a long
lag time τ (see below). However, they also pointed out that
if only the slowest dynamical processes are of interest, it is
sufficient to discretize the state space such that the first few
eigenvectors are well represented.

In this work, we propose an alternative approach to these
problems in the event that the fast intra-well dynamics are
not important. We combine the information from optimal
order parameters, which may be derived from dimensional-
ity reduction for molecular systems, and hierarchical density-
based clustering methods to directly define states that better
fulfil the assumption of Markovianity. In this way, we ob-
tain in a single step coarse-grained MSMs that retain the ac-
curacy of fine grained models. Our proposed workflow, that
we term “hdbMSM”, hence compresses some of the steps de-
fined above, hopefully making the construction of the MSM
more straightforward.

The main reason for the usefulness of hdbMSMs is that the
hierarchical density-based clustering implements the "tran-
sition based assignment" (TBA) introduced by Buchete and
Hummer17. In their study of short peptide dynamics, mas-
ter equation models were constructed using a discretization
in torsion angle space. Buchete and Hummer defined cir-
cular high density regions corresponding to the α-helix and
PPII/β conformations in the Ramachandran map to define mi-
crostates. In this way, the state assignment eliminated fast
non-Markovian recrossings, resulting in drastically improved
relaxation times that were independent of the lag time used
in the construction of the MSM17. This idea is also referred
to as “coring”, and has been used in the literature to maxi-
mize the metastability of discrete states18. In our implementa-
tion, the definition of cores is streamlined by the combination
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of optimal coordinates, which may come from dimensionality
reduction in complex systems, and density-based clustering.

Density-based clustering has been introduced before in the
literature of MSM development by Lemke and Keller19 and
Sittel and Stock20. Specifically, Lemke and Keller showed
that combining density-based clustering using the DBSCAN,
Jarvis-Patrick and CNN algorithms, with the core-set ap-
proach reduces the approximation error12 and improves the
spatial resolution of the models19,21. Similarly, Sittel and
Stock developed a density-based geometrical clustering al-
gorithm based on local free energy estimates, so that result-
ing microstates are separated by local free energy barriers.
They also described a complete workflow to robustly gen-
erate MSMs, but the latter required as many steps as the
standard approaches. More recently, Nagel and Stock ex-
ploited density-based clustering methods to develop dynam-
ical coring of MSMs22. Dynamical coring aims to avoid
counting intrastate fluctuations as transitions between differ-
ent metastable states. For high dimensional systems, Nagel
and Stock introduce an additional parameter to properly de-
fine metastable conformational states. Thus, they impose that
a transition is only considered if the trajectory spends a mini-
mum time τcor in the new state or core region.

Here, we exploit the HDBSCAN clustering algorithm re-
cently developed by Campello, Moulavi and Sander23,24.
Contrary to its predecessor, DBSCAN25, or the other methods
used by Sittel and Stock20 and Lemke and Keller19,21, HDB-
SCAN does not require a neighborhood parameter, which can
be difficult to determine depending on the featurization. In-
stead, HDBSCAN requires a single parameter which defines
the smallest size grouping that the user wishes to consider
a cluster. We present our modified workflow for construct-
ing MSMs and apply it to a number of typical problems of
increasing complexity. Depending on the complexity of the
system we can either apply HDBSCAN to the natural coordi-
nates (e.g. the φ and ψ torsions of the alanine dipeptide) or
to coordinates optimally derived using dimensionality reduc-
tion methods like TICA26–28. In each of these examples, we
compare our results with those from a standard MSM.

II. THEORY

In the present section we summarize only a few of the es-
sential concepts associated to the construction of MSMs that
are necessary for this paper. A more detailed discussion can
be found elsewhere6,12.

