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Abstract  
Identification of risk variants for neuropsychiatric diseases within enhancers underscores the 

importance of understanding the population-level variation of enhancers in the human brain. 
Besides regulating tissue- and cell-type-specific transcription of target genes, enhancers 
themselves can be transcribed. We expanded the catalog of known human brain transcribed 
enhancers by an order of magnitude by generating and jointly analyzing large-scale cell-type-
specific transcriptome and regulome data. Examination of the transcriptome in 1,382 brain 
samples in two independent cohorts identified robust expression of transcribed enhancers. We 
explored gene-enhancer coordination and found that enhancer-linked genes are strongly 
implicated in neuropsychiatric disease. We identified significant expression quantitative trait loci 
(eQTL) for 25,958 enhancers which mediate 6.8% of schizophrenia heritability, mostly 
independent from standard gene eQTL. Inclusion of enhancer eQTL in transcriptome-wide 
association studies enhanced functional interpretation of disease loci. Overall, our study 
characterizes the enhancer-gene regulome and genetic mechanisms in the human cortex in 
both healthy and disease states. 

 

Keywords: enhancer, neuropsychiatric disorders, enhancer expression QTL, GWAS, fine-
mapping, gene regulation  
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Introduction 
Enhancers are key regulatory regions of DNA that exert control over target gene expression 

from a distance1,2. Besides their critical function in orchestrating cell-lineage commitment and 
development2,3, enhancers play pivotal roles in mediating neuronal plasticity and memory 
formation in the brain4, and human evolved enhancers are hypothesized to drive advanced 
cognition5–7. Recent studies have found active enhancers are widely transcribed and enhancer 
expression levels represent an essential signature for enhancer activation8–10. Rather than 
merely being by-products of enhancer activity, several lines of evidence suggest that some, if 
not all, the enhancer expression products are functional11–13. More traditional approaches for 
identifying enhancers have their drawbacks: in contrast to transcribed enhancers (TEn), 
chromatin accessibility also captures non-active enhancers14 and histone modification marks, 
such as H3K27ac, can capture ‘‘stretch-enhancers’’ or ‘‘super-enhancers’’ of more than 10kb in 
size15,16, making it difficult to pinpoint functional loci. On the other hand, TEns are more likely to 
be validated in functional assays10, possibly due to the activity-dependent expression and 
smaller size. Although the Functional Annotation of the Mammalian Genome (FANTOM) project 
successfully annotated ~65,000 TEns across more than 400 human tissues and cell types using 
only transcriptomic signatures captured by cap analysis of gene expression (CAGE-seq)10, it is 
thought that the majority of TEns have yet to be identified8,9. In the human brain, the annotation 
includes only a few thousand TEns and does not consider their distribution across the different 
cell types10. As such, a systematic cell-type-specific map of human brain enhancer expression 
would be an important step toward developing a more thorough understanding of enhancer 
functional units in the brain. 

The majority of common neuropsychiatric disease-associated variants lie in the noncoding 
genome17–21, where brain-associated enhancers are overrepresented both for risk alleles and 
heritability of neuropsychiatric traits22–26. A plausible molecular mechanism is that noncoding 
variants affect enhancers and alter target gene expression. Indeed, studies based on 
epigenomic reference maps and large-scale gene expression quantitative traits loci (eQTL) 
have identified hundreds of genes and variants underlying disease risk, yet many more remain 
to be discovered23,26–28. Considering that enhancers outnumber expressed genes29, and multiple 
enhancers can regulate the same gene, eQTL analysis restricted to genes will likely miss critical 
information from genetic mechanisms mediated by enhancers under certain scenarios. 
Moreover, eQTLs are depleted near the critical genes for complex traits, including genes with 
redundant enhancers30, transcriptional factors, network hubs, and stress response genes31, 
motivating QTL analysis of enhancer function and their involvement in the etiology of 
neuropsychiatric disease. However, a population-level analysis of enhancers is hampered by 
limited access to biospecimens and available molecular assays. As enhancer expression levels 
reflect enhancer activity, it provides an alternative means to quantitatively investigate regulatory 
circuitry10,32–36. Although enhancer expression products are often not polyadenylated and, hence, 
are less stable, they can be captured by deeply sequencing total RNA33,35,36. Issues concerning 
the inherent instability and low expression rates of enhancers37 can be ameliorated when 
quantification is applied to large cohorts, allowing for the quantification of robustly expressed 
enhancers across many biological samples. 
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Here, we present a population-scale analysis of enhancer expression in the human cortex to 
understand the functional effect of genetic variations in neuropsychiatric disease. We generated 
comprehensive multi-omics reference maps for both neuronal and non-neuronal cells and used 
this to develop a computational scheme that accurately cataloged 30,795 neuronal and 23,265 
non-neuronal TEns in the human cerebral cortex. We then examined the population-level 
variation of enhancer expression by analyzing 1382 RNA-seq libraries from 774 schizophrenia 
(SCZ) and control postmortem brains from the CommonMind Consortium (CMC). We explored 
enhancer-gene expression coordination and found that enhancer-linked genes are strongly 
implicated in neuropsychiatric diseases. We identified significant eQTL for 25,958 enhancers. 
The enhancer eQTLs are independent of gene eQTL, and mediate SCZ heritability 
complements standard gene eQT. Lastly, we performed transcriptome-wide association 
analysis (TWAS) of joint gene-enhancer eQTL, which greatly facilitated the functional 
characterization of schizophrenia risk loci.  

Results 

Comprehensive multi-omics maps of neuronal and non-neuronal 
cells 

To annotate and characterize the expression pattern of TEns in the human cortex, we first 
performed multi-omics profiling, including ribosomal-RNA (rRNA) depleted total-RNA-seq, 
ATAC-seq, and ChIP-seq for H3K4me3 and H3K27ac) in neuronal (NeuN+) and non-neuronal 
(NeuN-) nuclei, isolated by fluorescence-activated nuclear sorting (FANS), from five brain 
regions (Brodmann areas 10, 17, 22, 36, and 44) of 10 control individuals (Fig. 1a and 1b). 
After extensive quality control, including assessing cell type, sex, and genotype concordance 
(see Suplementary Methods), a total of 14.5 billion uniquely mapped paired-end read pairs for 
RNA-seq (N=93), 4.3 billion for ATAC-seq (N=98), 11.0 billion for H3K4me3 ChIP-seq (N=96), 
and 9.6 billion for H3K27ac ChIP-seq (N=96) were obtained. Additionally, in a subset of 
samples (N=6), we mapped repressors and long-range chromatin interactions in neurons and 
non-neurons by performing H3K27me3 ChIP-seq and Hi-C, respectively. 

To validate the cell-type specificity of our data, we performed a transcriptome deconvolution 
analysis with reference markers from single-cell analysis38. The neuronal samples were strongly 
enriched for glutamatergic and GABAergic neurons, while the non-neuronal cells were enriched 
for oligodendrocytes, followed by astrocytes and microglia (Extended Data Fig. 1a), thus 
confirming the cell-type specificity of FANS. In addition, our ChIP-seq and ATAC-seq data were 
highly concordant with previously published reports (Extended Data Fig. 1b).  
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Fig. 1 | Catalog cell-type-specific TEns in the human cortex. a, Dissections from five brain regions
(Brodmann area 10, 17, 22, 36, and 44) of 10 control subjects were obtained from frozen human
postmortem tissue. b, Combined with FANS, we performed functional assays including total RNA-seq,
ATAC-seq, H3K4me3/H3K27ac/H3K27me3 ChIP-seq, and Hi-C for neuronal (NeuN+) and non-neuronal
(NeuN-) nuclei. c, Transcriptomic and Epigenomic profiles around expressed enhancers, including
FANTOM 5 enhancers (FEs) and OCRs with bidirectional CAGE tags (Extra expressed, EEs), and non-
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expressed enhancers (NEs), the shadow shows the 95% confidence intervals. d, Flow charts 
demonstrate TEns identification pipelines. Briefly, transcriptomic and epigenomic signals around the 
enhancer regions were aggregated for both neuronal and non-neuronal cells. Expressed enhancers (FEs 
and EEs) were used as positive sets, and not expressed enhancers(NEs) were used as negative sets. 
The parameter was tuned with 10-fold cross-validation to select a random forest model to classify 
expressed and not expressed enhancers. Lastly, the enhancer expression matrix and gene expression 
matrix were combined for downstream analysis. e, ROC (true positive rate vs false positive rate ) and f, 
PR (precision-recall) curve of the resulting random forest models exhibit high AUROC (area under the 
precision-recall curves) and AUPRC (area under the precision-recall curves). g, The radar plots show 
typical enhancer-related signals including H3K4me3, H3K27ac, H3K27me3, super-enhancer, and loop 
anchor occupancy between identified TEns and background (non-expressed enhancers). The value 
within parentheses indicates the odds ratio between identified TEns and background. h, Strand-specific 
CAGE tag average profile (top) and distribution (bottom) for intergenic and intronic TEns. 
 

