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Abstract 

Background Current metabolic modeling tools suffer from a variety of limitations, from 

scalability to simplifying assumptions, that preclude their use in many applications. We recently 

created a modeling framework, LK-DFBA, that addresses a key gap: capturing metabolite 

dynamics and regulation while retaining a potentially scalable linear programming structure. Key 

to this framework’s success are the linear kinetics and regulatory constraints imposed on the 

system. Here, we present improvements to these constraints to improve the predictivity of LK-

DFBA models and their applicability to biological systems. 

Method Three new constraint approaches were created to better model interactions 

between metabolites and the reactions they regulate. These new approaches (and the original LK-

DFBA approach) were tested on several synthetic and biological systems to determine their 

performance when using both noiseless and noisy data. To validate our framework, we compared 

experimental data to metabolite dynamics predicted by LK-DFBA. 

Results There was no single optimal type of constraints across all synthetic and biological 

systems; rather, any one of the four approaches could perform best for a given system. The 

optimal approach for fitting to wildtype data of a given model was consistently the best approach 
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when predicting new phenotypes for that model. Furthermore, many of LK-DFBA’s predictions 

qualitatively agreed with experimental data.    

Conclusions LK-DFBA can be improved by using several kinetics constraint approaches, with 

the ideal one selected based on wild-type training data. LK-DFBA’s ability to predict metabolic 

trends in experimental data further supports its potential for modeling metabolite dynamics in 

systems of all sizes.  
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Introduction 

Mathematical and computational models are often used to study metabolism, the set of 

reactions that supply the chemical precursors necessary for almost all cellular processes. These 

metabolic models are significantly cheaper and faster to run than laboratory experiments, 

meaning that they can be of tremendous value when they are able to predict how changes in or to 

a metabolic system can affect its state. While a few pathways and sections of metabolism (e.g., 

glycolysis and central carbon metabolism) have been modeled and characterized quite well in a 

few organisms (e.g., Saccharomyces cerevisiae and Escherichia coli) [1, 2], genome-scale 

models that capture metabolism at a systems scale have been more difficult to develop. 

Metabolism involves many interconnected reactions and pathways, making it critical to include 

as much of metabolism as possible in metabolic models to better represent the system and 

generate accurate predictions. Metabolomics, which is the systems-scale measurement of 
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metabolites in biological systems, thus has great potential to provide the information necessary to 

drive systems-scale metabolic models. However, creating genome-scale metabolic models that 

capture critical system behaviors like metabolic dynamics remains an outstanding challenge in 

the field, which has prevented the value of metabolomics data in this context from being fully 

realized. 

The most popular type of frameworks for metabolic modeling are constraint-based 

models, including flux balance analysis (FBA) [3, 4], and ordinary differential equation (ODE) 

models. FBA assumes that the metabolic system is at steady state, which allows it to be modeled 

as a linear program (LP) that can be efficiently solved (even at the genome scale) but precludes 

modeling metabolite dynamics without substantial changes to the framework. ODE models are 

more widely used when dynamics are important, but are typically limited to smaller-scale 

modeling of well-studied pathways and the best-studied organisms due to uncertainty in the 

mathematical form and parameter values for the reaction kinetics terms. Only a few exceptions 

[5-8] have approached genome-scale ODE models, and they still require lengthy parameter 

estimation steps, prior information about kinetic constants, or have only been shown to be useful 

near the reference state of the system. As a result, steady-state fluxes continue to be the almost 

exclusive focus of study for genome-scale models. Modeling frameworks that can predict 

various metabolic phenotypes at the genome scale in a computationally tractable way have great 

potential for understanding, predicting, and controlling metabolism. 

To address this problem, we recently developed Linear Kinetics-Dynamic Flux Balance 

Analysis (LK-DFBA), a modeling strategy to efficiently track metabolite dynamics [9]. LK-

DFBA combines advantages of both constraint-based and ODE models, unrolling the temporal 

aspect of the system into a larger stoichiometric matrix that captures metabolite dynamics while 
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retaining a LP structure. The most critical element to accomplishing this goal is the addition of 

linear kinetics constraints that model the interactions between metabolites and the reactions 

whose fluxes they affect, including mass action kinetics and allosteric regulatory interactions. 

The number of parameters in LK-DFBA that need to be estimated can be far fewer than in ODE 

models due to these linear kinetics constraints. This enables LK-DFBA to potentially be applied 

to metabolic systems of all sizes, with a smaller increase in computational burden compared to 

ODE models. Furthermore, because LK-DFBA retains a linear structure, it can potentially be 

used with many existing metabolic modeling tools that require constraint-based models, such as 

OptKnock [10]. We have previously shown that LK-DFBA can outperform ODE-based 

modeling approaches when used in conditions most relevant to metabolomics data (low sampling 

frequency and high noise). A framework such as LK-DFBA that can model systems at the 

genome scale is essential to take full advantage of metabolomics data. 

In our initial description of LK-DFBA, we explored two different approaches for model 

parameterization. The first approach, LK-DFBA (LR), parameterizes constraints solely via linear 

regression of interacting metabolite concentration and flux data. The second approach, LK-

DFBA (LR+), uses the parameters from the linear regressions as initial seeding values for a 

secondary optimization to identify the optimal constraints for each interaction. While LK-DFBA 

(LR+) yields better fits to training data than LK-DFBA (LR), the latter approach estimates its 

parameters with trivial computational effort while still producing results that are similar in error 

to ODE models. As a result, LK-DFBA (LR) may be the preferable approach for the efficient 

construction and parameterization of metabolic models at the genome scale.  