Markovian models describe the dynamics of a set of disjoint
discrete states based on a transition probability matrix

P(τ) = [pi j(τ)]. (1)

Each of the elements pi j(τ) in this matrix is the conditional
probability that the system will be in state x j at time t + τ if
the state at time t is xi. The condition of Markovianity implies
that this probability only depends on the current state and not
of the rest of the trajectory of the system. In order to calculate
the matrix P(τ) only a discrete state trajectory and a chosen
lag time τ are required. Multiple methods can be found in the

literature to estimate the transition probability matrix from the
number of observed jumps between states9.

Since the conditional probabilities are explicitly dependent
on τ , this parameter is crucial to build an MSM. The accuracy
of MSMs, and therefore their validity, is often first judged by
comparing the implied timescales (ti or ITS)

ti =
−τ

lnλi(τ)
, (2)

at different values of τ . In this expression, λi(τ) denotes the i-
th eigenvalue of the matrix P(τ). Since any Markovian model
systematically underestimates the timescales ti, an adequate
lag time is determined by the smallest value of τ among those
corresponding to the saturated ti values.

An additional and more stringent requirement to have a re-
liable MSM is the Chapman-Kolmogorov (CK) test12

P(kτ) = P(τ)k. (3)

Eq. 3 allows to validate the model predictions against the
observed data. Recently, the development of the variational
approach for conformational dynamics (VAC)29 and Markov
processes (VAMP)30 has opened up the possibility to quantita-
tively validate the parameters choice. Once the set of discrete
states and corresponding transition probability matrix are de-
fined, one can proceed to analyze the resulting model, e.g.
by inspecting the eigenvectors and eigenvalues of P(τ). The
former describe the stationary and transition modes of the sys-
tem, whereas the latter are the corresponding relaxation times,
as indicated by Eq. 2. Also, in the typical workflow, one will
use the information in these eigenvectors to coarse-grain the
MSM into an intuitively understandable model using methods
like PCCA31.

III. METHODS

A. Typical and proposed workflows for MSM construction

The construction of an MSM from MD trajectories typi-
cally involves the following steps (see Fig. 1A):

(i) Featurization: Cartesian coordinates are transformed
into more informative quantities, such as distances be-
tween heavy atoms or backbone torsion angles.

(ii) Dimensionality reduction: A transformation of the fea-
ture data into a set of collective variables that capture
most of the information. In the present work this is done
by using the time-lagged independent coordinate anal-
ysis (TICA)26–28. Many other dimensionality reduction
methods are available in the literature7,30,32,33.

(iii) Discretization: The projection on the relevant coor-
dinates is discretized using clustering methods, typi-
cally the k-means method34. The corresponding disjoint
states are referred to as microstates.
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FIG. 1: Typical (A) and proposed (B) workflows for the
construction of Markov state models.

(iv) Estimation: The definition of discrete states in the pre-
vious step, together with the adoption of a proper lag
time, allow us to build a transition probability matrix
that describe the dynamics of the system.

(v) Coarse-graining: In order to produce interpretable
models, the MSM is reduced to a few states model
by coarse-graining methods such as PCCA+31,35. Re-
sulting macrostates must be associated with kinetically
metastable regions.

Intimately related with the construction of an MSM is its val-
idation. The CK test mentioned above is routinely employed
to validate any given MSM, namely if its corresponding tran-
sition probability matrix is Markovian or not. Additional val-
idation tools are the calculation of physical observables from
the MSM or the comparison against reference data. Recently,
the development of alternative approaches to MSMs, as the
estimation of a Koopman model to compute ITS, has opened
new strategies for MSM validation30.

In this work we present an alternative workflow for the
derivation of MSMs, which compresses steps (iii) to (v) above
into a single step (see Fig. 1B), by virtue of using hierarchi-
cal density-based clustering (hence the name hdbMSM). In
this case, after dimensionality reduction the projections on the
coordinates are clustered into a few states using hierarchical
density-based clustering (see below). The resulting discrete
states trajectory can be used to construct MSMs without loss
in the quality of the estimation of timescales. A similar strat-
egy has been recently adopted in the context of deep learning

methods30.
All MSM calculations were performed us-

ing the PyEMMA Python library9, version 2.5.7
(http://www.emma-project.org). In all cases we
report both the maximum likelihood estimate of the im-
plied timescales and the mean from a Bayesian sampling
of the posterior, from which we also derive errors with
a 95% confidence interval. A collection of Python3
notebooks to reproduce our results is openly available at
https://github.com/BioKT/hdbMSM.