A catalog of cell type-specific TEns in the human cortex 
We sought to utilize our multi-omics dataset to further expand the catalog of TEns in the 

human brain. As an exploratory step, we compared the molecular profiles between expressed 
enhancers and those that were not expressed. To define a set of expressed enhancers, we 
collected FANTOM5 enhancers that overlapped with our H3K27ac peaks (FANTOM5 
enhancers, FEs), as well as noncoding open chromatin regions (OCRs) that were missed by 
FANTOM5 but had bidirectional CAGE tags (Extra expressed, EEs). OCRs that did not overlap 
with FANTOM5 enhancers and had no CAGE tags were defined as non-expressed enhancers 
(Non-expressed, NEs) (Fig. 1c). We reasoned that the enhancer transcription initiation sites 
correspond to TF binding sites8,9, which can be determined by the ATAC-seq peak summit. 
Indeed, the FE positions, which were determined by CAGE tags, captured the ATAC-seq signal 
summit and were flanked by well-positioned nucleosomes. Its position relative to accessible 
chromatin and nucleosomes aligned well with the OCR-derived EEs and NEs, suggesting OCR 
summits pinpoint TEn positions (Fig. 1c). Both FEs and EEs exhibit local transcription signals, 
as well as typical active enhancer chromatin modifications, including H3K4me3 and H3K27ac 
enrichment (Fig. 1c). It’s worth noting that, compared to FEs, EEs had markedly lower levels of 
H3K4me3 signal, suggesting that FANTOM5 enhancers might be biased towards enhancers 
with high levels of H3K4me3. In contrast, NEs were depleted of such active enhancer histone 
marks and, in turn, displayed much lower expression levels.  

Based on the distinct epigenomic signatures, as well as accurate enhancer positioning, we 
developed a supervised machine learning scheme to expand and capture the cell-type-specific 
TEns in the human brain (Fig. 1d). For each cell type, we used the central and flanking multi-
omics signals, as well as the genomic annotation of the OCRs, as input for random forest 
models to select features differentiating expressed enhancers (positive sets, FEs, and EEs) 
from non-expressed enhancers (negative sets, NEs) (see Methods). The resulting models are of 
high accuracy, as measured by the area under the receiver operating characteristic (0.97 and 
0.95 for neuron and non-neuron, respectively) and the area under the precision-recall curves 
(0.97 and 0.93 for neuron and non-neuron, respectively) (Fig. 1e and 1f). Overall, we identified 
36,927 neuronal and 27,379 non-neuronal TEns, among which only 2,487 (6.73%) of neuronal 
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and 2,833 (10.3%) of non-neuronal TEns are within 2kb of any FANTOM5 enhancers. In sharp 
contrast to the background (i.e. non-expressed non-coding OCRs), the identified TEns exhibited 
strong active enhancer signatures (H3K4me3 and H3K27ac peaks) as well as long-range, 
chromatin interactions (Fig. 1g). Specifically, almost all (94% non-neuronal and 97.4% neuronal) 
TEns overlapped with H3K27ac peaks (odds ratio, OR=43.1 non-neuronal, OR=119.3 neuron, 
p<10-16 for both, two-sided Fisher’s exact test) and TEns were overrepresented in super-
enhancer (SE) regions. On average, a single SE contained 7.47 and 6.50 TEns in neuronal and 
non-neuronal cells, respectively (Extended Data Fig. 1e) and, overall, 86% of neuronal and 91% 
of non-neuronal SEs had at least one TEn. In addition, TEns had a much higher density in SE 
regions (p<10-16 for both, two-sided Wilcoxon tests) (Extended Data Fig. 1f). To examine if the 
identified TEns represent distal transcription initiation sites, we superimposed strand-specific 
CAGE tags on the identified TEns. This approach provides a means to capture TSS, rather than 
elongation signals 10,39. As expected, both intergenic and intronic TEns exhibited bi-directional 
CAGE tags, confirming that the identified TEns represent bi-directional TSSs (Fig. 1h). 

We then quantified the expression of both genes and TEns across neuronal and non-
neuronal RNA-seq samples. We found that 30,795 (83.4%) neuronal and 23,265 (85.0%) non-
neuronal TEns were expressed at >0.25 counts per million in >10% of the samples. We 
subsequently compared the differences in epigenome profiles between expressed TEns and 
expressed gene promoters (Extended Data Fig. 1g). As expected, TEns possessed a distinct 
epigenomic signature compared to typical promoters. Both protein-coding gene and long 
intergenic noncoding RNA (lincRNA) promoters displayed abundant H3K4me3 and H3K27ac 
signals, whereas TEns were enriched for H3K27ac but had much lower levels of H3K4me3. 
Moreover, TEns also had lower H3K27me3 levels compared to the protein-coding genes and 
lincRNAs. 

TEn expression captures cell-type-specific enhancer function 
To further characterize neuronal and non-neuronal enhancers, we annotated chromatin 

states by jointly analyzing ChIP-seq data using ChromHMM (Extended Data Fig. 2a and 2b)40. 
Compared to other CREs, such as promoters and polycomb repressors, enhancers were 
markedly different between the two cell types (Extended Data Fig. 2c). In line with this, the 
identified TEns were also largely non-overlapping, confirming the strong cell-type specificity of 
enhancer elements (Extended Data Fig. 2d). We then quantified cell type differences by 
modeling the read count matrices of gene/TEns, and CREs from ATAC-seq and ChIP-seq, as 
well as confounders selected by covariate analysis (Methods and Table S2). Despite their 
modest expression levels, ~90% of TEns were differentially expressed (DE) between the two 
cell types (Extended Data Fig. 2e). In addition, we assessed the variance explained by different 
factors (Methods), and cell type was the strongest source of variation for all assays (Extended 
Data Fig. 2f). The DE analysis identified 8,864 genes and 22,669 TEns that were upregulated in 
neurons, and 9,140 genes and 22,582 TEns upregulated in non-neurons. The effect size of cell-
type differences between TEns expression and activities determined by ChIP-seq or ATAC-seq 
were highly correlated for both intergenic and intronic TEns (Fig. 2a and Extended Data Fig. 
2g), highlighting that enhancer expression quantified by RNA-seq gives a good representation 
of enhancer activity.  
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Given the strong colocalization of enhancer elements with common neuropsychiatric risk
variants, we partitioned disease heritability with cell-type-specific TEns using linkage
disequilibrium (LD) score regression22. In line with the result from H3K27ac peaks and OCRs,
neuron-specific TEns were strongly enriched in risk variants for neuropsychiatric traits, including
bipolar disorder (BD)20 and schizophrenia (SCZ)41. Conversely, enrichment in non-neuronal
enhancers was not significant. Moreover, we examined the per-SNP heritability of these traits
(Methods) and found that the per-SNP heritability of neuronal-specific TEns was remarkably
higher than that of OCRs and H3K27ac peaks (Fig. 2b), suggesting a role for genetic regulation
of cell-type-specific TEns in neuropsychiatric disease. Given the relatively small number and
genomic coverage of TEns (Fig. 2c), TEns represent a smaller functional unit that accounts for
a higher fraction of disease heritability. 