However, the overall LK-DFBA framework still has some limitations in terms of how 

accurately it represents the underlying biology and biochemistry of the system. For example, the 
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linear kinetics constraints used in LK-DFBA (LR) may be viewed as crude approximations of the 

interactions between metabolites and fluxes, which are typically non-linear in nature. While 

kinetic equations found in ODE models (such as Michaelis-Menten or biochemical system theory 

(BST) representations [11, 12]) can capture the non-linearity of these interactions, the current 

linear framework in LK-DFBA cannot. Additionally, when allosteric regulatory information is 

considered (which LK-DFBA includes in its framework), reaction fluxes are often controlled by 

multiple metabolites. Currently, LK-DFBA creates separate constraints for each metabolite that 

controls a flux, which precludes modeling how multiple metabolites simultaneously interact with 

a reaction flux. 

Since the linear kinetics constraints are so critical in LK-DFBA’s functioning, it is likely 

that improving those constraints could have a substantial impact on LK-DFBA’s ability to 

capture and predict biological phenomena. Accordingly, we devised three new types of kinetics 

constraints for LK-DFBA to account for biologically relevant features like non-linearity and 

simultaneous regulation by multiple metabolites. These new approaches were compared to the 

original LK-DFBA (LR) constraints by testing on synthetic model systems as well as models 

based on Lactococcus lactis and Escherichia coli [1, 2]. We also probed these constraint 

approaches for their robustness to model perturbation and their ability to predict phenomena not 

captured in training data. We found that these new constraint approaches can improve model 

performance, and that the optimal constraint approach varied depending on the system being 

modeled but was consistent across perturbations for any given model. We also showed that the 

LK-DFBA approach chosen for the L. lactis and E. coli models can be used to predict changes in 

several critical metabolites and fluxes in agreement with literature experimental results. These 

improvements to LK-DFBA and demonstration of its effectiveness on new metabolic models 
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support its attractiveness as a framework for modeling increasingly large metabolic systems in 

the future. 

 

Methods 

LK-DFBA 

 Linear Kinetics-Dynamics Flux Balance Analysis (LK-DFBA) is a recently developed 

modeling strategy that is both scalable and capable of capturing metabolite dynamics. The full 

details of this approach have been described in detail previously [9], so we only outline the most 

important aspects of our framework here. In brief, LK-DFBA uses an LP-based structure with 

temporal dynamics modeled by discretizing time and unrolling the system into a larger matrix 

representing each time point separately, with an objective function that reflects the unrolling of 

the model. Linear inequality constraints that model mass action kinetics and metabolite-

dependent regulation are included in the model; they are the driving force behind metabolite 

accumulation and depletion by limiting the maximum flux allowed based on the availability of 

metabolites over time. To parameterize these constraints, the LK-DFBA (LR) approach uses 

linear regression on assumed available metabolomics and fluxomics data, as described in the 

next section. If fluxomics data are unavailable, dynamic flux estimation (DFE) can be used to 

infer flux values from concentration data [13]. In the LK-DFBA (LR+) method, the parameters 

from the LK-DFBA (LR) approach are used as initial conditions in a secondary optimization step 

that finds improved kinetics constraint parameters, though at the cost of computational time. 

Because LK-DFBA retains an LP structure, it is readily scalable and has the potential to be used 

with current constraint-based modeling tools. 
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Constraint Approaches 

 LK-DFBA (LR) The original LK-DFBA approach uses linear kinetics constraints to 

model the interaction between a metabolite and a flux, parameterized using available 

metabolomics and fluxomics data. These constraints take the form of 𝑣 < 𝑎𝑥 + 𝑏, where v is the 

flux being constrained, x is the concentration of a metabolite that interacts with the flux, and a 

and b are the linear constraint parameters. These interactions may be due to mass action kinetics, 

where the interactions are known based on the stoichiometric topology of the system, or they 

may stem from allosteric regulation. While we have previously shown that these linear 

approximations of metabolic interactions can be effective for modeling metabolism, they are still 

approximations of the true non-linear and interconnected biochemical relationships in 

metabolism. Below, we discuss three new constraint approaches to address these potential 

limitations. 

 

 LK-DFBA (NLR) While the key advantage of using constraint-based models is their LP 

structure that enables efficient identification of the optimal solution of the problem, most 

metabolite-flux interactions exhibit non-linear behavior that may not be captured well by linear 

equations. Recently, computational solvers have improved such that quadratically constrained 

programs (QCPs) are not much more computationally expensive than LPs. Accordingly, we 

implemented quadratic constraints into the LK-DFBA framework to explore their potential for 

improving model accuracy with only a modest increase in computational time. One important 

aspect of LPs and QCPs is that all of the constraints must create a convex feasible solution space 

in order to guarantee that a global optimum can be found [14]. If 𝑣 < 𝑎𝑥2 + 𝑏𝑥 + 𝑐 represents a 

quadratic constraint, where v is the flux being constrained, x is the concentration of a metabolite 
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that interacts with v, and a, b, and c are the parameters of the quadratic constraint, a must be a 

negative value to retain a convex solution space. If a is found to be a positive value during 

parameterization, we convert the quadratic constraint into its original linear form as found in LK-

DFBA (LR). We refer to this overall approach as LK-DFBA (NLR). 