B. Hierarchical density-based clustering

Typically, clustering in MSM construction is performed us-
ing flat, centroid-based algorithms like k-means. Here we de-
fine the states in the hdbMSM using density-based clustering
methods36. In contrast with the popular k-means algorithm,
which performs best if the clusters are spherical and equally-
sized, density-based methods are able to produce arbitrarily
shaped clusters. Specifically, we use HDBSCAN (for Hi-
erarchical Density-Based Spatial Clustering of Applications
with Noise). HDBSCAN estimates a density function for each
cluster and thereby clusters of different densities are allowed.
In this way, HDBSCAN converts DBSCAN into a hierarchical
clustering algorithm.

An advantage of HDBSCAN over other density-based
methods is that it does not require the definition of non-
intuitive parameters that are hard to set, as is the case of
the neighbourhood parameter ε . Being hierarchical, however,
HDBSCAN requires defining the level set for the hierarchy,
which is done setting the minimum cluster size. This param-
eter is related to the smallest number of datapoints the user
wants to consider as an independent cluster. Importantly, data
that do not fulfil the requirements to be part of a cluster are
classified as noise. There is an additional parameter that can
be defined by the user to fine tune the clustering, the minimum
samples. It stands for the number of samples in a neighbour-
hood for a point to be considered a core point. By default its
value is the same as the minimum cluster size, nevertheless,
for large datasets of tens or hundreds of thousands of entries
we recommend to set it not larger than a few hundreds.

At the end of the procedure, the selected clusters are ex-
tracted from the condensed tree plot (see Results section).
This plot is obtained from a conventional cluster hierarchy
by saving only those clusters that are larger than the mini-
mum cluster size. Then, HDBSCAN computes the stability
of each cluster and keeps only the most stable ones. This is
done by using λ = 1/distance to compute the persistence of
each cluster, where distance is defined as the mutual reacha-
bility distance. So if a given cluster takes small λ values, it
will be large in size when we represent it in the feature space.
Thus, clusters look cone shaped in the condensed tree plot, as
the width corresponds to the number of datapoints it contains
and the size of the cluster decreases from small (top part) to
larger (bottom part) λ values. A more detailed description
of the HDBSCAN algorithm can be found elsewhere23,24. A
Python implementation of HDBSCAN is freely available at
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https://hdbscan.readthedocs.io/24.
More importantly, HDBSCAN identifies clusters as highly

probable regions separated by improbable regions, so the lat-
ter are left as noise that do not belong to any cluster. This is
consistent with the spirit of the aforementioned TBA proce-
dure for defining states in MSMs17. We note that HDBSCAN
offers the possibility to control the amount of noise and be
either more or less conservative in the assignment by com-
puting for each point in the feature space the probability of
being in its cluster. This is intimately related with soft clus-
tering, and it is extremely useful to deal with not well-defined
metastable regions, which are frequent in the conformational
space of biomolecular systems.

C. Application examples

We produce MSMs from simulation trajectories for three
systems with different levels of complexity. We start from a
model potential on two dimensions, then move onto the sim-
plest peptide system undergoing molecular transitions and fi-
nally analyze a more complex dataset of long-timescale tra-
jectories for protein folding.