 

 
Fig. 2 | TEns expression captures cell-type-specific enhancer function. a, cell-type-specific effect
size (log2 fold change) between TEns and overlapping H3K27ac peaks are highly consistent for both
intergenic(N=7,624) and intronic(N=42,148) TEns. SCC represents the Spearman correlation coefficient
(ρ) (p<10-16 for both). b, LD score regression enrichment for DE TEns/peaks of different neuropsychiatric
traits. A positive coefficient signifies enrichment in heritability (per base enrichment). ”·”: Nominally
significant (p<0.05); ”#”: significant after FDR (Benjamini & Hochberg) correction (FDR<0.05). c, DE
TEns/peaks coverage (Mb) and numbers (k). 

Enhancers are robustly expressed in independent cohorts 
To systematically examine the population-level variation of enhancer expression in the

human brain, in both healthy and disease states, we leveraged our cell type-specific brain TEns
atlas to quantify the expression in a large-scale postmortem brain RNA-seq cohort collected and
generated by the CommonMind Consortium42,43. A total of 1014 rRNA-depleted total RNA-Seq
libraries, covering both the dorsolateral prefrontal cortex (DLPFC, BA9, and BA46) and anterior
cingulate cortex (ACC, BA32, and BA24), as well as matched genotyping data from brain banks
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at the Icahn School of Medicine at Mount Sinai, the University of Pennsylvania and the 
University of Pittsburgh (a.k.a. MountSinai-Penn-Pitt, the CMC MPP cohort) were used as the 
discovery set (NSCZ = 254, NControl = 291, Fig. 3a). We utilized an independent, non-overlapping, 
cohort consisting of a total of 368 RNA-seq libraries, also derived from DLPFC and ACC, with 
matching genotype information from the NIMH HBCC brain bank (a.k.a. the CMC HBCC cohort) 
as a replicate cohort (NSCZ = 78, NControl = 151, Fig. 3a). 

In the discovery cohort, we detected 42,463 enhancers and 20,704 Ensembl genes 
expressed at detectable levels (Methods). In the replication analysis, more than 95% of the enhancers 
detected in the discovery cohort were replicated (Fig. 3b, Jaccard index=0.948, p<10-16, two-sided 
Fisher’s exact test). In addition, the pairwise correlation between both intronic and intergenic 
enhancer expressions is highly consistent between cohorts (Extended Data Fig. 3b). Given the 
robust expression between the two independent cohorts, we combined the two data sets for the 
following analysis. 

Cis-coordination of expression between enhancers and target 
genes 

Given that promoter-enhancer interactions can span considerable genomic distances, and 
not necessarily in a one-to-one manner, determining the target genes for enhancer elements is 
still a great challenge1,3,44. Our analysis enables a direct comparison of expression between 
enhancers and genes across multiple samples. To link enhancers to target genes, we took into 
account the joint effect of multiple enhancers, and fit a lasso regression model for every gene as 
a response variable and all enhancers within a �500 Kb window (Fig. 3c). The resulting model 
detected 35,964 gene-enhancer links, consisting of 5,647 genes and 22,147 enhancers (Table 
S4). On average, a gene was linked to 5 enhancers (standard deviation, sd=5.34, Extended 
Data Fig. 3c), whereas an enhancer was linked to a single gene (sd=1.09, Extended Data Fig. 
3d), in agreement with a previous estimation45. The majority of the associations are between 
non-physically-overlapping gene-enhancer pairs (Fig. 3d). Consistent with the positive 
regulation of active enhancers, the majority of the enhancer links (75.98%) had positive 
coefficients. As expected, enhancer-linked genes had a significantly higher expression level 
relative to the background (expressed genes without linked enhancer) (Extended Data Fig. 3c, 
p<10-16, two-sided Wilcoxon test). Moreover, enhancers originating from SEs were more likely to 
be coordinated with gene expression (p<10-16, OR=1.35, two-sided Fisher’s exact test); more 
than 65% of the linked enhancers come from SE loci, highlighting the critical role of SEs in gene 
regulation. Although we included all enhancers within a �500 Kb window to the TSS, the 
significant enhancers were located closer to the TSS (p<10-16, two-sided Wilcoxon test 
compared to background, Extended Data Fig. 3e), even after excluding the physically-
overlapping gene-enhancer pairs from the analysis (p<10-16, two-sided Wilcoxon test compared 
to background, Extended Data Fig. 3f). In addition, the cell-type specificity between linked pairs 
was also highly concordant (Fig. 3e), indicating that our model captures cell-type-specific 
regulatory mechanisms.  
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Fig. 3 | Enhancer-gene expression coordination. a, Two independent Cohorts were used for this study,
both cohorts consisting of total RNA-seq from DLPFC and ACC postmortem brains as well as matched
genotyping data. The discovery set includes 1,014 RNA-seq samples from NSCZ=254 and Ncontrol=291
control unique individuals. The replicate set includes 368 RNA-seq samples from NSCZ=78 and
Ncontrol=151 unique individuals. Brain regions were visualized with cerebroViz46. b, The Venn diagram
shows the overlap of expressed enhancers between the discovery and the replicate analysis. c,
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Demonstration of the lasso link model. For every gene, we considered all the enhancers within �500kb of 
the TSS and fit a lasso model to select the linked enhancers. d, Distribution of the three different classes 
of enhancer-gene pairs: non-overlapping intergenic-enhancer gene pairs, overlapping intronic-enhancer 
gene pairs, and non-overlapping intronic-enhancer gene pairs. e, The differential expression status in the 
two cell types between gene and linked enhancers. f, Percentage of gene promoter and enhancer within 
the same TAD for different genomic distances at 10kb intervals. g, Compared to the background, the 
enhancer-linked genes have remarkably higher absolute t statistics between neuronal and non-neuronal 
cells (KS test, p<10-16). h, Cell types, neuropsychiatric common variants, and biological pathways 
enriched at different classes of linked and not-linked genes. 
 

An alternative way of determining promoter-enhancer interactions is by directly measuring 
the physical contact of DNA using chromosome conformation capture technologies, such as Hi-
C. These approaches have found two prominent chromatin structural features that are 
associated with enhancer-promoter interactions; long-range chromatin loops; and topological 
associated domains (TAD), which insulate the interactions across domain boundaries47. 
Compared with the background, the enhancer-gene-linked pairs had a significantly higher 
chance of being linked by chromatin loops (OR=1.84, p<10-16, two-sided Fisher’s exact test). In 
addition, most of the identified promoter-enhancer pairs were within the same TAD (59.63%, 
OR=1.81, p<10-16, two-sided Fisher’s exact test). We found that the linked enhancer-gene pairs 
are enriched for being within the same TAD compared to regions an equivalent distance apart 
(Fig. 3f). Taken together, our gene-enhancer links are well supported by chromatin interaction 
features, and our approach established cell-type-specific regulatory mechanisms linking 
enhancers to their target genes. 

Enhancer-linked genes are implicated in neuropsychiatric disease 
Given that enhancers drive cell-type-specific gene expression, we sought to determine 

whether enhancer-linked genes are more likely to be cell-type-specific. By examining the t-
statistics from differential expression (DE) analysis between between neuronal and non-
neuronal cells, we found that enhancer-linked genes are strongly DE between the two cell types, 
compared to expressed genes that are not linked (p<10-16, Kolmogorov–Smirnov (KS) test, Fig. 
3g). To dissect the function of enhancer-linked genes, we annotated the genes into neuronal 
and non-neuronal categories based on the DE analysis. As expected, enhancer-linked genes 
were strongly enriched for the main CNS cell types annotated from single-cell analysis38. The 
linked neuronal genes were strongly enriched for glutamatergic and GABAergic neurons, and 
non-neuronal genes were enriched for glial cell types such as oligodendrocytes and astrocytes 
(Fig. 3h). In contrast, non-linked genes were not even nominally significant in any of the cell 
types.  

Previous studies have highlighted the function of neuronal genes in the etiology of SCZ48. For 
neuronal genes we found that both enhancer-linked and non-linked genes were strongly 
enriched for common neuropsychiatric trait variants, and that the enrichment level was 
remarkably higher in enhancer-linked genes, especially for SCZ (Fig. 3h). Aside from the 
neuronal genes, enhancer-linked non-neuronal and non-DE genes were also enriched for the 
SCZ GWAS signal (Fig. 3h), indicating that our model captured SCZ functional genes across 
different cell types. In addition, the neuronal enhancer-linked genes were enriched for SCZ 
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related pathways, including ion transmembrane transport and the Reactome neuronal system49; 
the non-neuronal enhancer-linked genes were enriched for known pathways that are also 
implicated in SCZ, including ensheathment of neurons and gliogenesis50. Together, we found 
that enhancer-linked genes were strongly implicated in SCZ, highlighting the critical role of 
enhancers in cell-type-specific functions in the CNS and neuropsychiatric disease. 