 

 LK-DFBA (DR) Enzymatic reactions are often controlled by more than a single 

metabolite that can either induce or inhibit enzyme activity, which should ideally be captured in 

the model constraints. To model such regulation of a reaction by multiple metabolites, LK-

DFBA (LR) creates individual linear constraints for each controller metabolite that are 

independent of each other and are thus unable to capture the synergistic or antagonistic effects of 

multiple metabolites working in conjunction to regulate a flux. We implemented a new strategy 

that uses dimensionality reduction to consolidate information content from all controller 

metabolites for a flux into a single constraint. Dimensionality reduction is often used in data 

analysis, including analysis of metabolomics data, to more easily represent and digest datasets 

with many measured variables. Principal component analysis (PCA) is one of the most 

commonly used dimensionality reduction approaches; it linearly transforms the original variables 

into new, orthogonal composite variables called principal components that capture as much 

variance in the original variable data in as few principal components as possible [15]. Ideally, the 

first or first few principal components capture the majority of the variance in the original dataset, 

which allows one to focus only on those composite variables rather than all of the original 

variables at once. Here, we use PCA to capture the maximal variance of the controller metabolite 

data in a single principal component and use that composite variable as the regressor during 

linear regression with the target flux data. These new constraints are represented as 𝑣 < 𝑎𝑃𝐶1 +
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𝑏, where v is the flux being constrained, PC1 is the metabolite concentration data projected into 

the first principal component, and a and b are the constraint parameters. We refer to this 

dimensionality reduction approach as LK-DFBA (DR). 

 

 LK-DFBA (HP) Another approach for modeling interactions with multiple metabolites is 

to use hyperplane constraints. Unlike LK-DFBA (DR), which always builds constraints in two 

dimensions (i.e. the target flux vs. the first principal component), the hyperplane constraint exists 

in (n + 1) dimensions, where n is the number of metabolites that control a target flux. This 

approach may avoid loss of information content from metabolite data as is possible during 

dimensionality reduction: as the number of metabolites in an interaction increases, the likelihood 

of the first principal component not capturing the majority of variance in the data increases. The 

hyperplane constraint equation can be represented as 𝑣 < ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏, where v is the flux 

being constrained, n is the number of metabolites that interact with v, xi is the concentration of 

metabolite i, ai is the constraint parameter for metabolite xi, and b is another constraint 

parameter. We refer to the hyperplane approach as LK-DFBA (HP). 

 

Translating constraints to contain training data 

We found that translating the constraints such that all training data fall in the region 

under the inequality constraint decreased the possibility of the computational solver encountering 

infeasible solutions when simulating metabolite dynamics. Thus, for all LK-DFBA approaches, 

each constraint was translated to contain the training data by increasing the intercept of the 

constraint (i.e. the b parameter in LK-DFBA (LR), LK-DFBA (DR), and LK-DFBA (HP), and 

the c parameter in LK-DFBA (NLR)) until no training data were above each constraint. 
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Test Models 

 Synthetic model The first system we examine is a simple synthetic model with five 

metabolites and five fluxes that was derived from a branched pathway model used previously 

[9]. This system is based on an ODE-based modeling framework that uses power-law kinetics to 

represent reaction fluxes [12]. The kinetic equations for each pathway are shown in Figure 1. To 

create a variety of synthetic models with the same stoichiometric topology, we randomly 

generated a and b parameters in each kinetic equation. The parameters for each model can be 

found in Table S1. Time course metabolite and flux data were generated by solving the ODE 

system in MATLAB (2018b). 

 

 

Figure 1: Synthetic model. Adapted from another branched pathway model used in previous work [9]. v1, v2, v3, v4, 

and v5 are system fluxes (black arrows) and x1, x2, x3, x4, and xBM are metabolites, where xBM is a metabolite 

representing biomass. Green and red arrows represent positive and negative regulatory interactions, respectively. 

ODE equations for the model are shown in the inset, where blue a and b parameters are mass action kinetic 

parameters and green and red b parameters are positive and negative regulatory parameters, respectively. 

 

 Lactococcus lactis model This model was created by Costa et al. and comprises central 

metabolism and production pathways for important metabolites such as mannitol and 2,3-

butanediol [2]. The L. lactis model consists of 26 metabolites and 21 fluxes and is publicly 
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available on KiMoSys [16]. Noiseless data were generated in COPASI 4.24 (Build 197) using 

the default initial conditions and parameters over a simulation time of two hours. 

 

 Escherichia coli model The E. coli model developed by Chassagnole et al. encompasses 

glycolysis and the pentose phosphate pathway [1]. This model is publicly available on KiMoSys, 

but was rebuilt within MATLAB to allow easy creation of new models that use the original E. 

coli model’s topology and stoichiometry. Noiseless data for the original E. coli model were 

generated in MATLAB (2018b) using the default initial conditions and parameters, while 

random initial conditions and parameters were used for the new models with the E. coli 

topology. To be consistent with our previous work, we used a simulation time of ten seconds [9]. 

More information about the model parameters can be found in the Supplementary Methods. 

 

LK-DFBA Objective Functions 

Like other constraint-based methods, LK-DFBA requires an objective function, which is 

usually tied to some presumed goal of the system (such as maximizing biomass or ATP 

production) that stems from evolutionary pressure. FBA models for specific organisms 

commonly have a separate flux reaction dedicated to biomass, made up of precise ratios of 

different metabolites. While LK-DFBA models with tuned objective functions can be created, 

the biological models we sought to use here do not have pre-existing tuned objective functions, 

so we instead focused on LK-DFBA’s performance using generic objective functions.  