1. Two-dimensional potential

As a trivial model system we consider the bistable po-
tential introduced by Berezhkovskii et al. for the study of
anisotropic diffusion37 and later used by Cossio et al. to un-
derstand instrumental effects in single molecule force spec-
troscopy experiments38. The two dimensional potential is of
the form

G(x,y) = G(x)+V (y− x), (4)

where

G(x) =

{
−2x2 if 0≤ |x| ≤ 1/2
2(|x|−1)2−1 if 1/2 < |x|

(5)

and V (y − x) = 0.5κ(y − x)2 where κ is known as the
linker force constant. To generate trajectories on the two-
dimensional potential described by Eq. 4, we run Brownian
dynamics simulations using displacements

∆x =−∆tDxβ
∂G(x,y)

∂x
+(2Dx∆t)1/2Rx(t) (6)

∆y =−∆tDyβ
∂G(x,y)

∂y
+(2Dy∆t)1/2Ry(t) (7)

where Dx/y = 1 is the diffusion coefficient in the correspond-
ing coordinate, ∆t is the time-step, β is the inverse tempera-
ture and Rx/y(t) is the random force with zero mean and unit
variance. The time-scales for the transitions in the model are
set by Dx∆t = 2×10−5.

2. Alanine dipeptide

We have run simulations of the terminally blocked alanine
residue using the optimized Amber 99sb-ILDN force field by
Lindorff-Larsen et al39 and the TIP3P water model40. The
molecule was solvated in a cubic box large enough to leave
1 nm of water in each dimension. Na+ and Cl− ions were
added to approximate a 100 mM salt concentration. The sys-
tem was energy minimized using a steepest descent algorithm.
Then, water was equilibrated in the NVT ensemble at 300 K
using the Berendsen thermostat41 and restraining the positions
of the peptide heavy atoms. Next, the density of the box was
converged at 1 Pa using the Berendsen barostat. Finally, NVT
production runs were performed using a stochastic integrator
and a 2 fs time step42. Electrostatics were calculated using
the particle-mesh Ewald method43. The simulations were per-
formed using the Gromacs software package44.

3. FiP35 WW domain

We have used two independent 100 µs simulation trajecto-
ries of folding/unfolding of the 32-residues long FiP35 variant
of the Pin1 WW domain by Shaw and co-workers45. For these
simulations the Amber99sb-ILDN force field39 and the TIP3P
water model40 were employed. Simulations were carried out
at 395 K using the Anton supercomputer. Further details are
available elsewhere45.

IV. RESULTS

Below we show the results obtained for the three systems
introduced above using the proposed hdbMSM workflow. For
reference, in all cases we first present results using the typi-
cal workflow summarized in Fig. 1A. For each of the systems
complementary figures for the validation of the MSMs are in-
cluded in the supplementary material.

A. Two-dimensional potential

We start by applying the typical and proposed workflows
for the construction of MSMs to a dataset derived from Brow-
nian dynamics simulations on the double well potential by
Berezhkovskii et al.37,38 (see Figure S1 in the Supporting In-
formation). Since there are only two degrees of freedom, we
can directly use them in the discretization. In this type of
model system, one would normally assign the data points to
microstates using a grid or perform k-means clustering. In
Figure 2A we show the results from the latter approach using
k = 100 cluster centres. From the time series data assigned
to the collection of microstates, we have estimated the fine
grained MSM, which we then coarse-grained using PCCA+
(i.e. following the procedure outlined in Fig. 1A). The results
from the PCCA+ coarse-graining and the implied time-scales
are shown in Figure 2A and D, respectively.
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FIG. 2: (A) Values of x and y for the 100 k-means clusters used in the fine grained MSM. Colours correspond to the two
metastable states derived from PCCA+. The gray contour plot is the G(x,y) potential in units of kBT calculated from the
analytical expressions. (B) Simulation data points coloured by the HDBSCAN assignment, using a minimum cluster size of 50.
Metastable states are in red and blue and noise points are shown in black. (C) Condensed tree plot from the clustering of the
data using HDBSCAN using a minimum cluster size of 50. Selected clusters are circled. (D) Implied timescales for the first
five eigenmodes as a function of the lag time τ . The 1:1 line is shown in black for reference. (E) Same for the hdbMSM. Solid
lines are maximum likelihood estimates and dashed lines are mean estimates from Bayesian sampling. Shaded areas
correspond to 95% confidence intervals. The black line marks the 1:1 line, below which no reliable information can be obtained
from the MSM.