Molecular QTL analysis highlights cell-type-specific enhancer 
regulation 

To explore the genetic regulation of enhancers, we first examined the expression cis-
heritability, which measures the fraction of expression variance explained by SNPs within the 
cis-window. Although lower than that of genes, we observed a substantial proportion of 
enhancers are cis-heritable (p<0.05) (Extended Data Fig. 4a). In addition, the heritability of 
enhancers was reproducible between the two brain regions (DLPFC and ACC; OR=7.29, p<10-

16, two-sided Fisher’s exact test, Extended Data Fig. 4c). 
We then performed joint eQTL analysis for both genes (GeQTL) and enhancers (EeQTL). 

For DLPFC and ACC brain regions, gene-enhancer combined expression matrices of European 
ancestry were independently adjusted for both known and surrogate covariates. An eQTL meta-
analysis was subsequently performed with the normalized expression matrices across two brain 
regions using a linear mixed model to maximize power and account for repeated measures51. 

The model identified 3,593,102 cis-eQTL variant at FDR ≤ 5%, including 1,001,939 EeQTLs 

regulating 25,958 (62.86% of autosomal) enhancers, as well as 2,591,163 GeQTLs regulating 

16,165 (86.46 % of autosomal) genes (Table S5). The most significant SNP (eSNP) for both 
genes (GeSNP) and enhancers (EeSNP) was centered around the corresponding transcription 
start site (Extended Data Fig. 4e). In line with previous findings that QTLs jointly influence 
multiple molecular phenotypes52, more than half (56.29%) of the EeQTL encompassed SNPs 
are also GeQTLs. However, eSNPs were largely independent between genes and enhancers. 
Only 6.1% of the EeSNPs reside within any GeSNP LD blocks (r2>0.5) (Fig. 4b), and only 12.9% 
of GeSNPs were located in the EeSNP LD blocks (r2>0.5) (Fig. 4c), highlighting that EeQTLs 
represent distinct genetic regulation information. 

To confirm our eQTL result, we first compared our GeQTL with the GTEx brain tissues53 and 
observed high π1 values (median 0.950, Extended Data Fig. 4f) as well as the high 
concordance of allelic effect (Extended Data Fig. 4f). We then compared the EeQTL with 
published brain histone QTL (hQTL)54 and chromatin accessibility QTL (caQTL)55 data. We 
observed high π1 values for EeQTLs (Fig. 4d). Moreover, both intergenic and intronic EeQTLs 
exhibited strong positive correlations comparing the effect sizes with caQTL (Fig. 4d), indicating 
that EeQTL captures enhancer genetic regulation. We next examined the genetic effect 
between the linked enhancer and gene pairs. We reasoned that genetic variants would have a 
concordant effect on functional gene-enhancer pairs. Indeed, we observed the effect sizes were 
highly consistent between linked genes and enhancers (Fig. 4e) and were independent of the 
overlapped gene-enhancer effect (Extended Data Fig. 4g). 
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Fig. 4 | Genetic effects of enhancer expression. a, The percentage of different classes of autosomal
gene/enhancers that have significant eQTLs. b, Percentage of EeSNP resides within any GeSNP LD
blocks (r2>0.5). c, Percentage of GeSNP resides within any EeSNP LD blocks (r2>0.5). d, The replication
of reported hQTL and caQTL in our analysis. Storey's π1 values for significant hQTL and caQTL in the
EeQTLs. SCC values are the Spearman correlations (ρ) of effect sizes between caQTL and
corresponding EeQTL. The size of the point corresponds to the number of unique enhancers used. The
number above the bar corresponds to the count of unique enhancers used. e, The allelic genetic effects
between gene and target enhancers are highly consistent. f, Enrichment of neuronal and non-neuronal
genes and enhancers corresponding eQTLs in four chromatin states: TssA (active promoter), EnhA
(active enhancer), ReprPC (polycomb repression), and Quies (other). The filled color represents
enrichment fold change, and the size corresponds to enrichment P values. g, Quantile–quantile plot of
SCZ GWAS p values. EeQTL specific, eQTL specific, and shared SNP are shown in comparison with
genome-wide SNPs. GWAS SNPs were binarily annotated using SNPs within r2 >0.8 of the eSNP. h, LD
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score regression enrichment for gene and enhancer eSNPs of different neuropsychiatric traits. Positive 
coefficient signifies enrichment in heritability (per base enrichment).”·”: Nominally significant (p<0.05); ”#”: 
significant after FDR (Benjamini & Hochberg) correction (FDR<0.05). i, Estimated proportion (± standard 
error) of heritability mediated by the cis genetic component of assayed enhancer, gene, and combined 
expression for SCZ. 

 
Having shown that TEns play pivotal roles in cell-type-specific gene expression, we next 

sought to test if genetic regulation of TNs drives cell-type-specific gene expression. Under this 
model the cell-type-specific gene eQTL will be enriched in corresponding enhancer regions. To 
test this, we grouped GeSNPs based on the DE status between neuronal and non-neuronal 
cells and annotated the SNPs with cell-type-specific chromatin states using GREGOR56. As 
expected, gene eSNPs were strongly enriched for known CREs, including active promoters 
(TssA) and active enhancers (EnhA) (Fig. 4f). As distinct from that of the promoters, the 
enrichment of gene eSNPs at enhancers was highly cell type-specific, highlighting the central 
role of enhancer elements in cell-type-specific genetic regulation. In contrast to GeSNPs, 
EeSNPs were strongly enriched in enhancers of corresponding cell types instead of active 
promoters, distinguishing EeQTLs from GeQTLs. 
 

EeQTL mediate schizophrenia heritability 
As described above, neuronal-specific enhancers are enriched for SCZ GWAS signals (Fig. 

2c). In addition, we found that both EeQTL unique SNPs, and those that are shared with GeQTL 
SNPs, exhibit an excess of low P values for the SCZ GWAS signal (Fig. 4g). Taken together, 
these findings indicate that EeQTLs contribute to SCZ heritability in a complementary manner to 
GeQTLs. Given the relative independence of eSNP signals, we subsequently performed LD 
score regression to quantify the GWAS signal enrichment at both EeSNP and GeSNP loci. As 
expected, we found both EeSNPs and GeSNPs are strongly overrepresented with SCZ 
common variants as well as other neuropsychiatric traits (Fig. 4h).  

Given that both GeQTLs and EeQTLs are associated with SCZ heritability, we next asked if 
the heritability is mediated by gene and enhancer eQTL, or if it arises due to other non-causal 
situations such as linkage and/or pleiotropy. We estimated the proportion of SCZ heritability 
mediated by gene/enhancer expression (h2

med/h
2

g) using MESC57, which quantifies the 
proportion of disease risk mediated by QTLs. A substantial fraction (6.8�1.5%) of SCZ 
heritability is mediated by enhancer expression (Fig. 4i), indicating that enhancer is a key 
causal factor in the etiology of SCZ. In addition, we combined the gene and enhancer 
expression matrix and found that the mediated heritability proportion increased from 8.4�2.2% 
(gene) to 13�1.9% (combined), suggesting that genes and enhancers mediate their genetic 
effects complements standard gene eQTL.  
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Adding enhancers to transcriptome-wide association studies 
facilitates fine-mapping and interpretation of SCZ GWAS loci 
Having shown that SCZ genetic variants contribute substantially to gene and enhancer 
expression, we next sought to identify the potential genes and enhancers that mediate the 
genetic risk for SCZ. We performed transcriptome-wide association studies (TWAS)58 using 
gene and enhancer eQTLs, and the most recent SCZ GWAS41. Initially, we built elastic net and 
lasso regression genetic variant-based expression prediction models59 for cis-heritable 
transcripts in DLPFC and ACC brain regions. This resulted in expression models for 10,669 
unique genes and 8,702 unique enhancers from the two brain regions, which markedly 
increased transcriptome coverage for TWAS compared to previous human brain studies in 
SCZ28,60–62. The models yielded 204 genes and 98 enhancers that are outside of the MHC 
region and are associated with SCZ (Bonferroni-adjusted P, Pbonferroni<0.05), covering 104 of 264 
non-MHC autosomal independent genome-wide significant SCZ GWAS loci (Fig. 5a). 
Specifically, 26 loci are shared between enhancers and genes, 23 loci are only tagged by 
enhancers and for 55 loci only genes were detected. To confirm the reproducibility of our 
studies, we compared the TWAS Z scores between the two brain regions, as well as the Z 
scores between our gene models and previous reports28,62, where both comparisons exhibit high 
concordance (Extended Data Fig. 5a and 5b).  

