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Abstract

There  are  myriad  types  of  biomedical  data–  genetics,  transcriptomics,  clinical,  imaging,  wearable

devices and many more. When a group of patients with the same underlying disease exhibit similarities

across  multiple  types  of  data,  this  is  called  a  subtype.  Disease  subtypes  can  reflect  etiology  and

sometimes predict clinical behaviour. Existing subtyping approaches struggle to simultaneously handle

multiple diverse data types, particularly when there is missing information, as is common in most real-

world clinical datasets. To improve subtype discovery, we exploited changes in the correlation-structure

between  different  data  types  to  create  iSubGen,  an  algorithm  for  integrative  subtype  generation.

iSubGen  can  combine  arbitrary  data  types  for  subtype  discovery,  such  as  merging  molecular,

mutational signature, pathway and micro-environmental data. iSubGen recapitulates known subtypes

across multiple diseases, even in the face of substantial missing data. It identifies groups of patients

with divergent clinical outcomes, and can combine arbitrary data types for subtype discovery, such as

merging  molecular,  mutational  signature,  pathway  and  micro-environmental  data.  iSubGen  can

accommodate  any feature  that  can  be  compared with  a  similarity-metric,  and provides  a  versatile

approach for creating subtypes. It is available at https://CRAN.R-project.org/package=iSubGen.
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Introduction
Most diseases show substantial inter-patient variability in presentation, progression and response to

treatment; this heterogeneity is a hallmark of cancer, autoimmune disorders and neurological disorders,

amongst others1–6. These differences often reflect common patterns of disease features, called subtypes,

which can be important for clinical management by reducing the heterogeneity in presentation and

progression2,7,8.

Disease subtypes play a particularly important role in cancer, where almost all tumours arise from a

single cell, and features of that cell shape tumour initiation, progression and evolution9,10. The location

of the primary cancer lesion influences the types of interventions possible and their efficacies, leading

cancers to be grouped clinically  based on their  tissue of origin.  Individual tissues contain cells  of

different types and distinct gene expression landscapes, and these evolve into cancers with distinct

characteristics11. Further, cells of a single cell-type can lead to different types of cancer based on the

identity  and timing of  driver  mutations,  and on the  microenvironmental  pressures  they experience

during tumourgenesis10,12,13.

These  variable,  but  repeatedly  observed,  evolutionary  courses  of  cancers  originating  in  a  single

anatomical  location are termed “cancer  subtypes”.  Historically,  cancer  subtypes  have been defined

histopathologically3–6. More recently, high-throughput molecular assays have discovered and defined

subtypes7,14–17. Both approaches can identify groups of cancers with less heterogeneous prognoses and

responses to treatment7,14,18,19. Subtypes can sometimes be discovered from a single data type7, but often

cannot be precisely defined without considering multiple layers of biological information14.

The  classical  approach  to  subtype  discovery  is  to  apply  unsupervised  learning  methods,  like

hierarchical  or  centroid  clustering,  to  a  subset  of  input  data  that  varies  substantially  between

individuals. These input data can be binary (e.g. single nucleotide variants, SNVs), categorical (e.g.

copy  number  alterations,  CNAs),  continuous  (e.g. mRNA abundance),  bounded  continuous  (e.g.
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methylation β-values, ranging from 0-1) or have other distributional features. Much molecular data is

gene-based,  but  some  represents  processes  like  pathway  activity  or  trinucleotide  mutational

signatures20.  This  classic  approach  has  several  limitations  when  applied  to  multiple  data  types

simultaneously.  First,  standard unsupervised learning methods can produce artifactual  results  when

applied  to  datasets  with  highly-variable  distributional  features,  often  implicitly  assigning  heavier

weights to data types with many features or larger numerical ranges. To address this, some integrative

subtyping algorithms transform input into a latent variable space while others use summary features

from each individual data type21–23. Second, clinical practice routinely produces partial information, and

most unsupervised learning methods struggle to accommodate large amounts of missing data24,25. Third,

most  existing  methods  do  not  exploit  differential  covariance  or  correlation  across  data  types,  nor

provide clear understanding of how each data type contributes to the final subtyping.

We  therefore  created  iSubGen  (integrative  subtype  generation)  to  create  subtypes  by  directly

quantifying inter-relationships between different data types. iSubGen recapitulates known molecular

and histologic subtypes, robustly handles missing data, supports high subtype- and feature-number and

seamlessly integrates gene-based and non-gene-based features.
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Results

Development dataset

To develop iSubGen we first  used the 1,991-patient  METABRIC breast  cancer  dataset,  which has

clinical, CNA, SNV, miRNA abundance and mRNA abundance data, with the latter computationally

deconvolved into tumour cell  (TC) and tumour adjacent  cell  (TAC) components14,26–28.  We initially

focused on the 1,071 patients with complete data, and split these into the 684-patient training and 367-

patient testing cohorts as in the original publication14. Initial method development used the 684 training

cohort patients with complete data.

Consensus integrative similarities

Typical approaches to subtype-identification quantify the relationship between each pair  of patients

using a similarity metric. For an  n-patient cohort, this information is encoded in an  n x  n similarity

matrix, which can be clustered using unsupervised machine-learning29. Thus clustering of CNA profiles

(Figure  1A)  generates  CNA subtypes  (Figure  1B)  and  clustering  of  SNV profiles  (Figure  1C)

generates SNV subtypes (Figure 1D) in the METABRIC training dataset.

To integrate multiple data types into subtyping, there are two basic strategies. First, all data can be

standardized to a common scale and a single metric applied to the appended matrix. Thus for an  n-

patient  dataset  with  m data  types  each  having  pm features,  this  results  in  performing  similarity

calculations on an  n x Σpm feature matrix, producing a final  n x  n similarity matrix. This approach

intrinsically preferences data types with more features or larger values because they hold more weight

in  similarity  calculations30.  An alternative  strategy  instead  analyzes  each  data  type  separately  and

relates the m separate n x n similarity matrices. For example, each data type can be clustered separately,

and then the patient classifications from each data type can themselves be clustered11. This discretizes

patient classifications and intrinsically weights each data type either equivalently if cluster-number is

held constant, or as a function of cluster-number if it is not.
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To create a more flexible method of merging multiple data types, we directly reduced the pair of n x n

similarity matrices for two data types into a continuous value representing the similarity between any

two patients’ similarity profiles (Figure 1E-F). Thus the two  n length similarity vectors for a single

patient, one per data type, are collapsed into a single value. Here, we used Spearman’s correlation to

measure similarity.  We used re-sampling to robustify this  value,  leading to a  consensus  integrative

similarity (CIS) for each patient (Figure 1E-F). This yields a vector of  n CISs for each pair of data

types, yielding an n x [m x (m – 1) / 2] matrix encompassing the inter-relationships between data types

for each patient. Figure 1G shows this matrix for 684 patients from METABRIC dataset, with simple

unsupervised clustering applied to it.  It is immediately apparent that luminal breast  cancers cluster

together and basal-like breast cancers cluster together, suggesting that CIS values reflect known disease

subtypes.