Here, we have chosen flux v5 as the objective function for the synthetic model, as it is the 

only efflux out of the system. For the L. lactis model, we use the LDH pathway as the objective 

function to maximize production of lactate because it is a key metabolite in the organism (which 
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is commonly used for dairy products) and was the metabolite produced at the highest levels in 

the original L. lactis model [2]. The objective function used for the E. coli model was to 

maximize all effluxes from the system, which included murein synthesis, glycerol-3-phosphate 

dehydrogenase, serine synthesis, PEP carboxylase, DAHP synthesis, pyruvate dehydrogenase, 

ribose phosphate pyrophosphokinase, glucose-1-phosphate adenyltransferase, the synthesis of 

murein and chorismate from PEP, and the synthesis of isoleucine, alanine, α-ketoisovalerate, and 

diaminopimelate from pyruvate. While we have observed that these objective functions can be 

further improved, and approaches have been developed for finding an optimal objective function 

for a model by creating a bilevel optimization problem and then leveraging the duality theorem 

[17, 18], our chosen objective functions were sufficient to at least qualitatively model the 

synthetic, L. lactis, and E. coli systems. 

 

Pathway Perturbations 

 To test the ability of LK-DFBA to predict metabolic behaviors not represented in the 

training data, we introduced perturbations into each system either through down-regulation 

(indicated with a prefix ‘d’ in all figures) or up-regulation (indicated with a prefix ‘u’) of 

reaction fluxes. For the synthetic models, we down-regulated v2, v3, and v4 by multiplying their 

constraint equation parameters (which restricts their maximum allowable flux value) by 0.5x and 

up-regulated these pathways by doubling the constraint equation parameters. The pathways and 

reactions to be perturbed in the L. lactis [2, 19-22] and E. coli [23-27] models were chosen based 

on previous literature. Reactions in the L. lactis model (lactate dehydrogenase, 

phosphofructokinase, acetate kinase, mannitol 1-phosphatase) were down-regulated to 0.1x their 

original parameter values (since completely knocking out reactions would often produce 
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infeasible solutions for the linear program) and up-regulated to 2x their original parameter 

values, magnitudes that were necessary to effect significant perturbations to the system’s 

behavior. Reactions in the E. coli model (pyruvate kinase, phosphoglucose isomerase, 

glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, triose-phosphate isomerase, 

ribulose-phosphate epimerase, phosphoglucomutase) were down-regulated to 0.1x and up-

regulated to 2x their original parameter values. 

 

Generating Noisy Data 

 Noise was introduced into the system by down-sampling the original noiseless data 

(originally 50 time points) into nT time points that are evenly spaced over the time interval of 

interest. Both metabolite and flux values were then replaced with a random value drawn from 

𝑁𝑖,𝑘 ~ (𝑦𝑖(𝑡𝑘),𝐶𝑜𝑉∙𝑦𝑖(𝑡𝑘)), where 𝑦𝑖(𝑡𝑘) is the value of species (metabolite or flux) 𝑖 at time point 

𝑘, and CoV is a coefficient of variance. For each sampling frequency and CoV condition, ten 

noisy datasets were generated.  

 

Error Calculation 

 The error of the predictions made by LK-DFBA was calculated using a normalized root 

mean squared error (NRMSE) between the LK-DFBA predicted metabolite concentrations and 

the noiseless ODE concentration or experimental data. Pik and Rik are the predicted (e.g. results 

from LK-DFBA) and reference (e.g. ODE model or experimental) data from a system with m 

metabolites and nT time points. 𝑅̅𝑖 is the mean of the concentrations of reference metabolite i 

across all time points to normalize the data and N is the total number of data points used in the 

NRMSE calculation.  
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𝑵𝑹𝑴𝑺𝑬 =  
√

∑ ∑ (
𝑷𝒊𝒌 − 𝑹𝒊𝒌

𝑹̅𝒊
)𝟐𝒏𝑻

𝒌=𝟏
𝒎
𝒊=𝟏

𝑵
 

Pearson Correlation Calculation 

 The available E. coli knockout experimental data consisted of steady-state flux data, so to 

compare these to the knockout predictions made by LK-DFBA (which did not yield a steady 

state over the ten second time interval of the model) we used the average flux of our time course 

predictions. Because the average flux of our predictions and the steady-state fluxes of the 

experimental data are different measurements and therefore not directly comparable using 

NRMSE, we chose to use a Pearson correlation coefficient to evaluate our framework, which 

was recently used in a similar comparative analysis of metabolic models [28]. High correlations 

between steady-state flux experimental data and the average flux predictions would indicate that 

LK-DFBA can effectively predict if gene knockouts lead to an increase or decrease in flux for 

modeled reactions. The calculation for the Pearson correlation coefficient is shown below, where 

Ai is the average of the predicted flux profile for the ith flux, vi is the flux value of the ith flux 

from the experimental data, 𝐴̅ is the mean across all fluxes for the average of computationally 

predicted fluxes,  𝑣̅ is the mean flux value across all fluxes for the experimental data, and n is 

double the number of fluxes that are shared between both the E. coli model and experimental 

data because it includes flux values before and after the gene knockout (n = 28). 