To avoid spurious associations from LD structure63, we first checked if the eQTL and GWAS 
association is driven by the same causal variants. We conducted a colocalization analysis64,65 to 
estimate the probability that the eQTL and GWAS signals are associated (PP4) or not (PP0, 
PP1, PP2 and, PP3). We found both genes and enhancers exhibited high PP4 value (Fig. 5b), 
66 of the 98 TWAS enhancers, and 139 of the 202 TWAS genes colocalized between eQTL and 
GWAS signals (PP4>0.5). We next conducted a fine-mapping analysis that controls for the 
correlation structure introduced by LD and SNP weights, as well as certain pleiotropic effects to 
refine the TWAS associations using FOCUS66. To account for genes that are filtered by low cis-
heritability, we included gene prediction results from GTEx expression panels. The analysis 
yielded a credible set of 466 transcripts, including 384 genes and 82 enhancers covering 151 
GWAS loci, where 20 of the loci were only tagged by enhancers and 29 of the loci were tagged 
by both gene and enhancers.  

To further refine the transcript-based fine-mapping of the TWAS outcome, we required the 
genes and enhancers to (i) have Pbonferroni < 0.05 in the TWAS analysis, (ii) have PP4 > 0.8 in 
the colocalization analysis, and (iii) be within the credible sets of FOCUS transcripts, resulting in 
16 enhancers and 56 genes (Table S6). Although a substantial percentage of the associated 
genes have been identified previously, many of them are novel (Fig. 5c). Using our gene-
enhancer link model, we identified 19 genes (MAN2A1, VRK2, FANCL, LINC01877, FTCDNL1, 
DPYD, CTNND1, MFGE8, ABHD2, STH, SATB2, C2orf69, MAIP1, PJA2, FAM114A2, MMP16, 
KIF7, AC092691.1, SAP30L) that are associated with the fine mapped enhancers (Fig. 5c and 
Table S6), many of which have been reported previously23,28,67 (Fig. 5c) but have not been 
directly identified by TWAS analysis.  
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Fig. 5 | SCZ TWAS. a, Manhattan plot of SCZ TWAS enrichment in DLPFC, ACC, and the independent 
genome-wide significant SCZ associations (excluding chrX and MHC). GWAS node height corresponds to 
the index SNP significance, and the color indicates if the GWAS loci are associated with enhancer, gene, 
both gene, and enhancer, or none of them. Significant TWAS enhancers (purple) and genes (yellow) are 
highlighted in different colors. b, Ternary plots showing coloc posterior probabilities for significant TWAS 
genes and enhancers respectively. PP0+PP1+PP2: three scenarios for lack of test power; PP3: 
independent causal variants; PP4: colocalized causal variants. c, Venn diagrams show the overlap 
between the fine mapped TWAS genes, TWAS-enhancers linked genes, PsychENCODE (PEC) TWAS 
genes28, PsychENCODE(PEC) high confidence risk genes23, and SCZ high-confidence risk genes 
(HRG)67. d, Illustration of genomic loci at chr15, harboring multiple TWAS loci. Top panel, transcript 
position (only cis-heritable transcripts are shown), the color indicates transcription direction of genes. 
Middle, gene/enhancer TWAS Z score absolute value, point size indicates the FOCUS posterior inclusion 
probability (PIP), color indicates the genetic correlation with the highest PIP. Bottom, Manhattan plot of 
SCZ GWAS signal, before and after conditioning on enh41216. e, KRAB-dCas9-mediated repression of 
enh41216 leads to the reduction of ABHD2 and KIF7 expression as measured by qPCR in neural 
progenitor cells. (*** p<0.001, ** p< 0.01, ANOVA, N=6, mean ± standard error are shown) 

 
We provide an illustrative example for an SCZ locus that includes enh41216 (Fig. 5d), a 

novel TEn that resides within a SE. The GWAS locus is associated with 12 TEns and 32 genes 
but only enh41216 is identified as a causal transcript by FOCUS fine-mapping. The top SNP of 
this enhancer, rs2247233, is also one of the top GWAS SNP (Extended Data Fig. 5c). In 
addition, we performed a conditional analysis and found that the enh41216 TWAS signal fully 
explained the GWAS significance (Fig. 5d, bottom).  

The enhancer is linked to three genes, ABHD2, MFGE8, and KIF7. To experimentally 
validate the enhancer target, we performed CRISPR interference of enh41216 in neural 
progenitor cells (Fig. 5d). This led to a 20-30% reduction in gene expression for KIF7 and 
ABHD2, two genes that reside ~200kb from the enhancer, whereas levels of MFGE8, 450kb 
from the enhancer, remained unchanged. KIF7 has been known to play a role in regulating 
neuronal development and brain abnormalities in ciliopathies68, but was not significant in the 
TWAS analysis (TWAS Pbonferroni>0.1, FOCUS posterior inclusion probability, PIP<0.001). 
Moreover, knockdown of KIF7 results in thinner and shorter processes of multipolar neurons69. 
ABHD2, which is not significant in the TWAS analysis (TWAS P>0.1, FOCUS PIP<0.001), 
encodes an enzyme that catalyzes the hydrolysis of 2-arachidonoyl glycerol, which is a 
signaling lipid in the CNS and a key regulator of neurotransmitter release70,71. 

 

Discussion 
 A growing body of evidence suggests that enhancer elements play a pivotal role in 
neuropsychiatric diseases19,22,23. However, a systematic view, including regulatory circuits, and 
genetic effects of enhancer sequences is lacking. Here, we utilized population-level variation of 
gene and enhancer expression in the human brain to provide a comprehensive assessment of 
the regulatory mechanisms of transcribed enhancers in SCZ. We illustrate how to leverage 
large-scale transcriptome data to investigate enhancer regulatory circuits and provide novel 
insights into complex traits.  
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Given that enhancers are modestly expressed, previous attempts to identify TEns using a 
single assay either used a stringent threshold and missed the majority of TEns10, or, with a more 
flexible cutoff, identified mostly non-enhancer elements72. In our analysis, we used a two step 
approach to define brain TEns with increased sensitivity and specificity. We initially performed 
cell-type-specific TEn discovery based on supervised machine-learning integrative analysis of 
multi-omics data. We then further refined TEn mapping and studied the properties of the 
enhancer regulome using population-level expression from RNA-seq data. This approach is 
very sensitive, resulting in 30,795 neuronal and 23,265 non-neuronal TEns, expanding, by an 
order of magnitude, the repertoire of known transcribed enhancers in the human brain. In terms 
of specificity, the accuracy of our method is confirmed by active enhancer histone modification 
occupancy (~95% H3K27ac), bidirectional transcription initiation signal, as well as the high 
precision-recall of our predictive model. Compared to the traditional and broad active enhancer 
assays, H3K27ac and H3K4me1 ChIP-seq, our TEns-based approach has the advantage of 
higher resolution to define smaller functional regions. In addition, our approach can better refine 
the chromatin accessibility landscape by subsetting ATAC-seq peaks that represent active 
enhancers from other regulatory sequences. In line with this, analysis of cell type-specific TEns 
identifies markedly higher SNP heritability for neuropsychiatric traits than regulatory sequences 
defined using ATAC-seq and H3K27ac ChIP-seq.  