CIS values are  near zero for data types with independent (orthogonal) information, positive for data

types with shared information and negative when patients similar to one another in one data type are

dissimilar in the other. In METABRIC the median CIS across all data types was near zero (Figure 1H;

median: 0.06, range: -0.38 to 0.88), with the most shared information between tumour cell and tumour

adjacent  cell  (stromal)  mRNA abundance  (median  CISTC-TAC =  0.77,  range  -0.07  to  0.88).  The

relationships between different types of information encapsulated in CISs were predictive of clinical

features. In the training cohort, four of ten CISs predicted five-year survival (AUROC > 0.6) without

applying  any  statistical  learning,  as  validated  in  the  367-patient  testing  cohort  (Figure  1I).  For

example,  stronger  associations  between TAC mRNA and miRNAs were  associated  with  improved

overall survival in training and testing cohorts (Figure 1J-K).

To further test the validity of  CISs, we evaluated if CIS constituting mRNA abundance retained key

information such as mRNA based subtypes of breast  cancer (PAM50) and if  other CISs were also

predictive of breast cancer molecular subtypes.  Using the training and testing cohorts, we compared

CIS distributions between PAM50 subtypes (Supplementary Figure 1A).  Almost all  CISs differed
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amongst  PAM50 subtypes  (19/20,  ANOVA q  <  0.05).  A random forest  trained  using  CIS  values

predicted subtypes with AUROCs in the testing cohort ranging from 0.58 for luminal B to 0.95 for

luminal A (Supplementary Figure 1B). CISTC mRNA-miRNA was the most important feature for the random

forest  luminal  A  classifier  followed  closely  by  CISTC  mRNA-TAC  mRNA and  CISTAC  mRNA–miRNA

(Supplementary  Figure  1C).  We show  CIS constituting  mRNA abundance  do  indeed  retain  key

information to predict mRNA based subtypes of breast cancer. We can extrapolate that other CISs may

also be meaningful for novel subtypes.

To generalize this association of CISs with subtypes to other cancer types, we exploited TCGA data.

We created pan-cancer training and testing cohorts each comprising 1,709 patients from twelve cancer

types, and with six data types per patient (mRNA abundance, miRNA abundance, methylation, CNAs,

SNVs and SNV trinucleotide signatures). All thirty CIS combinations in the training and testing cohorts

distinguished cancer types (ANOVA q < 0.05; Supplementary Figure 1D). CIS distributions for some

cancer types were bimodal, such as thyroid cancer (THCA) CISmRNA-SNV. Histopathologic subtypes may

cause this bimodality: in THCA, patients with tall cell thyroid cancer had higher CISmRNA-SNV than those

with follicular thyroid cancer (Wilcoxon p = 3.09 x 10-3; Supplementary Figure 1E). Bimodality and

high variance in CIS across many cancers increases the chance of finding subpopulations/subtypes.

Random forest  classifiers  trained  on  CISs  predicted  all  cancer  types  with  AUROCtesting  cohort >  0.9

(Supplementary Figure 1F). CISs vary in importance for predicting cancer types, with different CISs

being  important  in  distinguishing  each  cancer  type  (Supplementary  Figure  1G).  For  example,

CISmethylation–mRNA was  most  important  to  identify  liver  cancers  (LIHC),  CISmRNA-miRNA for  predicting

kidney  clear  cell  cancers  (KIRC)  and  CISSNV-mRNA for  kidney  papillary  cancers.  Thus  CISs  can

distinguish histological cancer types and subtypes.
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iSubGen framework and integrative subtyping

CISs  capture  the  changing  relationships  between  different  types  of  data.  To  integrate  them  with

information present in patterns of a single data type, we created a second set of engineered features.

This second set of features was generated by training an autoencoder for each data type, and using its

bottleneck layer as the set of independent reduced features (IRFs). iSubGen is thus a four-step subtype

generation  framework:  consensus  pairwise  similarity  construction  (CIS  generation),  data  type

independent  feature  reduction  (IRF  generation),  weighting  of  features  and  unsupervised  machine-

learning (Figure 2). The CIS values represent how different data types interrelate (Supplementary

Figure 2A)  while  the IRF values identify general  patterns within each data  type (Supplementary

Figure 2B). This strategy helps to balance groups of engineered features so that their relative weights

are not primarily a function of the total feature number. In step three of the subtyping framework, the

user  sets  the  weightings  of  CIS  vs. IRF and merges  the  two feature  sets  to  create  the  combined

engineered feature matrix. This provides a parameterizable decision for users, that can optimize based

on internal features (e.g. cluster silhouette profiles) or external ones (e.g. separation of meta-data).

Finally,  applying pattern discovery to the combined sets  of engineered features  generates the final

iSubGen subtypes. Here, we performed pattern discovery using consensus clustering29, but iSubGen

supports multiple algorithms at each step. For example, CISs can use different correlation metrics or

mutual information, with or without sub-sampling.

Pan-cancer grouping discovery with iSubGen

To demonstrate how iSubGen combines CISs and IRFs to generate robust subtypes, we applied it to the

pan-cancer  cohort  evaluated above (Supplementary Figure 1D-G).  Using six data  types  (miRNA

abundance, mRNA abundance, methylation, CNA, SNV and trinucleotide signatures), we subtyped the

two 1,709-patient subsets of twelve cancer types separately using iSubGen (Supplementary Figure 3,

Supplementary  Table  7).  Each  subset  was  independently  analysed  to  evaluate  iSubGen  subtype

consistency. Comparing the adjusted Rand index of the iSubGen clusters with TCGA cancer types, we
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identified  fourteen  iSubGen  groupings  in  both  subsets:  iSubGen-P1  through  iSubGen-P14  and

iSubGen-Q1 through iSubGen-Q14 in the discovery and validation cohorts respectively.

iSubGen-P1 which is comprised almost entirely of skin cutaneous melanoma (SKCM) had the highest

CISSNV–signature (Supplementary Figure 3A). Lung adenocarcinomas (LUAD), stomach and esophageal

carcinoma (STES) breast cancers (BRCA), bladder cancers (BLCA) and head and neck squamous cell

cancers (HNSC) were classified together in multiple groups. Thyroid cancers (THCA) were separated

from the  other  cancers  into  two  thyroid  cancer  groups:  iSubGen-P10/iSubGen-Q10 and  iSubGen-

P11/iSubGenQ11  (Supplementary  Figure  3B,D).  iSubGen-P10/iSubGen-P11  contained  90%

(135/150)  and  iSubGen-Q10/iSubGen-Q11  contained  97%  (146/150)  of  THCA patients  in  their

respective cohorts. The obvious differences between these two thyroid cancer groups was that CISSNV–

methylation (Wilcox p < 2.2 x 10-16), CISSNV-mRNA (Wilcox p < 2.2 x 10-16) and CISSNV-miRNA (Wilcox p < 2.2 x

10-16)  were  higher  in  iSubGen-P10/iSubGen-Q10  than  iSubGen-P11/iSubGen-Q11,  representing

subtypes  of  thyroid  cancer  (Supplementary  Figure  3C,E).  The  CIS  values  for  iSubGen-P  and

iSubGen-Q groupings had high concordance (Supplementary Figure 3F). Thus iSubGen generates

CIS and IRF values that are both useful for supervised learning and that allow unsupervised learning to

independently create concordant classifications in two pan-cancer datasets.

Integrative molecular- and pathway-based breast cancer subtyping

To demonstrate the utility of iSubGen for integrative multi-modal subtype discovery, we next applied it

to the METABRIC breast cancer cohort,  integrating 19,877 mRNA features for both TC and TAC

mRNA, 18,852 CNA features, 823 miRNA features and SNV mutation status of 173 driver genes.