Alternatively, we can simply resort to HDBSCAN to gener-
ate two core states and directly construct an accurate coarse-
grained MSM. In Figure 2B we show the two core states
from the hdbMSM. The assignment resulting from HDB-
SCAN very much matches that from the PCCA+ coarse-
graining, but leaves out as “noise” states in the barrier region
and walls, directly implementing the transition based assign-
ment method17. In Figure 2C we show the condensed tree
plot generated from the data, which shows how the two main
clusters are easily identified as those having the largest persis-
tence within the hierarchy. In this case we further refined the
amount of noise in the assignment using the probabilities that
the datapoints were assigned to the clusters. Specifically, we
left as noise points that had probabilities lower than 0.4.

In Figure 2D-E, we compare the implied timescales derived
from both approaches. The only relevant timescale in this sys-
tem, corresponding to the crossing of the barrier between both
basins, is captured equally well by both the fine-grained MSM
(Figure 2D) and our direct approach (Figure 2E). In both cases
we find the implied timescale to be entirely independent of the
lag time for the construction of the model. We have performed
Chapman-Kolmogorov tests for both MSMs (see Supplemen-
tary Information, Fig. S2 and S3). In both cases Eq. 3 is sat-
isfied accurately, as we recover excellent agreement between
estimation and prediction curves. It is worth noting that when
using hdbMSM we avoid the unnecessary burden of coarse-
graining a fine grained MSM whose microstates are certainly

not fulfilling the assumption of Markovianity.

B. Alanine dipeptide

Our second example is the terminally-blocked alanine
residue (see Fig. 3A), which is realistic in the sense of being
a molecular model that experiences slow transitions between
conformational states, while still keeping a very small num-
ber of degrees of freedom. Specifically, here we use the φ

and ψ Ramachandran angles. Again, we compare the results
from the standard procedure for generating MSMs against our
simplified hdbMSM workflow.

In Figure 3B we show the projection of the fine-grained
MSM microstates on the Ramachandran map. As in the case
of the bistable potential, the system has only two degrees of
freedom, and hence we do not need to use dimensionality re-
duction techniques. In order to avoid problems from the pe-
riodicity of the backbone torsions, before the clustering we
shifted the values of φ > 2 and ψ < −2 by −2π and 2π ,
respectively. Then we clustered the data using the k-means
method with k = 200 cluster centres. Using these clusters we
obtain a fine grained MSM with three slow modes, which have
a slight lag time dependence for τ < 5 ps, plus many other
fast modes. Subsequently, we performed a PCCA+ coarse-
graining, which results in four macrostates that match the
dominant α-helix, PPII/β and αL basins (see colour code of
microstates in Fig. 3B).
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FIG. 3: (A) Representation of the alanine dipeptide with the φ and ψ torsion angles. (B) Projection of the microstates of the
fine-grained MSM on the Ramachandran map, overlaid on a density plot calculated from our simulation trajectories. Clusters
were generated using k-means clustering with k=200. Colour code indicates the different metastable states obtained by using
PCCA+ coarse-graining. (C) Data points from the simulation color-coded by cluster index as determined by HDBSCAN. Noise
points are shown in black. We used a minimum cluster size of 350. (D) Implied timescales as a function of the lag time (both in
ps) from the fine grained MSM. Solid lines are maximum likelihood estimates and dashed lines are mean estimates from
Bayesian sampling. Shaded regions mark 95% confidence intervals. (E) Same for the hdbMSM. (F) Condensed tree plot and
selected clusters obtained for alanine dipeptide by using HDBSCAN.