Based on the coordinated expression of enhancers and target genes, we utilized population-
level variation of the transcriptome and regulome in 1,382 brain samples to model cis-
coordination and determine gene-enhancer interactions. As enhancers can exert their effects 
across long genomic distances, the closest gene is not necessarily the target gene. Spatial 
interactions determined by Hi-C are limited by the resolution of the method and by bias due to 
proximity ligations73, and may have other functions besides facilitating promoter-enhancer 
interactions. Our approach is validated by the concordance with chromatin organization features, 
consistent allelic genetic effects, and in vitro CRISPR inference validation. Enhancer-linked 
genes are highly expressed, are strongly enriched for CNS cell types and neuropsychiatric trait 
risk loci, highlighting the importance of enhancers in the etiology of disease.  

Given the significant cis-heritability of enhancer expression, we performed eQTL analysis to 
link cis genetic variation to enhancer expression51. We found that EeQTLs were (i) highly 
concordant hQTLs and caQTLs, (ii) centered around the enhancer loci, (iii) relatively 
independent of GeQTLs, and (iv) enriched in active enhancer chromatin states, suggesting that 
enhancer expression represent enhancer activity instead of transcriptional noise. Both TEns and 
EeSNPs confer substantial neuropsychiatric disease liability. We subsequently determined the 
proportion of SCZ heritability mediated in cis by enhancer expression57 and found that enhancer 
expression alone, or combined with gene expression, explained a substantial percentage of 
SCZ cis-genetic variants (6.8% and 13%, respectively). We performed TWAS and fine-mapping 
and found that a significant fraction of the SCZ GWAS loci is captured only by enhancers. 
enh41216 was prioritized based on fine-mapping in an SCZ locus containing 12 TEns and 32 
genes. enh41216 was predicted to regulate three genes, among which two (KIF7 and ABHD2), 
located ~200kb from the enhancer, were validated using CRISPR interference in neural 
progenitor cells. Taken together, our study further emphasizes the importance of the regulome 
as an additional layer to functionally characterize disease vulnerability.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


19 

Overall, the consideration of population variation in enhancer expression in large-scale total 
RNA-seq analysis provides novel insights into the regulatory mechanisms of gene expression, 
as well as the genetic effects influencing complex traits. The framework described in this study 
provides an inexpensive and high-resolution approach to explore active enhancer function in 
most human tissue and cell types. 
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Methods 

Multi-omics human postmortem brain samples 
Brain specimens from 10 neurotypical individuals were obtained from the Mount Sinai/JJ 

Peters VA Medical Center Brain Bank (MSBB–Mount Sinai NIH Neurobiobank), as part of the 
Accelerating Medicines Partnership - Alzheimer's Disease (AMP-AD) project74. All 
neuropsychological, diagnostic, and autopsy protocols were approved by the Mount Sinai and 
JJ Peters VA Medical Center Institutional Review Boards. Details about the subject information, 
including sex, age, postmortem interval (PMI) could be accessed on Synapse via the AD 
Knowledge Portal (https://adknowledgeportal.org).  

The details of the experimental procedural, data processing, and quality control information 
of the molecular assays can be found in the supplementary material.  

CRISPR inference validation 
Cell culture and transduction of dCas9-effector hiPSC-NPCs with gRNA lentivirus. The iPSC 

lines used in this study (NSB2607-1-4 and NSB553-S1-1)75,76 were maintained in Matrigel 
(Corning, cat.# 354230) coated 6-well plates under NPC medium (DMEM/F12 (Life 
Technologies, cat.# 10565), 1x N2 (Life Technologies, cat.# 17502-048), 1x B27-RA (Life 
Technologies, cat.# 12587-010), 20 ng/ml FGF2 (R&D Systems, cat.# 233-FB-01M). Upon 
confluency, cells were dissociated with Accutase (Innovative Cell Technologies, cat.# AT104) 
for 5 minutes at 37°C, quenched with DMEM/F12, pelleted, and resuspended in NPC medium 
containing 10µM/ml Thiazovivin (THX) (Sigma/Millipore, cat.# 420220). 3.5x10^5 NPCs per well 
were seeded onto Matrigel-coated 24-well plates in NPC media. The following day, gRNA 
lentiviruses such as LentiGuide-Hygro-mTagBFP2 (Addgene, cat.# 99374) were added to 
cultures, followed by spinfection (1 hour, 1000xg, 25°C). After spinfection, the cultures were 
incubated overnight, and medium was then replaced the following day. The cells were selected 
with 0.3 μg/ml puromycin for dCas9-KRAB (Sigma, cat.# P7255) for two days. After puromycin 
selection, cells were fed with fresh NPC medium and then harvested two days later. gRNA 
expression was confirmed via BFP fluorescence, prior to harvest. 

The Benchling CRISPR gRNA design tool was used to design guide sequences. Two guide 
RNAs for enh41216 with the highest specificity scores were selected: 
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Guide RNA1 (chr15: 89400303): 5’-GAGGCGCGATACGAACCCGT-3’ 
Guide RNA2 (chr15: 89400387): 5’-GATACGGGCGAATCCCGCAA-3’ 

The guide oligos were then synthesized by IDT (Integrated DNA technologies) and phospho 

annealed via T4 PNK (37°C for 30min, 95C for 5min and ramped down to 25°C at 5°C/min). The 

annealed oligos were then cloned downstream of a constitutively expressed U6 promoter in a 

lentiviral vector (lentiGuide-Hygro-mTagBFP2, Addgene, cat.# 99374) using the golden gate 

cloning method (Bsmb1; 30 cycles of 37°C for 5min and 20°C for 5min). Vectors were packaged 

into 3rd generation lenti-viruses by VectorBuilder and transduced into dCas9-KRAB expressing 

neural progenitor cells (NPCs). RNA was extracted from transduced NPCs and target gene 

expression knockdown was validated through TaqMan RT-qPCR relative to cells that were 

transduced with a negative control scrambled guide. The 2–∆∆Ct method was used to 

determine fold change in expression relative to the housekeeping genes GAPDH and ACTB.  

TEns identification 
Training set. To define a training set, we first collected the brain-associated FANTOM5 

enhancers that overlapped with our H3K27ac peaks (FANTOM5 enhancers, FEs). Given that 
FANTOM5 enhancers only cover a small fraction of TEns, and could have bias, we next 
determined the CAGE tags at the non-coding OCRs with R bamsignals package (v1.14.0) in a 
strandspeicifc mode. The analysis yielded 6,810 neuronal and 5,509 non-neuronal 
bidirectionally expressed enhancers (EEs), as well as 97,827 neuronal and 45,387 non-
neuronal not expressed enhancers (NEs). We subsequently compared the epigenomic and 
transcriptomic profiles at the three sets of enhancers with the bamsignals package 
(https://bioconductor.org/packages/bamsignals), confirming that the two expressed enhancer 
groups exhibit different features compared to the not expressed enhancers. We only used the 
FEs that overlapped corresponding OCRs for downstream analysis. We used FEs and 
subsampled the same amount of EEs as the positive set. A comparable number of negative 
sets is subsampled from the NEs.  

Testing set. To define a test set, we focused on ATAC-seq peaks. Peaks that overlapped 
with an annotated exon as well as a 1 kb region up/downstream (Gencode V30)77, ribosome 
DNA loci78, and ENCODE blacklisted regions79 were filtered. We extend the resulting peak 
summit to 500bp based on the distribution of FANTOM5 enhancer size (Extended Data Fig. 
1c), resulting in 168,841 neuronal and 93,139 non-neuronal enhancers. 

Prediction model. We collected tag counts with ATAC-seq, ChIP-seq, and strand-specific 
RNA-seq bam files for the central 200bp and flanking 400bp of both the testing and training sets 
(Fig. 1d). Additionally, we annotated the position relative to genes. The BAM counts and 
genomic annotation of the training set were used as the input for a random forest model80, with 
parameters fine-tuned by a 10-fold cross-validation grid search81. The performance of the 
resulting models was determined by AUROC and AUPC82, both of which generate values of 
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~0.95 (Fig. 1e and 1f). We subsequently predict the TEns from testing sets with the trained 
models for both cell types. 

Quantification. We counted the number of reads overlapped with the TEns using 
featureCounts function in RSubread (v1.6.3)83. The enhancer-gene combined expression matrix 
(counts per million, CPM) was used for the following analysis.  