When applied to these five data types, iSubGen identified five subtypes (Supplementary Figure 4A,

Supplementary Table 1), which differed in patient survival (Supplementary Figure 4B). We named

subtypes  such  that  patients  in  iSubGen-B1  having  the best outcome  and  iSubGen-B5  the  worst.

iSubGen-B1  and  iSubGen-B2  had  lower  tumour  grade  (Supplementary  Figure  4C)  and  size
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(Supplementary Figure 4D) than iSubGen-B4 and iSubGen-B5. The five iSubGen-B subtypes were

tightly associated with the PAM50 subtypes7,31. Notably iSubGen-B5 contained most HER2-enriched

and basal-like breast cancers in both training and testing cohorts (Supplementary Figure 4E), linked

to its lower CISTC mRNA – TAC mRNA (Wilcox p < 2.2 x 10-16), CISTC mRNA - miRNA (Wilcox p < 2.2 x 10-16) and

CISTAC  mRNA  –  miRNA (Wilcox  p  <  2.2  x  10-16)  (Supplementary  Figure  4F).  This  reflects  a  higher

transcriptome similarity amongst luminal breast  cancers than amongst HER2-enriched or basal-like

ones. Even amongst the luminal cancers, the good outcome iSubGen-B1 and iSubGen-B2 subtypes had

higher  CISSNV-mRNA and  CISSNV-miRNA (p  <  2.2  x  10-16;  Supplementary Figure  4F).  We  similarly

identified  strong  associations  between  iSubGen-B  and  METABRIC  IntClust  subtypes14

(Supplementary Figure 4G). Overall, the iSubGen-B subtypes showed concordance with the known

subtypes, and identified some novel groupings and highlighted differences in the covariance structure

of different types of molecular data across subtypes.

To demonstrate that iSubGen can be useful with only a single molecular data type, we next focused on

the mRNA abundance data of METABRIC, evaluated as a set  of 13 cancer  hallmark pathways32,33

(Supplementary Figure 5A, Supplementary Table 2). In the training cohort iSubGen identified seven

hallmark subtypes, associated with overall survival (Supplementary Figure 5B). The CISs between

cancer  hallmarks  were  generally  higher  (median  CIS 0.5)  than  CISs  between  different  data  types

(median CIS 0.06, Wilcox p < 2.2 x 10-16). iSubGen hallmark-based breast cancer subtypes (iSubGen-

H1  through  iSubGen-H7)  were  associated  with  PAM50  (Supplementary  Figure  5C),  IntClust

(Supplementary Figure 5D) and iSubGen-B subtypes (Supplementary Figure 5E). In general, higher

CISs between hallmarks  in  the iSubGen-H subtypes  associated  with better  overall  patient  survival

(Supplementary Figure 5A-B).  iSubGen subtypes are concordant with the idea that tumours with

more dysregulation across data types and signaling pathways have poorer outcome.

The iSubGen-B and  iSubGen-H subtypes  are  assessing  breast  cancer  by  two different  paradigms:

iSubGen-B is  a  genome-wide  approach and iSubGen-H is  a  pathway approach.  We combined the
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engineered features from these two approaches within a single model to demonstrate the flexibility of

iSubGen. Together, these six molecular data types comprise 39,725 molecular features and 13 pathway

activities. We identified ten subtypes in our training cohort (Figure 3A, Supplementary Table 3) and

again named them by their association with overall survival: iSubGen-BH1 through iSubGen-BH10

(Figure 3B). The iSubGen-BH subtypes associated with PAM50 subtypes and improved separation of

basal-like breast cancers and HER2-enriched cancers relative to iSubGen-B and iSubGen-H (Figure

3C).  These  associations  validated  in  the  testing  cohort  via centroid  classification  (Figure  3D),

highlighting the reproducibility of iSubGen subtypes.

To  characterize  the  iSubGen-BH  CISs,  we  examined  their  associations  with  the  individual  input

features. Higher CISCNA–SNV was associated with iSubGen-BH7 (p = 1.4 x 10-7), iSubGen-BH8 (p < 2.2

x 10-16), iSubGen-BH9 (p = 1.7 x 10-7) and iSubGen-BH10 (p < 2.2 x 10-16) compared to iSubGen-BH1

through iSubGen-BH6 (Figure 3E).  We identified six SNV associations  (of  156)  and 1,283 CNA

associations (of 10,662; q < 0.01) where mutation of a specific gene associated with higher or lower

CISCNA-SNV (Figure  3F).  Patients  with  TP53 SNVs  had  high  CISCNA-SNV,  while GATA3 SNVs  and

ARID1A SNVs were associated with low CISCNA-SNV. Amongst the associated CNAs, deletion of the q

arms  of  chromosomes  11  and  chromosome  16  were  associated  with  lower  CISCNA-SNV.  We  also

examined individual input features association with the hallmark CISs. Lower CISangiogenesis  –  Wnt/β-catenin

differentiated iSubGen-BH5 from the other iSubGen-BH subtypes (Wilcox p < 2.2 x 10 -16, Figure 3G).

There was 36 angiogenesis mRNAs and 42 Wnt/β-catenin signaling mRNAs in the individual hallmark

gene sets that were used to calculate CISangiogenesis – Wnt/β-catenin. We found three genes, including VEGFA,

from the angiogenesis gene set and ten genes, including MYC, from the Wnt/β-catenin signaling gene

set where higher mRNA abundance was associated with lower CISangiogenesis – Wnt/β-catenin signaling (Spearman q

< 0.01; Figure 3H). There were seventeen genes from the angiogenesis gene set and nine genes from

the  Wnt/β-catenin  signaling  gene  set  where  lower  mRNA abundance  was  associated  with  lower
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CISangiogenesis  –  Wnt/β-catenin  signaling (Spearman q < 0.01). Thus iSubGen enhances subtype development by

integrating individual features (IRFs) with feature-feature interactions (CISs).

Subtyping using genic and non-genic molecular data

To evaluate whether iSubGen could be used to generate subtypes from more diverse molecular data, we

sought to subtype using a combination of gene-based and mutational process information. We used

trinucleotide signatures20 for 557 patients from three kidney cancer types from the pan-cancer TCGA

datasets34–36, which to our knowledge have not been previously integrated into multi-modal subtyping

strategies. Each cancer type had six available data types: CNA, SNV, trinucleotide signature exposures,

methylation, mRNA abundance and miRNA abundance. We randomly divided patients with all six data

types into equal-sized training and testing cohorts. In the training cohort, we used iSubGen to identify

eight subtypes: iSubGen-K1 through iSubGen-K8 (Figure 4A, Supplementary Table 4). iSubGen-K1

contained almost all kidney chromophobe (KICH) cancers, while iSubGen-K2 through iSubGen-K5

comprised  predominantly  kidney  papillary  (KIRP)  cancers  and  iSubGen-K6  through  iSubGen-K8

predominantly clear cell  (KIRC) cancers.  Centroid classification in the testing cohort validated the

presence  and  relative  frequencies  of  these  subtypes  (Figure  4B).  Interestingly,  KIRC  patients  in

iSubGen-K5 had poorer overall survival than other KIRC patients in both training and testing cohorts

(Figure 4C), while KIRP patient survival was not associated with iSubGen-K subtypes (Figure 4D).