When we directly cluster the values of φ and ψ using HDB-
SCAN with a minimum cluster size of 350 we directly reca-
pitulate the relevant free energy basins, leaving out as noise
datapoints in boundary regions between the free energy min-
ima (see Figure 3C and Fig. S4 in the Supplementary Ma-
terial for the time series of the backbone torsion angles as-
signed to the different states). In order to be more stringent
with the TBA procedure, we left as noise points those that
belong to their clusters with probabilities lower than 0.3. Us-
ing this state assignment onto four unique states, we calcu-
late the hdbMSM and determine the corresponding implied
timescales, which are shown in Figure 3E. The resulting val-
ues are in quantitative agreement with the fine-grained MSM
results (Fig. 3D) and are converged at the minimum lag time
of 1 ps. The agreement between both workflows is outstand-
ing, as both are able to capture the relevant timescales. How-
ever, the simplified procedure that we argue for is advanta-
geous in that it skips the need of deriving the fine grained
MSM where some of the microstates very much populate bar-
rier regions between metastable basins (see Fig. 3B). We have
performed Chapman-Kolgomorov tests to validate the mod-
els, and they are satisfactory both for the fine grained MSM
and the hdbMSM (see Supplementary Information, Figs. S5
and S6).

While the value of the minimum cluster size of 350 cap-
tures a partitioning that results in a quantitatively accurate
MSM, the choice of this parameter in HDBSCAN may not
be straightforward in this example. In order to select its value,

one can resort to the use of cluster tree plots23,24,46. According
to the aforementioned description, condensed tree plots are
obtained from the cluster hierarchy by saving only those clus-
ters that are larger than the minimum cluster size parameter.
As shown in Figure 3F and according to the explanation given
in Sec. III B, the width of each cluster represents the num-
ber of points in the cluster and gets narrower as λ increases.
Then, the clusters with largest persistence, which corresponds
to a larger stability, are selected. In practice, the condensed
tree plot must look interpretable, so that selected clusters have
considerable width and there is no much noise at large λ val-
ues. In this particular example, two large clusters correspond-
ing to the α-helix and PPII/β regions are dominant. Still, the
two marginally populated free energy basins (i.e. αL and γ

basins) are also captured as shown in the top-left part of the
tree in Figure 3F. This illustrates the ability of HDBSCAN to
capture clusters even if they have drastically different shapes
and densities.

C. FiP35 WW domain

Finally, we apply the proposed workflow to the long
timescale simulation trajectories (100 µs each) of the FiP35
WW domain from the Shaw group45, a dataset used by oth-
ers before in MSM development47–49. In this case, we first
used dimensionality reduction with TICA26–28 using the dis-
tances between pairs of α-carbons as features. We keep three
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FIG. 4: (A) Projection of the microstates of the fine-grained MSM of the FiP35 WW domain, overlaid on a density plot
calculated from the long equilibrium trajectories. Clusters were generated using k-means clustering with k=100. Colour code
indicates the different metastable states obtained by using PCCA+ coarse-graining. (D) Implied timescales as a function of the
lag time from the fine grained MSM. Solid lines are maximum likelihood estimates and dashed lines are mean estimates from
Bayesian sampling. Shaded regions mark 95% confidence intervals. (D) Same for the hdbMSM. (E) Cartoon representation of
the clusters identified using HDBSCAN, with colours relative to panel B. Each state is represented by 20 randomly selected
conformations. (F) Condensed tree plot for the hdbMSM of Fip35 WW domain.

TICA dimensions, so that resulting components show signif-
icant transitions along the two independent trajectories (see
Supplementary Material, Fig. S7). Following the standard
procedure for building MSMs, we discretize the first few co-
ordinates from TICA using k-means clustering with k = 100
cluster centers. The projection of the k-means clusters is
shown on Figure 4A. The fine-grained MSM yields two slow
implied timescales that are well converged only after, approx-
imately, τ = 200 ns (see Fig. 4D). The implied timescales
for these slowest modes from the fine grained MSM are ap-
proximately 5.5 and 1.5µs, which compare well with previous
results47,48. The MSM does not resolve faster timescales, as
they are not converged for any τ < ti. Considering the result-
ing separation of time-scales, we use PCCA+ to coarse-grain
the model into three macrostates (see Figure 4A).