Gene/TEn/peaks filtering and Differential analysis 
We performed differential analysis between neuronal and non-neuronal cells for 

genes/enhancers with RNA-seq, and peaks of ATACseq and ChIP-seq from the Multi-omics 
cohort. For RNA-seq analysis only protein-coding genes, lincRNA, and TEns were used. A 
consensus read count-based differential analysis pipeline was used with the following steps: 

Read count and transcript/peak filtering. For each assay, transcript/peak read count matrices 
were used as input. For ATAC-seq, H3K4me3, and H3K27ac ChIP-seq, only peaks that had at 
least 1 count per million reads (CPM) in > 10% of the samples were retained. For Multi-omics 
RNA-seq data, we used a relatively low cut-off to account for the modest expression of TEns 
and retained all the transcripts that had at least 0.25 CPM in >10% of the samples. The retained 
TEns that overlapped between neurons and non-neurons were merged and used for 
downstream analysis. For the CMC data, we contained all the transcripts that had at least 0.1 
CPM in >40% of the samples. Read counts were then normalized with the trimmed mean of M-
values (TMM) method84. 

Exploration of covariates and model selection. We performed a PCA on the normalized read 
count matrix for each assay to identify high-variance components that explained at least 1% of 
the variance. Correlation tests were performed between the selected PCs and known covariates, 
and covariates with FDR<0.05 were used for the following steps. To select the final covariates, 
we first chose the covariates that are known to play a critical role for each assay as “a base 
model”: for instance, cell types, brain regions, and sex were selected as the base model for the 
Multi-omics cohort. We then applied an approach based on the Bayesian information criterion 
(BIC) to select the final covariates43. We examined the BIC changes in the linear regression 
model after adding a new covariate, which will be included if it can improve the mean BIC by at 
least 4.  

Statistical test. With the selected covariates, the normalized read counts were modeled with 
the voomWithQualityWeights function from the limma package (v.3.38.3)85, which utilizes both 
sample-level and observational-level weights. We subsequently perform the test against the 
contrast between cell type or disease status using a linear mixed model to account for repeated 
measurements (i.e. 2 brain regions per individual) in the dream function86 of the 
variancePartition package87. Additionally, we determined the level of difference by estimating 
the proportion of true non-null tests π1 

88 with the limma package. 
Furthermore, we decomposed variation into known biological and technical factors with 

VarianceParition (v1.21.2)87. The analysis was performed by modeling the log2CPM with a linear 
mixed model and treating each variable as a random effect86. Results were summarized in 
terms of the fraction of total variation explained by each variable for each peak/transcripts. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


28 

Identifying gene-enhancer links 
For every gene, we considered all the enhancers within a �500 Kb window centered around 

the TSS (Fig. 3c) and fit a 10-fold cross-validation lasso model with the glmnet package (v 
2.0.18)89. glmnet selects lambda to minimize the cross-validation prediction error and then 
selects lambda within 1 sd of the minimum. The enhancers with non-zero coefficients were 
selected as linked enhancers. For the genes that have only a single enhancer around the 
window, we performed a correlation test, and only the Pbonferroni<0.01 were retained. 

Gene set enrichment analysis 
To explore the function of a gene set, we collected functional gene sets from MSigDB 7.090, 

human brain single-cell markers38, and synaptic gene ontology resource91. One-tailed Fisher 
exact tests were used to test the enrichment and significance.  

To examine the genetic enrichment of gene sets, we used MAGMA (v 1.07b)92 with GWAS 
data20,41,93–97. Briefly, genes were padded by 35kb upstream and 10kb downstream, and the 
MHC region was removed due to its extensive linkage disequilibrium and complex haplotypes. 
The European panels from 1000 Genome Project phase 3 were used to estimate the Linkage 
disequilibrium (LD) 98. 

Partitioned heritability analysis 
We partitioned heritability for DE peaks/TEns as well as top eSNPs to examine the 

enrichment of common variants in neuropsychiatric traits with stratified LD score regression 
(v.1.0.1)22 from a selection of GWAS studies20,41,93–97. Briefly, with the differential peaks/TEns as 
well as eSNPs, a binary annotation was created by marking all HapMap3 SNPs99 that fell within 
the peak or eSNPs and outside the MHC regions. LD scores were calculated for the overlapped 
SNPs using an LD window of 1cM using 1000 Genomes European Phase LD reference panel98. 
The enrichment was determined against the baseline model22. To enable comparisons of the 
regression coefficients across traits with a wide range of heritabilities, we chose to normalize it 
by the per-SNP heritability and named this adjusted metric the “heritability coefficient”. This is 
not the same as the “enrichment” also outputted by the software, since the heritability coefficient 
takes the aforementioned baseline into account and the “enrichment” does not.  

eQTL analysis 
We used the MMQTL package to identify cis-QTLs for both genes and enhancers51. Briefly, 

Probabilistic Estimation of Expression Residuals (PEER) was used to determine a set of latent 
covariates to control for unknown biological and technical effects for the two brain regions, 
independently100. We use 30 PEER factors for ACC and 35 PEER factors for DLPFC based on 
the highest percentage of transcripts with eQTLs. The expression matrices were then adjusted 
for the selected covariates, the first 3 genetic principal components, and PEER factors. We 
performed a meta-analysis with the normalized expression matrices as well as the SNPs within 
� 1Mb cis-window using a linear mixed model to maximize power51. P values for both GeQTL 
and EeQTL were corrected together for multiple testing using Storey and Tibshirani FDR 
correction88.  
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The proportion of null-hypotheses (π0) was estimated by looking up the corresponding p 
values of the significant GTEx eQTL pairs (FDR<0.05) in our result with the qvalue package88. 
The non-null-hypothesis π1=1-π0 was subsequently determined. Additionally, we calculated the 
Spearman correlation coefficient between the effect sizes of our GeQTL and GTEx brain eQTL 
with all significant eQTLs (FDR<0.05). We performed a similar analysis to brain hQTL54 and 
caQTL55. Given that both analyses are done with hg19, we lifted over TEns to hg19 and found 
the overlapped peaks of the TEns positions. With the overlapped significant peak-SNP pairs, we 
calculated the π1 using EeQTL p values for corresponding pairs.  

To explore the functional enrichment of gene and enhancer eQTL, we performed enrichment 
analysis using Genomic Regulatory Elements and Gwas Overlap algoRithm (GREGOR)56 with 
our ChromHMM results. Briefly, we grouped genes and enhancers based on the differential 
expression status between neurons and non-neurons. The corresponding eSNPs were 
extended to all SNPs in high linkage disequilibrium (r2>0.7) and determined enrichment. 

MESC analysis 
We used the mediated expression score regression (MESC) package57 to estimate SCZ 

heritability mediated by the cis genetic component of expression levels of gene, enhancer, or 
combined respectively. Based on the principle that expression mediated effect size introduces a 
linear relationship between the eQTL effect sizes and disease effect sizes, MESC determined 
the mediated effect through modeling GWAS summary statistics, LD scores, and eQTL effect 
sizes57. 1000 Genomes European Phase reference panel98 were used to compute LD scores. 
We retained only the SNPs that were from HapMap 399 for this analysis. GCTA was used to 
estimate the cis-heritability (� 500kb) of each transcript for two brain regions independently 101. 
Then we used the LASSO model from PLINK to estimate the eQTL size for each transcript. We 
performed a meta-analysis to combine the two brain regions to determine the expression score. 
Lastly, we estimated the SCZ heritability mediated by the expression of enhancer, gene, and 
combined transcripts.  

TWAS 
The FUSION package was used for the gene-enhancer TWAS analysis58 for the two brain 

regions independently. For each brain region, only cis-heritable genes/enhancers (GCTA 
nominal p<0.05 and cis-heritability>0) were used for the following analysis. We built expression 
models using best cis-eQTL, Elastic-net regression, and LASSO regression with five-fold cross-
validation59. The model with the best R2 was selected. Then we performed the association 
analysis with PGC3 SCZ GWAS summary statistics41. MHC regions were excluded for this 
analysis. The resulting p values of genes and enhancers are together Bonferroni corrected. 
Genes and enhancers with Pbonferroni<0.05 were selected for downstream analysis.  