Trinucleotide  signatures  were  associated  with  both  histological  classifications20 and  iSubGen-K

subtypes (Figure 4E). KIRC patients classified in iSubGen-K6 and iSubGen-K8 were associated with a

lower exposure of patients to SBS5, which has unknown etiology. iSubGen-K4 and KIRC classified

patients were associated with a higher exposure to SBS5. SBS13 and SBS2, which are attributed to

AID/APOBEC activity, were associated with KIRP patients. Thus iSubGen provides a framework for

integrating both mutational and mutational-process information into subtype discovery.
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iSubGen subtyping is robust to missing data

Because human cancers vary in size, and are often profiled from biopsy rather than surgical specimens,

it is common for only a subset of possible molecular assays to be performed. For this, and many other

reasons, missing data is common in genomic studies. To evaluate iSubGen’s performance in the face of

missing data, we randomly separated TCGA lung cancer data into a 512 patient training cohort and a

509 patient testing cohort37,38. Overall 446/1021 patients (47%) lacked one or more of the six data types

used in classification, split evenly between training and testing cohorts (Figure 5A, Supplementary

Table 5). To select the number of iSubGen subtypes, we assessed the association between histological

subtypes and different  numbers  of  iSubGen clusters  using the adjusted Rand index in  the training

cohort. Lung cancers formed two subtypes: iSubGen-L1 and iSubGen-L2. Subtype structure was robust

to  missing  data  (Figure  5B,  Supplementary  Table  5).  iSubGen-L1  largely  comprised  lung

adenocarcinomas and iSubGen-L2 largely comprised lung squamous cell carcinomas in both training

(Figure 5C) and testing cohorts (Figure 5D). Overall 89% (230/257) of training and 87% (227/260) of

testing cohort lung adenocarcinomas were in iSubGen-L1. Similarly 87% (221/255) of training and

80% (198/249) of testing cohort lung squamous cell carcinomas were in iSubGen-L2. iSubGen-L2 had

higher median CISmRNA-SNV than iSubGen-L1 (mediantraining L1=-0.04, mediantraining L2=0.18 Ptraining < 2.2 x

10-16; mediantesting L1=-0.04, mediantesting L2=0.16, Ptesting < 2.2 x 10-16; Figure 5E-F).

To visualize these underlying associations between data types, we focused on CISs from two exemplar

patients  and  on  mRNA and  SNV features  prior  to  feature  engineering.  TCGA.44.5645 had lower

overall CISmRNA-SNV and near-median values for iSubGen-L1 patients (Figure 5G). TCGA.78.7155 had

the highest CISmRNA-SNV of all patients in the training cohort and had high CISmRNA-SNV for iSubGen-L2

(Figure 5H). TCGA.44.5645 and TCGA.78.7155 both cluster with their respective histological subtype

using  mRNA abundance  (Figure 5I).  By contrast,  SNVs did  not  separate  patients  by  histological

subtype (Figure 5J): TCGA.44.5645 has more total somatic SNVs than TCGA.78.7155 and clusters
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with other highly mutated tumours. The low CISmRNA-SNV values show that SNVs and mRNA provide

orthogonal information – leading iSubGen to create composite subtypes that merge them.

To assess the association of CIS values with epidemiologic features we considered sex differences,

which have been widely reported in lung cancer39–41. We tested whether CISs differed between tumours

arising in patients with XX and XY germline chromosome conformations; 7/15 CISs were associated

with  sex  (Supplementary  Table  6).  For  example,  XY patients  had  higher  CISmRNA-SNV than  XX

patients: mRNA and SNV profiles were more concordant in lung tumours arising in men than those

arising in women. Thus CISs reflect underlying epidemiologic features, independent of missing data.
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Discussion

Many factors influence the status and progression of cancer: somatic mutations (CNAs, SNVs,  etc.),

epigenomic  alterations,  chromatin  reorganization  and  external  cellular  signals  all  occur  on  a

background of the individuals’ health, stress and exposures over a lifetime. Capturing how all these

data types interrelate is an open problem, subject to intensive investigation. We introduce iSubGen to

capture the associations between different types of data. iSubGen uses a novel metric called CIS to

capture how different data types interrelate. If feature patterns from two data types define the same

patient associations (high CIS), then the two data types may reflect a regulatory relationship of some

type.  For  example,  a  higher  CISSNV-mRNA could  be  explained  by  a  set  of  mutated  genes,  such  as

transcription factors, that drive broad mRNA abundance patterns. CISs, along with a reduced form of

the single  data  type information  termed IRFs,  both serve as  intermediaries  for  integrative subtype

discovery and can be used for direct supervised biomarker development.

iSubGen facilitates maximum data type inclusion and modular replacement of the framework steps to

personalize for different situations. However, with increased options comes increased parameterization

and the need to check that the underlying engineered features are reproducible. Indeed iSubGen does

not directly incorporate prior information (although its robustness to missing data provides a natural

pathway for doing so). Almost all subtype-development approaches face this challenge: there is no one

metric to quantitatively optimize clustering results when selecting weightings, the number of clusters

and the ultimate subtypes. We considered inter-subtype differences, association with CISs, prognostic

associations and, since we were assessing well  characterized cancer types,  association with known

histopathologic subtypes. In any subtyping, it is up to the user to decide what is most important in

choosing a subtype number when multiple different values can bring statistically reasonable results

using domain knowledge.
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A caveat of iSubGen is its relative execution time to other subtype discovery methods. The calculation

of CIS values is computationally demanding because of the number of similarity calculations for, first,

similarity  matrices  for  each  data  type  and second,  CIS,  calculations  between data  types.  CIS  is  a

consensus  metric  so  requires  iterations  of  all  of  the  similarity  calculations.  For  large  numbers  of

patients, like our pan-cancer analysis, creation of the CIS matrix can take several hours on a single

CPU (one core), although this can be readily parallelized.

Subtypes provide fundamental understanding about polygenic disease – they identify groups of patients

whose current disease appears similar, and thus might share both similar histories and future responses

to treatment. Potential applications of iSubGen extend to almost any complex biological system. For

example, to understand the effect of human microbiomes on health, we will need to recognize patterns

across underlying human genetics, epigenetics, metabolomics and the microorganisms present in the

gut. Data arising from mobile devices provide a completely different setting with a plethora of data

types  to  combine  and  interpret.  iSubGen  provides  a  flexible  framework  to  capture  multi-modal

interactions in diverse data science applications.
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Methods

METABRIC breast cancer dataset

The  METABRIC  cohort  contains  1,991  patients  each  with  a  primary  fresh  frozen  breast  cancer

specimen14,26,27. METABRIC annotation includes overall survival and PAM50 subtype classifications.

Six patients had subtype classification NC (not classified). The METABRIC dataset includes mRNA

abundance, CNAs, miRNA and SNVs. The relative mRNA abundances of 19,877 genes were profiled

using Illumina HT-12 v3 microarrays for 1,988 patients. CNA data covers 18,852 genes profiled using

Affymetrix SNP 6.0 microarrays for 1,989 patients. There are 823 relative miRNA abundances profiles

using  Agilent  Human  miRNA Microarray  2.0  for  1,285  patients26.  The  METABRIC  cohort  also

included  targeted  sequencing  data  covering  173  genes  frequently  mutated  in  breast  cancer  (i.e.

candidate driver genes) with somatic SNV calls27. The mRNA abundance was deconvolved into tumour

cell  and  tumour  adjacent  cell  mRNA abundance  using  ISOpure28,42,43.  TC/TAC deconvolution  was

performed for all  patients in the training cohort and all  patients in the testing cohort. We used the

training and testing cohort divisions from the METABRIC paper. Subtypes were discovered using only

the training cohort.