 

𝑷𝒆𝒂𝒓𝒔𝒐𝒏 𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 =  
∑ (𝑨𝒊 − 𝑨̅)(𝒗𝒊 − 𝒗̅)𝒏

𝒊=𝟏

√∑ (𝑨𝒊 − 𝑨̅)𝟐𝒏
𝒊=𝟏 ∑ (𝒗𝒊 − 𝒗̅)𝟐𝒏

𝒊=𝟏
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Results 

Fitting and predicting phenotypes in synthetic models 

 We generated twenty random sets of parameters and initial conditions for the kinetic 

equations in the synthetic model to examine if different constraint approaches were more suitable 

for different models. We produced in silico metabolite concentration and flux data over a time 

interval of ten seconds by solving the ODEs in each synthetic system. The four constraint 

approaches were used for parameterization of LK-DFBA models to the twenty datasets. The 

fitted LK-DFBA models were then simulated over the same ten second interval using the initial 

conditions for each respective synthetic system to compare against the original ODE data. This 

process was performed on both noiseless (nT = 50, CoV = 0) and noise-added data with different 

sampling frequencies (nT = 50 or 15) and levels of noise (CoV = 0.05 or 0.15). To test the ability 

of each LK-DFBA approach to predict the effects of defined genetic perturbations, we down- 

and up-regulated the v2, v3, and v4 pathways in the original kinetic equations by multiplying the 

kinetic coefficient parameters (a parameters in the inset of Figure 1) by 0.5x or 2x, respectively, 

and generating new ODE data. We then simulated the LK-DFBA model after adjusting the fitted 

LK-DFBA constraints to reflect the down- or up-regulation by multiplying the kinetics constraint 

parameters by 0.5x and 2x, respectively. The NRMSE between the predicted LK-DFBA 

metabolite concentrations and the ODE concentration data from the perturbed synthetic models 

was then calculated. 

 For the noiseless cases with no genetic perturbation (WT) as shown in the first row below 

each bold line in Figure 2A, the best-fitting constraint approach (dark green) varied across the 

different models. All four approaches performed best for at least one of the models. When fluxes 

were either down- or up-regulated via in silico genetic perturbations and LK-DFBA models 
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fitted to the WT ODE data were used to predict these changes, the best constraint approach 

across all perturbations (dV2 through uV4) was generally consistent with the best approach in 

the absence of perturbations. The NRMSE heatmap with quantitative error values can be found 

in Figure S1. 

 When using noisy data, similar trends were observed (representative example in Figure 

2B). While the best constraint approach for WT noisy data was not always the same as the best 

approach for noiseless data, the best constraint approach for a given noisy WT dataset was still 

generally the best for predicting the impacts of in silico genetic perturbations in the same model 

(dV2 through uV4). Interestingly, noisy data negatively affected the performance of LK-DFBA 

(HP) to a much greater extent than the other approaches, which caused LK-DFBA (HP) to never 

be identified as the best approach under the most realistic conditions (nT = 15, CoV = 0.15).  

NRMSE heatmaps with quantitative error values for various sampling frequencies and noise 

levels can be found in Figure S2-S5. 

 We also tested the effect of smoothing the noisy (nT =  15, CoV = 0.15) metabolite 

concentration and flux time course profiles by fitting to a previously described [29] impulse 

function (Figure S6). Smoothing the noisy data can often lead to lower error of the final model, 

but requires increased computation time for estimating the parameters of the impulse function 

and in certain cases can actually increase error if a specific dataset deviates significantly from all 

of the profiles that an impulse function can capture. The best constraint approach for WT 

smoothed data was the same as for unsmoothed data in 19 of the 20 models. As with the 

unsmoothed cases, the best constraint approach for smoothed data was typically consistent 

between WT and in silico genetic perturbations, and there were no cases where LK-DFBA (HP) 

performed the best (and it was generally the worst out of the four approaches) for smoothed data.   
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Figure 2: NRMSE heatmap of LK-DFBA approaches on different synthetic models. Each constraint approach 

was used to fit parameters to wild-type (WT) data and then used to simulate the WT system and in silico genetic 

perturbations with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes represent the lowest NRMSE within 

each perturbation for each synthetic model, while dark red boxes represent the highest NRMSE (meaning that the 

dynamic range of the color scale varies for each perturbation for each synthetic model to better convey the relative 

performance of different methods). Panel A shows results for noiseless data with a sampling frequency of 50 time 

points. Panel B shows results for noisy datasets with a sampling frequency of 15 time points and with noise added at 

a CoV of 0.15. The average NRMSE of 10 noisy datasets is shown in the heatmap. The same NRMSE heatmaps 

with explicitly annotated error values can be found in Figure S1 and Figure S5. 

 

Fitting and predicting phenotypes in L. lactis and E. coli models 

 For the L. lactis model, we tested the four constraint approaches on noiseless data and 

noisy data under different conditions (nT = 50 or 15, CoV = 0.05 or 0.15). On the noiseless data, 

the best constraint approach for the WT system was LK-DFBA (HP), which also had the lowest 

NRMSE when predicting the results of perturbations to five different pathways (Figure 3A). At 
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high sampling frequencies and low noise (nT = 50, CoV = 0.05), LK-DFBA (HP) still performed 

the best, but as more noise was added or lower sampling frequencies were used, LK-DFBA 

(NLR) was optimal. This is consistent with the findings described above for the small synthetic 

systems where LK-DFBA (HP) can produce low NRMSE with noiseless data, but has difficulties 

under more realistic conditions. 

 As with the L. lactis model, we tested all constraint approaches on both noiseless and 

noisy data from the E. coli model under different conditions (nT = 50 or 15, CoV = 0.05 or 0.15). 

For this model, LK-DFBA (NLR) was the best constraint approach for noiseless data (Figure 

3B). Noisy E. coli data produced the same results: for all noisy conditions, LK-DFBA (NLR) 

was optimal for the WT system. It was also optimal for almost all of the in silico genetic 

perturbations, showing once again that the same constraint approach that was optimal for the WT 

system at a given sampling condition was generally also optimal for the perturbed systems.  