We performed colocalization analysis using the bayesian estimator COLOC (v4.0.4)64,65 has 
been incorporated in the TWAS/FUSION pipeline. COLOC examine the posterior probability of 
five hypotheses: H0, no eQTL and no GWAS association; H1 and H2, associated to either eQTL 
or GWAS but not both; H3, eQTL and GWAS association but independent; H4, association. The 
analysis yields corresponding posterior probability PP0-PP4.  
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FOCUS 
To prioritize the potential casual transcripts for TWAS analysis, we performed statistical fine-

mapping using FOCUS66. FOCUS models the correlation structure induced by LD and 
prediction weights in TWAS, and controls for certain pleiotropic effects. To account for the 
genes that are filtered by low cis-heritability, we collected gene prediction results from GTEx 
expression panels. For each gene, the model with the best accuracy was included. With 
gene/enhancer prediction results from two brain regions and the GTEx models, we performed 
FOCUS fine-mapping and got the 90% credible transcript sets. 

 
 

References 

74. Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and 

proteomic data in Alzheimer’s disease. Sci. Data 5, 180185 (2018). 

75. Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs 

and neurons are concordant with post-mortem adult brains. Nat. Commun. 8, 2225 

(2017). 

76. Schrode, N. et al. Synergistic effects of common schizophrenia risk variants. Nat. Genet. 

51, 1475–1485 (2019). 

77. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE 

Project. Genome Res. 22, 1760–1774 (2012). 

78. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. 

Bioinformatics 28, 2184–2185 (2012). 

79. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of 

problematic regions of the genome. Sci. Rep. 9, 9354 (2019). 

80. Breiman, L. Random Forests. Springer Science and Business Media LLC (2001) 

doi:10.1023/a:1010933404324. 

81. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28, 

(2008). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


31 

82. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier 

performance in R. Bioinformatics 21, 3940–3941 (2005). 

83. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for 

assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 

84. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome Biol. 11, R25 (2010). 

85. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing 

and microarray studies. Nucleic Acids Res. 43, e47 (2015). 

86. Hoffman, G. E. & Roussos, P. dream: Powerful differential expression analysis for 

repeated measures designs. Bioinformatics (2020) doi:10.1093/bioinformatics/btaa687. 

87. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in 

complex gene expression studies. BMC Bioinformatics 17, 483 (2016). 

88. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc Natl 

Acad Sci USA 100, 9440–9445 (2003). 

89. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear 

Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010). 

90. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–

1740 (2011). 

91. Koopmans, F. et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the 

Synapse. Neuron 103, 217-234.e4 (2019). 

92. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set 

analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

93. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention 

deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019). 

94. Karlsson Linnér, R. et al. Genome-wide association analyses of risk tolerance and risky 

behaviors in over 1 million individuals identify hundreds of loci and shared genetic 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


32 

influences. Nat. Genet. 51, 245–257 (2019). 

95. Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level 

analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 9, 905 (2018). 

96. Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies 

new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019). 

97. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics 

Consortium. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric 

Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, 

including 28 subphenotypes. Cell 173, 1705-1715.e16 (2018). 

98. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. 

Nature 526, 68–74 (2015). 

99. International HapMap Consortium. The international hapmap project. Nature 426, 789–

796 (2003). 

100. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of 

expression residuals (PEER) to obtain increased power and interpretability of gene 

expression analyses. Nat. Protoc. 7, 500–507 (2012). 

101. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 

complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

 

ACKNOWLEDGMENTS 
We thank the computational resources and staff expertise provided by the Scientific 

Computing of the Icahn School of Medicine at Mount Sinai.  
The CommonMind data sets were generated as part of the CommonMind Consortium 

supported by funding from Takeda Pharmaceuticals Company Limited, F. Hoffman-La Roche 
Ltd and NIH grants R01MH085542, R01MH093725, P50MH066392, P50MH080405, 
R01MH097276, RO1-MH- 075916, P50M096891, P50MH084053S1, R37MH057881, AG02219, 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


33 

AG05138, MH06692, R01MH110921, R01MH109677, R01MH109897, U01MH103392, 
U01MH116442, project ZIC MH002903 and contract HHSN271201300031C through IRP NIMH. 
Brain tissue for the study was obtained from the following brain bank collections: The Mount 
Sinai/JJ Peters VA Medical Center NIH Brain and Tissue Repository, the University of 
Pennsylvania Alzheimer’s Disease Core Center, the University of Pittsburgh Brain Tissue 
Donation Program, and the NIMH Human Brain Collection Core. CMC Leadership: Panos 
Roussos, Joseph Buxbaum, Andrew Chess, Schahram Akbarian, Vahram Haroutunian (Icahn 
School of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of Pittsburgh), 
Raquel Gur (University of Pennsylvania), Chang- Gyu Hahn (Thomas Jefferson University), 
Enrico Domenici (University of Trento), Mette A. Peters, Solveig Sieberts (Sage Bionetworks), 
Stefano Marenco, Barbara K. Lipska, Francis J. McMahon (NIMH). 

This work is supported by the National Institute on Aging, NIH grants R01-AG067025 (to P.R. 
and V.H.), R01-AG065582 (to P.R. and V.H.) and R01-AG050986 (to P.R.). Supported by the 
National Institute of Mental Health, NIH grants, R01-MH110921 (to P.R.), U01-MH116442 (to 
P.R. and V.H.), R01-MH125246 (to P.R.), R01-MH106056 (to P.R. and K.J.B.), R01-MH109897 
(to P.R. and K.J.B.) and R01-MH121074 (to K.J.B.). Supported by the Veterans Affairs Merit 
grant BX002395 (to P.R.). P.D. was supported in part by NARSAD Young Investigator Grant 
29683 from the Brain & Behavior Research Foundation. G.E.H. was supported in part by 
NARSAD Young Investigator Grant 26313 from the Brain & Behavior Research Foundation. J.B. 
was supported in part by NARSAD Young Investigator Grant 27209 from the Brain & Behavior 
Research Foundation. 

AUTHOR CONTRIBUTIONS 
P.R. conceived of and designed the project. J.F.F. and P.R. designed experimental 

strategies for epigenome profiling of human postmortem tissue. J.F.F. prepared nuclei and 
performed FANS. J.F.F. and R.M. generated ATAC-seq data. P.A. generated the ChIP-seq and 
Multi-omics RNA-seq data. S.R. generated Hi-C data. S.R., J.M.V., M.B.F., K.G.T. and K.J.B. 
performed the CRISPR interference experiments. P.D. and P.R. designed analytical strategies. 
J.B. K.G. and P.D. conducted initial bioinformatics, sample processing and quality control for the 
Multi-omics cohort. G.E.H. and W.Z. conducted initial bioinformatics, sample processing and 
quality control for the CMC cohort. P.D. developed the computational scheme and performed 
the downstream analysis. B.Z. performed the MMQTL analysis. P.D. and P.R. wrote the 
manuscript with input from all authors.  

DECLARATION OF INTERESTS 
 The authors declare no competing interests. 

Data and code availability 
The clinical information and raw data of the Multi-omics cohort including ATAC-Seq, RNA-

Seq, H3K4me3/H3K27me3/H3K27ac ChIP-Seq and Hi-C are available via the AD Knowledge 
Portal (https://adknowledgeportal.org). The AD Knowledge Portal is a platform for accessing 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/


34 

data, analyses, and tools generated by the Accelerating Medicines Partnership (AMP-AD) 
Target Discovery Program and other National Institute on Aging (NIA)-supported programs to 
enable open-science practices and accelerate translational learning. The data, analyses, and 
tools are shared early in the research cycle without a publication embargo on a secondary use. 
Data is available for general research use according to the following requirements for data 
access and data attribution (https://adknowledgeportal.org/DataAccess/Instructions). For access 
to content described in this manuscript see: http://doi.org/10.7303/syn25672193. 

The processed data sets including ATAC-Seq/ChIP-Seq peaks, super-enhancer annotation, 
chromatin states, TEn annotation, differential analysis summary statistics, TEn-gene 
coordination, eQTL summary statistics, TWAS weights, and TEn identification pipeline are 
available on the Synapse platform at http://doi.org/10.7303/syn25716684. Further information 
and requests for reagents may be directed to the corresponding author/lead contact, Panos 
Roussos (panagiotis.roussos@mssm.edu). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.05.14.443421doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.443421
http://creativecommons.org/licenses/by-nc/4.0/