TCGA data

TCGA datasets were downloaded from Broad GDAC Firehose (https://gdac.broadinstitute.org/), release

2016-01-28.  We  used  the  mRNA abundance,  CNAs,  SNVs  for  the  TCGA samples.  The  mRNA

abundances of 20,531 genes were profiled using exome sequencing. CNA data covers 24,776 genes

profiled using Affymetrix SNP 6.0 microarrays. There are 18,152 genes with a mutation for the SNV

data.  Per  patient  trinucleotide  mutational  signatures  calls  were  also  downloaded.  miRNA  was

downloaded from the GDC Data Portal (https://portal.gdc.cancer.gov/), data Release 25.0 – July 22,

2020. There were 1,881 miRNA abundance profiled through sequencing.
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For the kidney cancer cohort, we used 241 kidney renal papillary cell carcinomas (KIRP), 267 kidney

renal clear cell carcinomas (KIRC) and 49 chromophobe renal cell carcinomas (KICH)34–36. We only

used patients with all six data types. Patients were randomly divided per subtype to create equally sized

training and testing cohorts.

For the lung cancer cohort, we used 1,021 patients from the TCGA lung cancer cohorts37,38, which is a

combination  of  lung adenocarcinoma (LUAD)  and  lung  squamous  cell  carcinoma (LUSC).  Using

random sampling per subtype, we divided the patients into a training cohort of 512 and a testing cohort

of 509 patients.

For the pan-cancer cohort, twelve TCGA datasets with more than 200 patients with the data types were

chosen: BLCA, BRCA, HNSC, KIRC, KIRP, LGG, LIHC, LUAD, PRAD, SKCM, STES, THCA.

From  each  cancer  type,  we  equally  divided  up  to  300  randomly  selected  patients  in  two  non-

overlapping subsets. In total each subset had 1709 patients.

Survival associations of CISs

We created a receiver operator curve using the CISs for each pair of data types. For each pair of data

types, the CISs were dichotomized at every possible threshold and agreement with overall survival was

assessed.  For  further  examples  of  the  survival  associations,  we  created  Kaplan-Meier  curves  and

assessed  the  survival  association  using  log-rank  tests  for  CISTAC  mRNA  –  miRNA.  CIS  dichotomization

threshold was chosen to maximize the harmonic mean of true positive and false positive rates for

predicting five year overall survival using all the patients in the training cohort.

Random Forest classifiers

We created random forest classifiers predicting breast cancer subtype or pan-cancer cancer type from

CISs using the randomForest (v4.6-14) R package.
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Independent reduced features

The reduced feature matrix is a matrix where each row is a patient and each column is an IRF. For each

data type, an autoencoder was created using the keras (v2.1.5) and tensorflow (v1.10) packages in R.

RNA profiles were scaled before inputting to the autoencoder. The autoencoders were trained with

mean  squared  error  loss  function,  Adam  optimization  and  tanh  as  the  activation  function.  Each

autoencoder  had three hidden layers  with fifteen nodes,  two nodes,  fifteen nodes  respectively.  We

tested one, three and five hidden layers with various node sizes (1, 2, 5, 15, 30, 25, 50, 100, 200). The

IRFs were then extracted from the layer with the bottleneck layer (here the layer with two nodes).

These IRFs for each data type were combined into a matrix where each column corresponded to a node

in the bottleneck layer from the autoencoders. There were two columns from each data type.

Consensus integrative similarities

The pairwise comparison matrix is a matrix where each row is a patient and each column is a pair of

data  types.  The  entries  in  the  matrix  are  correlations  or  consensus  correlations.  To  calculate  the

correlation for a patient and a pair of data types, the similarities between that patient and each of the

other patients in the cohort were calculated for each of the data types. These similarities were then

correlated between two data types. This was repeated for each patient and each pair of data types using

Spearman’s correlations. The similarity metric varied depending on the molecular data type. For CNA,

SNV, trinucleotide mutational signatures data types, we used Jaccard distance as the similarity metric.

For mRNA, miRNA and methylation data types, we used 1 - Pearson’s correlation as the similarity

metric.  To create  CISs,  patients were correlated with bootstrapping and each CIS was the median

correlation from the sub-sampled repetitions. For each bootstrap, 80% of the patients were sampled

without replacement and all the patients were individually correlated to that 0.8 subset of patients. This

was repeated 10 times and the median of the correlations for each patient and data type pair.
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Integrative Subtype Generation (iSubGen)

There are four steps to creating subtypes with iSubGen. (1) Create a pairwise comparison matrix which

assesses the relationships between patient similarities in a pairwise approach such as CISs. (2) Create a

reduced feature matrix to assess the main pattern of each independent matrix. (3) Combine the pairwise

similarity matrix and the reduced feature matrix with appropriate re-weighting. (4) Perform pattern

discovery on the combined matrix. We used consensus clustering (v1.8.1)29 with a seed of 17, with

1000  clustering  repetitions  and  Euclidean  distance  metric  and  hierarchical  clustering  with  Ward

linkage.  The number  of  clusters  was determined using  the consensus  cluster  results,  including the

consensus matrix and cumulative distribution functions and association with CISs and clinical features.

Breast cancer integrative multi-omics subtypes

iSubGen was run on the 684 patients in the training cohort with all five data types: CNA, SNV, miRNA

abundance, TC mRNA abundance and TAC mRNA abundance. TC mRNA, TAC mRNA and miRNA

features were z-scaled per feature before autoencoder training. For each data type, the autoencoder had

three hidden layers with fifteen nodes, two nodes, fifteen nodes respectively. Therefore there was two

independent reduced features (IRFs) per data type. Consensus clustering was performed for 2 to 10

subtypes with 0.8 sub-sampling of features and patients. A weighting of 1:8 for CISs to independent

reduced features was selected. Five subtypes was selected by visual assessment of iSubGen subtypes

with CIS, PAM50 subtypes and prognosis. There were 367 patients in the testing cohort with all five

data types. Testing cohort independent reduced features were created using the trained autoencoders

with TC mRNA, TAC mRNA and miRNA features scaled using the mean and standard deviations from

the training cohort. Testing cohort CISs were calculated for each patient relative to the patients in the

training cohort, not relative to the patients in the other patients in the testing cohort.
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Breast cancer subtypes from mRNA of cancer hallmarks and pathways

iSubGen was run on the 996 patients in the training cohort with mRNA abundance. Thirteen gene sets

from the MSigDB hallmark gene sets collection were selected and mRNA for the genes from each of

these sets was used as a separate data type. mRNA features were z-scaled per feature per mRNA set

before autoencoder training. For each data type, the autoencoder had three hidden layers with fifteen

nodes, two nodes, fifteen nodes respectively. Therefore there was two IRFs per data type. Consensus

clustering  was  performed for  2  to  10  subtypes  with  0.8  sub-sampling  of  features  and patients.  A

weighting of 1:4 for CISs to independent reduced features was selected. Nine subtypes was selected by

visual assessment of iSubGen subtypes with CIS, PAM50 subtypes and prognosis.

Breast cancer subtypes combining integrative -omics features and mRNA

sets

iSubGen was run on the 684 patients in the training cohort with all five data types: CNA, SNV, miRNA

abundance, TC mRNA abundance and TAC mRNA abundance. Features were used as described from

breast  cancer  integrative  multi-omics  subtypes  and breast  cancer  subtypes  from mRNA of  cancer

hallmarks and pathways. A weighting of 1:2 for CISs to IRFs was selected. Consensus clustering was

performed for 2 to 18 subtypes with 0.2 sub-sampling of features and 0.8 sub-sampling of patients. Ten

subtypes  was selected  by  visual  assessment  of  iSubGen subtypes  with  CIS,  PAM50 subtypes  and

prognosis.