We also perturbed the original parameters and initial conditions (drawing from the 

random normal distribution 𝑁𝑖 ~ (p𝑖,p𝑖), where pi is the original value of the ith parameter) of the 

E. coli model to create five new models with the same topology (more information about 

parameter randomization can be found in the Supplementary Methods). As with the twenty 

different versions of the small synthetic system, we found that the best constraint approach was 

not conserved across models with the same topology as the original E. coli model when tested on 

noiseless data (Figure S8). Instead, the rates of individual reactions and how they affect overall 

model dynamics appear to be important factors in determining the optimal constraint approach. 
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Figure 3: NRMSE heatmaps of constraint approaches on L. lactis and E. coli models. Each constraint approach 

was used to fit parameters to wild-type (WT) data and then used to simulate the WT system and the system with in 

silico genetic perturbations with literature-reported important pathways down- or up-regulated. Dark green boxes 

represent the lowest NRMSE within each phenotype for each model, while dark red boxes represent the highest 

NRMSE. Both the L. lactis (A) and E. coli (B) heatmaps show the mean of 10 noisy datasets, except for the 

noiseless condition (leftmost columns in each heatmap). The same NRMSE heatmaps with explicitly annotated error 

values can be found in Figure S7. 
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Improved LK-DFBA predictions yield qualitative consistency with experimental L. lactis 

metabolite concentration data 

 To further assess how well LK-DFBA performs when predicting different phenotypes, 

we compared the predictions of LK-DFBA to available experimental data for the first time. The 

previously described ODE-based L. lactis model was originally parameterized using 

experimental metabolite time course data from L. lactis cultures grown with an initial glucose 

concentration of 40 mM [2] and validated by comparison to some experimental data from 

cultures grown at initial concentrations of 20mM and 80 mM glucose. Here, we similarly fitted 

all LK-DFBA approaches to data generated by the ODE model at 40 mM glucose and then 

simulated the LK-DFBA model using the best constraint approach at 20 mM and 80 mM initial 

concentrations of glucose for validation. 

 Figures 4A, 4B, and 4C depict the metabolite concentrations predicted by LK-DFBA 

(HP) (the best approach for noiseless data in the L. lactis model) when trained on noiseless data. 

For multiple initial glucose concentrations, LK-DFBA (HP) captured the general qualitative 

trends of glucose (depletion) and lactate (accumulation), two key metabolites in L. lactis that are 

often studied [30, 31]. For cofactor metabolites that participate in many different reactions, such 

as ATP, NAD(H), and inorganic phosphate (Figure S9), it was more challenging for LK-DFBA 

(HP) to predict their concentration profiles over the simulation interval, which is a problem 

found in other modeling frameworks [5]. Although LK-DFBA’s predictions were overall not as 

smooth or quantitatively accurate as the ODE model, this is to be expected due to the lack of a 

validated objective function for this constraint-based model; the objective function we used was 

a gross approximation that likely does not reflect the cell’s true “goal”, and it is known that the 

objective function can significantly affect the predictions of FBA approaches. Nevertheless, as 
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presented here, LK-DFBA can still qualitatively track important metabolite dynamics even when 

using a crude objective function. This is important to note, as many organisms that are not well-

studied have no readily available objective function to use.  

 

 

Figure 4: Comparison of LK-DFBA metabolite concentration predictions against ODE data and L. lactis 

experimental data when fitted to noiseless and noisy ODE data. Panels A, B, and C depict concentration profiles 

for LK-DFBA (HP) (solid red line) and the ODE model (dashed black line) compared to experimental data (blue 

circles) for initial glucose concentrations of 20 mM, 40 mM, and 80 mM, respectively, when LK-DFBA is fitted to 

noiseless data. Panels D, E, and F depict concentration profiles for LK-DFBA (NLR) on 10 noisy datasets (nT = 15, 

CoV = 0.15) and the ODE model compared to experimental data. The mean concentration profile (solid green line) 

is shown with each of the concentration profiles (solid red lines) from the 10 noisy datasets.  
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 Figures 4D, 4E, and 4F depict the glucose and lactate concentration profiles predicted by 

LK-DFBA (NLR) (the best approach for noisy data in the L. lactis model) after being fitted to 10 

noisy datasets generated by the ODE model and simulated at 20 mM, 40 mM, and 80 mM initial 

glucose, respectively. Again, the LK-DFBA framework generally captured the qualitative trends 

of major metabolites such as glucose and lactate, though unsurprisingly not as accurately as 

when noiseless data are used and with difficulties predicting cofactor concentrations (Figure 

S10). Because LK-DFBA (NLR) contains quadratic constraints, its results are generally 

smoother compared to the other LK-DFBA approaches, which helped it predict some 

metabolites, such as PEP, arguably better than in the noiseless case. Furthermore, LK-DFBA 

(NLR) is less susceptible to noise for some metabolites, such as glucose and lactate, as observed 

in predicting similar time courses across the 10 noisy datasets. This could be advantageous if one 

is modeling a system with multiple noisy data sets and requires consistent predictions for certain 

metabolites. Likewise, if only using a single dataset, LK-DFBA (NLR) can ensure that these 

metabolic profiles would not dramatically change if a different dataset had been used. Other 

methods, such as the original LK-DFBA (LR) approach, can result in more varied predictions 

(Figure S11) depending on the noisy dataset used; some appear to produce better predictions than 

LK-DFBA (NLR), while others are worse (though all predictions follow the same trends). These 

observations reiterate that the best approach is dependent on the systems and datasets being 

studied, so having multiple LK-DFBA approaches available is an improvement over only using 

the LK-DFBA (LR) framework. 
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Changes in LK-DFBA flux profiles due to gene knockouts are correlated with experimental 

E. coli steady-state flux data 

 We also compared the predictions of the best LK-DFBA approach on the E. coli model to 

experimental steady-state flux data obtained through gene knockout experiments by Ishii et al. 