In the case of the hdbMSM, we directly assign the trajectory
to the four, instead of three, distinct states resulting from clus-
tering with HDBSCAN (see Figure 4B). Hence, using this ap-
proach we are able to identify one more coarse state than with
the PCCA+ coarse-graining. In Figure 4E we show represen-
tative snapshots for each of these states. It is noteworthy that
the clusters captured by HDBSCAN have drastically differ-
ent densities, as illustrated in the condensed tree plot (Figure
4F). We report the timescales for the hdbMSM in Figure 4D
which are converged earlier than those from the fine-grained
MSM (i.e. at τ '50 ns). This suggests that the improved
state definition from the hierarchical clustering may result in
an improvement with respect to the usual workflow. In fact,
the hdbMSM is able to resolve a third slow mode that we have
not obtained with the typical protocol. From the eigenvectors
corresponding to the slowest three eigenmodes (see Supple-

mentary Information, Fig. S10), we find that the additional
mode corresponds to the exchange between the intermediate
state shown in blue in Figure 4E, with two β -sheets formed,
with the unfolded state and the fully folded state (green and
orange, respectively). Corresponding CK tests are shown in
Figures S8 and S9 in the Supplementary Information for the
MSM and the hdbMSM, respectively.

V. CONCLUSIONS

Here we show that, using a hierarchical density-based clus-
tering method, HDBSCAN, we can make the workflow for
MSM construction simpler than with the more established
protocols9, while preserving the accuracy in the estimation of
the slow dynamics. In previous applications of density-based
approaches to MSM construction, DBSCAN was shown to
be well-suited for the construction of core-sets MSMs. How-
ever, in these applications the density-based method sim-
ply replaced the popular, centroid-based k-means clustering
method. In this work, we aim to go a step beyond and em-
ploy HDBSCAN to directly coarse-grain the feature space ei-
ther from trivial coordinates or from optimal coordinates re-
sulting from dimensionality reduction in complex molecular
systems. Thus, we avoid defining microstates and building
a fine-grained MSM, which in any case rests on the false as-
sumption of Markovian dynamics. Additionally, we do not re-
quire a subsequent coarse-graining step using PCCA+ or sim-
ilar methods for lumping microstates. In other words, HDB-
SCAN directly produces an accurate and interpretable model
with only a few states with high metastability. The resulting
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protocol for building MSMs is referred to as hdbMSM.
We choose three application examples of increasing com-

plexity to validate our methodology. By studying a toy model
and alanine dipeptide we demonstrate, respectively, the ability
to identify metastable regions and to describe the slow kinetics
among well-defined core-sets. For these examples, the stan-
dard procedure for MSM construction also works well, but
we are able to reproduce the same result using a more sim-
plified workflow. On the other hand, a well-established com-
plex biological system serves as a challenging problem for
the approach that we propose. For the FiP35 WW domain the
hdbMSM is converged for shorter lag times than in the con-
ventional approach. More importantly, the third slow mode is
only retrieved by hdbMSM, whereas the standard procedure
for building MSMs cannot capture it. In fact, this transition
requires to identify a cluster of low density associated with
two β strands which only HDBSCAN is able to account for.

We do not attempt to introduce a full automation of the
hdbMSM workflow, as recently done in the context of deep-
learning approaches. However, our approach may proof help-
ful for current MSM analyses of MD data with openly avail-
able tools as it simplifies the construction of MSMs, reduces
the input parameters from the end user and enables shorter lag
times. It must be emphasised that our work is necessarily lim-
ited to a few application examples. All the systems considered
have significant gaps among different modes. It remains an
open question if hdbMSM, and more generally density-based
clustering algorithms, will yield accurate results for systems
with a more continuous spectrum of eigenmodes.
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