Kidney cancer subtypes

iSubGen was  run  on the  283  patients  in  the  training  cohort  with  all  six  data  types:  CNA,  SNV,

trinucleotide mutational signatures, methylation,  mRNA abundance and miRNA abundance.  mRNA

and miRNA features were z-scaled per feature before autoencoder training. For each data type, the

autoencoder  had  three  hidden  layers  with  fifteen  nodes,  two  nodes,  fifteen  nodes  respectively.

Therefore there was two IRFs per data type. Consensus clustering was performed for 2 to 10 subtypes
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with 0.8 sub-sampling of features and patients. A weighting of 1:2 for CISs to independent reduced

features was selected. Five subtypes was selected by visual assessment of iSubGen subtypes with CIS,

TCGA kidney cancer types and prognosis. There were 274 patients in the testing cohort with all six

data  types  that  were  classified  using  centroid  classification.  Testing  cohort  independent  reduced

features were created using the trained autoencoders with mRNA and miRNA features scaled using the

mean and standard deviations from the training cohort. Testing cohort CISs were calculated for each

patient relative to the patients in the training cohort, not relative to the patients in the other patients in

the testing cohort.

Lung cancer subtypes

iSubGen was run on the 512 patients in the training cohort with any of the six data types: CNA, SNV,

trinucleotide  mutational  signatures,  methylation,  mRNA  abundance  and  miRNA  abundance.  All

patients had at least two data types. If missing data, NA was used in the matrix. mRNA and miRNA

features were z-scaled per feature and trinucleotide mutational signatures features were log10-scaled

before autoencoder training. For each data type, the autoencoder had three hidden layers with fifteen

nodes, two nodes, fifteen nodes respectively. Therefore there was two IRFs per data type. Consensus

clustering was performed for 2 to 10 subtypes with 0.5 sub-sampling of features and patients. Diana,

instead of hclust, was used within consensus clustering because it can handle clustering missing data. A

weighting of 1:8 for CISs to independent reduced features was selected. Two subtypes were selected

looking at association with TCGA lung cancer type while also minimizing the number of clusters. 

Using a subset of 126 patients (63 LUAD, 63 LUSC) with all six data types, we ran iSubGen as we did

with the cohort including patients with missing data. Since the cohort with missing data has equivalent

numbers of LUAD and LUSC patients, we downsampled to have a cohort with equal proportion of

each subtype with all data types. There were 63 LUSC patients with all data types so we randomly

selected 63 LUAD patients from the 212 LUAD patients with all data types.
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There were 279 patients in the testing cohort with all five data types that were classified using centroid

classification. Testing cohort independent reduced features were created using the trained autoencoders

with mRNA and miRNA features scaled using the mean and standard deviations from the training

cohort and trinucleotide mutational signatures features were again log10-scaled. Testing cohort CISs

were calculated for each patient relative to the patients in the training cohort, not relative to the patients

in the other patients in the testing cohort. 

Pan-cancer subgroups

Two subset were randomly created with the twelve TCGA datasets (BLCA, BRCA, HNSC, KIRC,

KIRP, LGG, LIHC, LUAD, PRAD, SKCM, STES, THCA) with more than 200 patients for the six data

types  (mRNA,  CNA,  SNV,  trinucleotide  mutational  signatures,  methylation,  miRNA).  From each

cancer type, we randomly selected 300 patients or all the patients and evenly divided them between the

two subsets. There was 1,709 patients in the first subset and 1,709 patients in the second subset. Both

subsets were independently run through iSubGen. mRNA features were z-scaled per feature before

autoencoder training. For each data type, the autoencoder had three hidden layers with fifteen nodes,

two  nodes,  fifteen  nodes  respectively.  Therefore  there  was  two  IRFs  per  data  type.  Consensus

clustering was performed for 2 to 30 subtypes with 0.8 sub-sampling of features and 0.1 sub-sampling

of  patients.  A weighting  of  1:4  for  CISs  to  independent  reduced  features  was  selected.  Fourteen

subtypes was selected in both subsets by assessing association of the iSubGen groups with cancer types

using adjusted Rand index.

Visualization

All  plotting  was  performed  in  the  R  statistical  environment  (v3.4.3)  using  the  lattice  (v0.20-38),

latticeExtra  (v0.6-28),  RColorBrewer (v1.1-2)  and cluster  (v2.0.7-1)  packages  via the  BPG library

(v5.9.8)44.
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Software availability

iSubGen  is  freely  available  as  an  R  package  from  CRAN  at  https://cran.r-

project.org/web/packages/iSubGen/index.html or  from  https://github.com/uclahs-cds/public-R-

iSubGen.
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Figure Legends

Figure 1 | Integrative similarities

Pairwise integrative similarities in the training cohort of METABRIC breast cancer patients. (A) CNAs

with genes ordered by genomic position on the x-axis and patients on the y-axis. Gains are red and

deletions are blue. (B) CNA patient by patient similarity matrix using Jaccard distance as the similarity

metric. (C) SNVs for genes mutated in more than 13 patients. Genes (x-axis) are ordered by mutation

frequency. Patients are on the y-axis. (D) SNV patient by patient similarity matrix calculated using

SNVs without patient recurrence filtering and Jaccard distances. (E,F) Comparison of CNA and SNV

similarities relative to patient MB.0131 (E) and MB.0529 (F). The CNA and SNV profiles for MB.0131

and MB.0529 are indicated on A and B by the boxes and arrows in red and blue respectively. Jaccard

distances are used for measuring similarity in both CNA and SNV. MB.0131 was randomly selected as

an example of a patient with positive CIS. MB.0529 was randomly selected as an example of a patient

with a CIS near zero. (G) Patients grouped by clustering CISs. (H) The distributions of CIS for each

data type pair. (I) Area under the receiver operator characteristic curve for predicting overall survival at

five  years  using  CISs.  Error  bars  represent  the  95% confidence  intervals.  (J,K)  Overall  survival

differences for patients dichotomized using CISTAC mRNA - miRNA at the maximum geometric mean of the

true positive rate and the false positive rate in the training cohort (J) and using the training cohort

threshold in the testing cohort (K). P-values are from log-rank tests.

Figure 2 | Integrative subtype generation overview

Schematic overview of iSubGen with three data types as an example for n patients. Each data type was

separately run through feature reduction and combined in pairs for comparison of the patient profiles

using  similarity  measures.  Output  from  feature  reduction  (n rows  by  k columns)  and  similarity

comparison (n rows by  m columns) were rescaled and reweighted, if necessary, and merged into a

single  matrix  for  unsupervised  machine  learning  to  create  the  final  classifications.  We  used  the
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autoencoder bottleneck layer for independent feature reduction and CISs as our pairwise similarity

measures.