[24]. Because the Chassagnole model, which LK-DFBA is fitted to, only encompasses central 

carbon metabolism, we focused on 13 gene knockouts and 14 fluxes that are included in both the 

Chassagnole model and the Ishii steady-state flux results. We used the dilution rate of 0.2 h-1 for 

all experimental data. To emulate a gene knockout in the LK-DFBA model, we down-regulated 

the pathway(s) that correspond with the gene by multiplying the parameters of the relevant 

constraints by 0.1x instead of completely removing the reaction, as we found that this 

sufficiently reduced the possible flux reaction rate without causing infeasible solutions from the 

solver. Additionally, it is not uncommon for enzymatic activity to remain in a pathway after 

single gene knockouts due to paralogous enzymes and enzyme promiscuity. Because the LK-

DFBA predictions do not reach steady-state for the simulation time examined in this work and 

our previous work (ten seconds), we instead used the average flux of the predicted time course to 

describe how LK-DFBA’s predictions change from the wildtype to gene knockout phenotype. 

The average flux before and after a gene knockout should reflect whether the reaction rate 

generally increases or decreases across the studied time interval after a system perturbation. We 

used a Pearson correlation to determine if the average flux profiles predicted by LK-DFBA 

changed similarly to the experimental data after a gene knockout. This assessment method has 

been used previously by Lima et al. to compare multiple E. coli models, including the 

Chassagnole model, to the Ishii dataset [28]. 
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 To evaluate how our framework compares to E. coli experimental data, we examined LK-

DFBA (NLR), as it was the best approach in the case of low sampling frequency and high noise 

(Figure 3B). Figure 5 shows the average Pearson correlation of the LK-DFBA (NLR) flux 

predictions (after being fitted to ten noisy datasets with nT = 15 and CoV = 0.15) and the average 

correlation of the ODE model flux predictions with the experimental steady-state flux data. Of 

the gene knockouts and fluxes examined, LK-DFBA (NLR) generally gave reliable predictions 

for whether fluxes increased or decreased due to gene knockouts, with correlation values greater 

than 0.6 in all but two cases and correlations greater than 0.7 in 6 out of 13 cases. These 

correlations were very similar to the correlations yielded by the ODE-based model. In 10 out of 

13 knockouts, the correlations calculated for LK-DFBA outperformed or were within 5% of the 

correlations calculated with the ODE-based model. These results support the significant promise 

of LK-DFBA approaches for predictivity comparable to that of standard models but with the 

additional benefits (including relative model simplicity and potential scalability) that accrue from 

using a LP-based formulation.  
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Figure 5: Pearson correlation coefficients of LK-DFBA and ODE model flux predictions with E. coli 

experimental data. LK-DFBA (NLR) was the best approach when fitting on low sampling frequency (nT = 15) and 

high noise (CoV = 0.15) data. Blue and red bars represent LK-DFBA (NLR) and ODE model mean correlations, 

respectively, between the average predicted flux profiles and experimental steady-state flux data for various gene 

knockout conditions. Gene knockouts in the LK-DFBA and ODE-based models were simulated by down-regulating 

relevant pathways. Error bars for LK-DFBA represent one standard deviation (N = 10 runs). 

 

Discussion 

At the outset of this work, we sought to find a single LK-DFBA constraint approach that 

would improve upon the originally published framework. Instead, we have shown that the best 

constraint approach is highly dependent on the system being modeled. Despite each of the 20 

small synthetic models having the exact same stoichiometry and allosteric regulatory 

interactions, the optimal LK-DFBA approach varied for both noiseless and noisy training 

datasets, with one of the new constraint approaches performing the best in the majority of cases. 

This finding suggests that the topology of the system is less important than the emergent 

dynamics from the collective metabolic reactions. It also supports the importance of having 
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multiple types of constraints to choose from, as presented in this work, to allow more accurate 

modeling of any given system.  

These conclusions are reinforced by analysis of biological systems, where LK-DFBA 

(HP) performs the best on L. lactis noiseless data and LK-DFBA (NLR) performs the best on E. 

coli noiseless data (though LK-DFBA (NLR) is superior for both systems when using low 

sampling frequency and high noise data). We further confirmed that topology is not the 

determining factor by randomizing parameters in the E. coli model (Figure S8): again, the best 

constraint approach varied across these topologically identical new models. Many metabolic 

pathways are conserved topologically across many species (e.g. glycolysis), though the kinetic 

parameters within these pathways can be vastly different. This suggests that having multiple LK-

DFBA constraint approaches to choose from will improve our ability to model different systems. 

While the best constraint approach varied across different model parameterizations and 

topologies, the best approach (in terms of predicting metabolic phenotypes) for a given model 

was generally consistent across a wide range of pathway perturbations. This trend remained true 

whether using noiseless data, data with low sampling frequency and high noise, or noisy data 

that had been smoothed. These results instill confidence that the best constraint approach found 

when fitting to a wildtype metabolic system will also be the best approach when predicting 

changes to that system, meaning that an approach that can select the best-fitting of multiple 

constraint frameworks is viable and likely to be successful. One possible reason for the success 

of this approach is that when pathways are down- or up-regulated, it is common for only the 

nearest neighboring pathways to be significantly affected if the change to the system is not 

drastic or the perturbed pathway is not essential for cell survival, meaning that the emergent 

behavior from the system would not change too greatly and thus the same constraint approach 
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would be optimal. To easily construct the optimal LK-DFBA model for a given biological 

system, we envision the workflow presented in Figure 6. After compiling the relevant system 

stoichiometry, regulatory information, and metabolomics and fluxomics data, one can fit each of 

the four LK-DFBA approaches to the data and determine which constraint approach most likely 

works best for predicting the results of different perturbations. 