Figure 3 |  Breast cancer iSubGen combining integrative omics features

and cancer hallmark mRNA features

(A)  Using  the  iSubGen,  the  breast  cancer  patients  in  the  training  cohort  were  classified  into  ten

subtypes using integrative -omics features and mRNA cancer hallmark features. (B) Overall survival

for the iSubGen-BH breast cancer subtypes. P-value is from a log-rank test. (C) Comparison of the

iSubGen  breast  cancer  subtypes  and  PAM50  subtypes  in  the  training  cohort.  Heatmap  colouring

represents the number of the patients in each overlap. (D) Comparison of the iSubGen breast cancer

subtypes  and PAM50 subtypes  in  the  testing  cohort.  (E)  Comparison  of  CISCNA  -  SNV distributions

between iSubGen-BH subtypes in the training cohort. (F) Association of SNV and CNA features with

the  CISCNA  -  SNV.  The  top  barplot  shows  significance  between  each  feature  and  CISCNA  -  SNV using

Wilcoxon rank sum tests and FDR-adjustment. (G) Comparison of CIS between angiogenesis mRNA

set  and  Wnt/β-catenin  signaling  mRNA set  for  iSubGen-BH subtypes  in  the  training  cohort.  (H)

Association of CISangiogenesis  –  Wnt/β-catenin signaling with z-scaled mRNA abundance from each gene set (q <

0.01).  The  top  barplot  shows  significance  between  each  mRNA and  the  CIS  using  Spearman’s

correlation  and  FDR-adjustment.  Genes  are  ordered  by  Spearman’s  correlation  with  correlations

decreasing out from middle and the CIS panel.

Figure 4 | Kidney cancer iSubGen using non-gene-based features

(A) Using iSubGen,  patients  in  the training cohort  were classified into six subtypes.  (B) Centroid

classification of the iSubGen-K subtypes in the testing cohort. (C) Overall survival between iSubGen

classifications  for  KIRC patients.  Groups with less  than 10 patients  are  not  included.  (D) Overall

survival between iSubGen classifications for KIRP patients. Groups with less than 10 patients are not

included. P-values are from log-rank tests. (E) Association of patients in the training and testing cohorts
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with trinucleotide mutation signatures. Each column is a group of patients. The top covariate shows the

TCGA histological cancer type and the second covariate is the iSubGen classification of the patients.

Patient groups with less than ten patients are not shown. Each dot is sized to proportion of patients with

mutations from the trinucleotide signature. If the dot is orange, then the proportion for the group is

greater  than  the proportion in  the patients  not  in  the  group.  Similarly if  the dot  is  blue,  then  the

proportion is less than in the other patients. The background shading is the q-value from the proportion

test comparing the proportion for patients in the group to the proportion for those not in the group. 

Figure 5 | iSubGen is robust to missing data in lung cancer

(A) The number of data types that each patient has. (B) Using iSubGen, patients from the training

cohort were classified into two subtypes including patients with missing data. The top panel is the

centroids from subtyping with missing data. To assess the effect of missing data, a subset of patients

that had all six data types were also independently clustered and these centroids are in the bottom

panel. (C) iSubGen classification of the training cohort. (D) Centroid classification of the iSubGen-L

subtypes  in  the  testing  cohort.  (E)  CISmRNA-SNV for  training  cohort  with  TCGA.78.7155’s  and

TCGA.44.5645’s  CISs  circled.  (F)  CISmRNA-SNV for  testing  cohort.  (G)  The  CIS  for  patient

TCGA.44.5645 which is  the patient  with the median CISmRNA-SNV in iSubGen-L1. (H) The CIS for

patient TCGA.78.7155 which is the patient with the highest CISmRNA-SNV in iSubGen-L2. (I) Z-scaled

mRNA abundance for mRNAs with standard deviation greater than 2. mRNA on the x-axis and patients

on the y-axis. Far right plot, mRNA abundance patient by patient similarity matrix using 1 - Pearson

correlation as the similarity metric. (J) SNVs for genes mutated in more than 50 patients. Genes (x-

axis) are ordered by mutation frequency. Patients are on the y-axis. Far right plot, SNV patient by

patient  similarity  matrix  calculated  using  SNVs  without  patient  recurrence  filtering  and  Jaccard

distance as the similarity metric. TCGA.78.7155 is circled in blue and TCGA.44.5645 is circled in red

on I and J.
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Supplementary Figure Legends

Supplementary Figure 1 |  Consensus integrative similarities association

with known subgroups

(A) Association of breast cancer CISs within training (left of each pair) and testing cohorts (right of

each pair) with PAM50 subtypes. (B) Testing cohort receiver operator characteristic curves of random

forest classifiers predicting each whether the patients are the PAM50 subtype or not that subtype. (C)

Gini importance assessment of the CIS contribution to the random forest classifiers. (D) Association of

CISs with TCGA cancer types. CISs were independently calculated from two non-overlapping subsets

of twelve cancer types. (E) Association of CISmRNA-SNV with thyroid cancer subtypes. (F) Testing cohort

receiver operator characteristic curves of random forest classifiers predicting each cancer type or not

that  cancer  type.  (G)  Gini  importance  assessment  of  the  CIS  contribution  to  the  random  forest

classifiers. 

Supplementary Figure 2 | Integrative subtype generation details

Schematic details of iSubGen for  n patients with three data types as an example. (A) The pairwise

comparison of data types created a matrix of CISs. Similarity metrics were varied depending on the

data type. The patient similarities relative to one patient were compared for each pair of data types

using Spearman’s correlations. For example, the column for patient 1 from the CNA similarity matrix

was correlated to the column for patient 1 from the methylation similarity matrix and Spearman’s ρ

(represented  here  as  a  scatterplot  showing  correlation  between  the  columns)  is  the  integrative

correlation.  This  correlation  was  repeated  with  subsampling  to  create  the  consensus  integrative

similarity  (CIS).  This  created a comparison matrix with one row for each patient  that we want to

classify  and  one  column  for  each  pair  of  data  types.  (B)  Although  different  feature  reduction

approaches can be used, the independent feature reduction step is demonstrated using an autoencoder
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for each data type.  The bottleneck layer from the autoencoder became columns in the independent

reduced feature (IRF) output matrix.

Supplementary Figure 3 | Pan-cancer iSubGen classification

(A)  Association  between  CISs  and  iSubGen-P  classifications.  Two  subsets  of  TCGA were  run

independently to create iSubGen-P and iSubGen-Q classifications. (B,D) The number of patients in

each TCGA cancer type and iSubGen classification for the first  patient cohort  (B) and the second

patient cohort (D). Colouring represents the number in the group. (C,E) Association between CIS and

iSubGen classification. For each data type pair, CIS was compared between that group and the other

iSubGen groups using a Wilcoxon rank sum test. The background colouring of each square is the FDR-

adjusted p-value from the comparison and the dot size and colouring represent the difference in median

CIS for the comparison. (F) Pearson correlation of the median CIS for iSubGen-P and iSubGen-Q

groupings.

Supplementary Figure 4 | Breast cancer iSubGen using integrative omics

features

(A)  Using the  iSubGen,  the  training  cohort  of  684 breast  cancer  patients  was  classified  into  five

subtypes.  (B)  Overall  survival  for  the  iSubGen-B  subtypes.  P-value  is  from  a  log-rank  test.  (C)

Association between iSubGen-B subtypes and cancer grade. P-value is from a χ2 test. (D) Association

between iSubGen-B subtypes and tumour size. P-value is from a Kruskal-Wallis rank sum test. (E)

Comparison of the iSubGen-B subtypes and PAM50 subtypes in the training cohort (top) and testing

cohort (bottom). (F) CIS associations with iSubGen-B. (G) Comparison of the iSubGen breast cancer

subtypes and IntClust groups from Curtis et al. in the training cohort (top) and testing cohort (bottom).

Heatmap colouring represents the number of the patients in each overlap and is scaled differently in

each cohort.
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Supplementary Figure 5 |  Breast cancer iSubGen using cancer hallmark

and pathway mRNA features

(A) Scaled CIS for nine breast cancer subtypes based on mRNA associated with cancer hallmarks.

Rows are patients and columns are pairs of data types which in this case are cancer hallmark mRNAs.

(B)  Overall  survival  associations  with  iSubGen-H  subtypes.  P-value  is  from  a  log-rank  test.  (C)

Association between PAM50 subtypes and iSubGen-H subtypes in the training cohort (top) and testing

cohort (bottom). (D) Association between the IntClust subtypes and iSubGen-H subtypes in the training

cohort  (top)  and testing  cohort  (bottom).  (E)  Association  between the  iSubGen-H and iSubGen-B

subtypes in the training cohort.
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Supplementary Tables

Supplementary Table 1 | iSubGen-B features and subtypes

Supplementary Table 2 | iSubGen-H features and subtypes

Supplementary Table 3 | iSubGen-BH features and subtypes

Supplementary Table 4 | iSubGen-K features and subtypes

Supplementary Table 5 | iSubGen-L features and subtypes

Supplementary Table 6 | Significant associations between CISs and sex

Supplementary Table 7 | iSubGen-P and iSubGen-Q features and subtypes
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Figure 1 | Integrative similarities.

Pairwise integrative similarities in the training cohort
of METABRIC breast cancer patients. (A) CNAs with
genes ordered by genomic position on the x-axis and
patients on the y-axis. Gains are red and deletions
are blue. (B) CNA patient by patient similarity ma-
trix using Jaccard distance as the similarity metric.
(C) SNVs for genes mutated in more than 13 patients.
Genes (x-axis) are ordered by mutation frequency. Pa-
tients are on the y-axis. (D) SNV patient by patient
similarity matrix calculated using SNVs without pa-
tient recurrence filtering and Jaccard distances. (E,F)
Comparison of CNA and SNV similarities relative to
patient MB.0131 (E) and MB.0529 (F). The CNA and
SNV profiles for MB.0131 and MB.0529 are indicated
on A and B by the boxes and arrows in red and blue
respectively. Jaccard distances are used for measuring
similarity in both CNA and SNV. MB.0131 was ran-
domly selected as an example of a patient with positive
CIS. MB.0529 was randomly selected as an example of
a patient with a CIS near zero. (G) Patients grouped
by clustering CISs. (H) The distributions of CIS for
each data type pair. (I) Area under the receiver oper-
ator characteristic curve for predicting overall survival
at five years using CISs. Error bars represent the 95%
confidence intervals. (J,K) Overall survival differences
for patients dichotomized by CISTACmRNA−miRNA at
the maximum geometric mean of the true positive rate
and the false positive rate in the training cohort (I)
and using the training cohort threshold in the testing
cohort (J). P-values are from log-rank tests.
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Figure 2 | Integrative subtype generation overview. Schematic overview of iSubGen with three data types as an
example for n patients. Each data type was separately run through feature reduction and combined in pairs for comparison of
the patient profiles using similarity measures. Output from feature reduction (n rows by k columns) and similarity comparison
(n rows by m columns) were rescaled and reweighted if necessary and merged into a single matrix for unsupervised machine
learning to create the final classifications. We used the autoencoder bottleneck layer for independent feature reduction and
CISs as our pairwise similarity measures.
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Figure 3 | Breast cancer iSubGen combining integrative omics features and cancer hallmark mRNA fea-
tures. (A) Using the iSubGen, the breast cancer patients in the training cohort were classified into ten subtypes using
integrative -omics features and mRNA cancer hallmark features. (B) Overall survival for the iSubGen-BH breast cancer sub-
types. P-value is from a log-rank test. (C) Comparison of the iSubGen breast cancer subtypes and PAM50 subtypes in the
training cohort. Heatmap colouring represents the number of the patients in each overlap. (D) Comparison of the iSubGen
breast cancer subtypes and PAM50 subtypes in the testing cohort. (E) Comparison of CISCNA−SNV distributions between
iSubGen-BH subtypes in the training cohort. (F) Association of SNV and CNA features with the CISCNA−SNV . The top
barplot shows significance between each feature and CISCNA−SNV using Wilcoxon rank sum tests and FDR-adjustment.
(G) Comparison of CIS between angiogenesis mRNA set and Wnt/-catenin signaling mRNA set for iSubGen-BH subtypes
in the training cohort. (H) Association of CISangiogenesisWnt/−cateninsignaling with z-scaled mRNA abundance from each
gene set (q < 0.01). The top barplot shows significance between each mRNA and the CIS using Spearman’s correlation and
FDR-adjustment. Genes are ordered by Spearman’s correlation with correlations decreasing out from middle and the CIS
panel. 3
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Figure 4 | Kidney cancer iSubGen using non-gene-based features. (A) Using iSubGen, patients in the training
cohort were classified into six subtypes. (B) Centroid classification of the iSubGen-K subtypes in the test cohort. (C) Overall
survival between iSubGen classifications for KIRC patients. Groups with less than 10 patients are not included. (D) Overall
survival between iSubGen classifications for KIRP patients. Groups with less than 10 patients are not included. P-values
are from log-rank tests. (E) Association of patients in the training and test cohorts with trinucleotide mutation signatures.
Each column is a group of patients. The top covariate shows the TCGA histological cancer type and the second covariate
is the iSubGen classification of the patients. Patient groups with less than ten patients are not shown. Each dot is sized
to proportion of patients with mutations from the trinucleotide signature. If the dot is orange, then the proportion for the
group is greater than the proportion in the patients not in the group. Similarly if the dot is blue, then the proportion is less
than in the other patients. The background shading is the q-value from the proportion test comparing the proportion for
patients in the group to the proportion for those not in the group.
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Figure 5 | iSubGen is robust to missing data in lung cancer. (A) The number of data types that each patient
has. (B) Using iSubGen, patients from the training cohort were classified into two subtypes including patients with missing
data. The top panel is the centroids from subtyping with missing data. To assess the effect of missing data, a subset
of patients that had all six data types were also independently clustered and these centroids are in the bottom panel. (C)
iSubGen classification of the training cohort. (D) Centroid classification of the iSubGen-L subtypes in the testing cohort. (E)
CISmRNA−SNV for training cohort with TCGA.78.7155s and TCGA.44.5645s CISs circled. (F) CISmRNA−SNV for testing
cohort. (G) The CIS for patient TCGA.44.5645 which is the patient with the median CISmRNA−SNV in iSubGen-L1. (H)
The CIS for patient TCGA.78.7155 which is the patient with the highest CISmRNA−SNV in iSubGen-L2. (I) Z-scaled mRNA
abundance for mRNAs with standard deviation greater than 2. mRNA on the x-axis and patients on the y-axis. Far right
plot, mRNA abundance patient by patient similarity matrix using 1 - Pearson correlation as the similarity metric. (J) SNVs
for genes mutated in more than 50 patients. Genes (x-axis) are ordered by mutation frequency. Patients are on the y-axis. Far
right plot, SNV patient by patient similarity matrix calculated using SNVs without patient recurrence filtering and Jaccard
distance as the similarity metric. TCGA.78.7155 is circled in blue and TCGA.44.5645 is circled in red on I and J.
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