   

Figure 6: Workflow for selecting the best constraint approach for LK-DFBA when modeling metabolic 

systems. Dynamic Flux Estimation (DFE) is applied to the system stoichiometry and available metabolomics data to 

infer instantaneous fluxes. The system stoichiometry, metabolomics data, inferred flux data, and system regulatory 

information are then used to estimate parameters for each LK-DFBA approach (blue arrow). Using multiple 

constraint approaches (green arrows), four different LK-DFBA models are created and tested for their respective 

abilities to recapitulate training data. The model with the lowest error is selected and can be used for future in silico 

predictions (red arrow). 

 

 Using ODE models and experimental data from L. lactis and E. coli, we found that LK-

DFBA can effectively predict qualitative trends in concentration profiles of some important 
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metabolites. While we have previously shown that LK-DFBA captures metabolite dynamics in 

synthetic data generated by ODE models, this is the first time LK-DFBA predictions have been 

validated with experimental data. For key metabolites that are important inputs of outputs of the 

system (e.g. carbon sources or end products), LK-DFBA can qualitatively predict if their 

concentration profiles are expected to decrease or increase, which is an important capability if 

one is using LK-DFBA to engineer organisms to efficiently produce certain metabolites. 

Cofactors, on the other hand, are more difficult to model using LK-DFBA but are still typically 

predicted to be within an order of magnitude of the experimental data in most cases. This 

capability could be useful when assessing levels of accumulating toxic metabolites or cofactor 

imbalances if exact concentrations are not necessary.  We also found that LK-DFBA flux profile 

predictions were highly correlated with experimental flux data from genetic knockout 

experiments. Furthermore, these correlations were comparable to those found when using the 

ODE-based model. We note, though, that this comparable predictivity is limited by the fact that 

LK-DFBA was trained using ODE-generated data; if it had instead been fitted to actual 

metabolomics and fluxomics time course data used in the Ishii experiments (which is not 

available), these correlation values could possibly be even higher. Similarly, an improved 

objective function over the reasonable but arbitrary and unoptimized one used here could also 

lead to significant improvements in the performance of LK-DFBA. 

By showing for the first time that LK-DFBA can predict changes in metabolite 

concentrations and flux profiles qualitatively, we have demonstrated LK-DFBA’s potential as a 

widely-applicable metabolic modeling tool. Unlike many ODE-based modeling approaches that 

require specific kinetic equations for each flux reaction, LK-DFBA is generalizable. With four 

types of kinetics constraints that account for different biological interaction phenomena between 
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metabolites and fluxes, we have improved LK-DFBA to be amenable to many different systems. 

Additionally, applying the four LK-DFBA approaches to these models of L. lactis and E. coli has 

established that our framework can handle various biological systems of substantial size without 

the need for computationally taxing parameter estimation steps. Because each of the four LK-

DFBA approaches maintains an easily solvable LP or QCP structure, LK-DFBA is a prime 

candidate for being one of the first frameworks able to model a variety of genome-scale systems 

while also capturing their metabolite dynamics.  

While the addition of new constraint approaches has significantly improved the original 

LK-DFBA (LR) framework, there are still several areas where LK-DFBA can be improved. If 

computational resources when building the model are not a concern, a secondary optimization 

step can be used, as in the LK-DFBA (LR+) approach, to improve the parameters in each of the 

new constraint approaches. In addition, as previously noted the objective function used in LK-

DFBA is also a ripe target for future efforts to improve this modeling framework. Here we have 

chosen objective functions that lead to the maximization of putatively important fluxes, but 

unlike many other constraint-based models, there was no specific biomass or other objective flux 

to use. Optimizing the weight of each flux or metabolite in the objective function could lead to 

even lower observed errors compared to experimental data and may also provide insight into 

what real biological systems tend to maximize. 

  

Conclusion 

 In this work, we have shown that the LK-DFBA modeling framework can be improved 

by implementing more complex constraints with increased biological relevance. We showed that 

there is no single best LK-DFBA constraint approach for all models, and the optimal approach 
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depends not just on the topology of the biochemical system but also its kinetics and parameters. 

The constraint approach that performs the best in recapitulating training data consistently 

outperforms other constraint approaches at predicting the results of metabolic perturbations on 

the same system. With these new constraint approaches, we are able to model a variety of 

metabolic systems more accurately than if we were to just use the original LK-DFBA (LR) 

method. Moreover, based on comparisons to experimental data we showed that the improved 

LK-DFBA approaches can reasonably capture the qualitative dynamics of important metabolites 

and fluxes of interest to researchers. While these predictions may not be smooth or quantitative, 

the qualitative prediction of trends of metabolite dynamics in response to major perturbations is 

arguably the most critical aspect needed for creating metabolic models that give insight on how 

pathways can be further optimized or how metabolic resources can be rerouted to produce 

valuable chemicals: knowing that a specific knockout will increase or decrease flux is often 

sufficient to justify the expense of experimental implementation of such genetic perturbations. 

Moreover, we expect this computational framework to (with future effort) provide opportunities 

for computationally reasonable scale-up to the genome scale. While the acquisition of quality 

metabolomics and fluxomics data to build the constraints in LK-DFBA is still a challenge, the 

work we have presented here lays the groundwork needed to take full advantage of these types of 

datasets as they become increasingly more readily available. 

 

Data availability 

The code and datasets generated during the current study are available at 

https://github.com/gtstylab/lk-dfba-constraints. 
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