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Abstract: Transcription factor over-expression is a proven method for reprogramming cells to a 
desired cell type for regenerative medicine and therapeutic discovery. However, a general 
method for the identification of reprogramming factors to create an arbitrary cell type is an open 
problem. We examine the success rate of methods and data for directed differentiation by testing 
the ability of nine computational methods (CellNet, GarNet, EBSeq, AME, DREME, HOMER, 
KMAC, diffTF, and DeepAccess) to correctly discover and rank candidate factors for eight 
target cell types with known reprogramming solutions. We compare methods that utilize gene 
expression, biological networks, and chromatin accessibility data to identify eight sets of known 
reprogramming factors and comprehensively test parameter and pre-processing of input data to 
optimize performance of these methods. We find the best factor identification methods can 
identify an average of 50-60% of reprogramming factors within the top 10 candidates, and 
methods that use chromatin accessibility perform the best. Among the chromatin accessibility 
methods, complex methods DeepAccess and diffTF are more likely to consistently correctly rank 
the significance of transcription factor candidates within reprogramming protocols for 
differentiation. We provide evidence that AME and DeepAccess are optimal methods for 
transcription factor recovery and ranking which will allow for systematic prioritization of 
transcription factor candidates to aid in the design of novel reprogramming protocols. 
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Introduction 
Our ability to precisely discover, define, and characterize cell types has improved with the 
advent of new molecular technologies in the past decade (Pellegrino et al. 2016; Habib et al. 
2016; Corces et al. 2017; Rai et al. 2020). Advances in single cell sequencing methods has even 
made it possible to define individual cell types by their expression (Sasagawa et al. 2013; Dixit 
et al. 2016; Angermueller et al. 2016; Grün et al. 2015; Pijuan-Sala et al. 2019) and chromatin 
accessibility profiles (Lake et al. 2018; Pijuan-Sala et al. 2020; Satpathy et al. 2019). The 
identification and characterization of cell types in health and disease has further illuminated the 
potential of regenerative medicine that would be enabled by the ability reprogram cells into 
arbitrary types. In order to facilitate the identification of reprogramming factors that can be 
deployed any cell type of interest, we have systematically compared computational methods to 
identify the most robust means for identification of potential reprogramming factors from gene 
expression and chromatin accessibility data. 

Reprogramming strategies typically either employ small-molecules that target signaling 
pathways or transcription factor-based reprogramming (Wichterle et al. 2002; Marson et al. 
2008; Ichida et al. 2009). Transcription factor over-expression has been a successful method for 
reprogramming cells such as fibroblasts or stem cells into many specialized cell types (Oh and 
Jang 2019). Transcription factor protocols are also advantageous as they can decrease protocol 
time and increase efficiency (Mazzoni et al. 2013).  Identification of reprogramming 
transcription factors has generally combined expert knowledge and large-scale screens to test 
many possibilities and experimentally identify a set of key regulatory factors. For example, the 
four transcription factors that induce pluripotency were discovered using a candidate set of 24 
transcription factors curated from the literature that were narrowed down to four factors using 
successive leave-one-out experiments to reprogram fibroblasts into stem cells (Takahashi and 
Yamanaka 2006). 

The ability to easily generate gene expression and chromatin accessibility data from 
primary cells has led to the development of several computational methods that can potentially 
discover reprogramming factors even in the absence of extensive developmental studies. 
However, the performance of these methods has not been systematically compared using the 
same source data. Here we comprehensively and uniformly evaluate nine reprogramming factor 
discovery methods: CellNet (Cahan et al. 2014; Radley et al. 2017; Morris et al. 2014), GarNet 
(Tuncbag et al. 2016; Kedaigle and Fraenkel 2018), EBSeq (Leng et al. 2013), AME (Whitington 
et al. 2011), DREME (Bailey 2011), HOMER (Heinz et al. 2010), KMAC (Guo et al. 2018), 
DeepAccess (Hammelman et al. 2020), and diffTF (Berest et al. 2019) on their ability to recover 
and rank eight known sets reprogramming transcription factors.  

Gene expression data have been a long-standing basis for the identification of 
reprogramming factors (Heinäniemi et al. 2013; Roost et al. 2015; Lang et al. 2014; D’Alessio et 
al. 2015; Rackham et al. 2016).  The differential expression of transcription factors in a target 
cell type is an indicator of their potential as reprogramming factors. However, there may be both 
biological and experimental confounders in using expression data for identification of 
reprogramming factors. For example, it has been shown that sensory neurons of the dorsal root 
ganglia co-express many transcription factors as they are being specified but change their 
expression patterns to only express select transcription factors as they mature (Sharma et al. 
2020). Additionally, gene expression data does not provide information about whether proteins 
are present and actively binding DNA to control transcription. When gene expression datasets 
generated in different studies are used together, experimental confounders such as the differences 
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in measurements that result from nuclear or whole cell mRNA, or using different RNA 
amplification methods for sequencing. Network methods such as CellNet (Cahan et al. 2014; 
Morris et al. 2014; Radley et al. 2017) and Inferelator (Bonneau et al. 2006; Miraldi et al. 2019) 
have been shown to better prioritize transcription factor candidates through the incorporation of 
gene expression and transcription factor-gene interaction networks, but rely on massive 
repositories of RNA-seq data measured from perturbed cells to confidently learn these biological 
networks. As a result, these network-based methods are not generally applicable to novel data 
from a small number of experiments.  

Chromatin accessibility-based methods for identifying candidate reprogramming factors, 
such as HOMER, AME, DREME, and KMAC characterize over-represented transcription factor 
binding motifs in accessible chromatin in a target cell type or learn to predict the relationship 
between chromatin accessibility and DNA sequence (DeepAccess) or measure the differential 
accessibility of transcription factor sites (diffTF). ATAC-seq can measure the accessibility of 
chromatin in small cell populations and thus can be used with cells derived from in vivo samples, 
while DNase-seq requires a larger number of cells (Buenrostro et al. 2015; Liu et al. 2019). DNA 
sequences that are over-represented in accessible genomic regions typically contain informative 
transcription factor binding motifs.  Known motif enrichment or de novo motif discovery 
methods are commonly applied to ATAC-seq data, and require the selection of differentially 
accessible regions in the starting and target cell types. In using these methods, parameters such 
as choice of accessibility or histone mark genomic data, number and choice of genomic regions 
from target cells, and choice of background sequences using shuffled or natural genomic 
sequences must be chosen carefully to the generate the best quality results. GarNet (Tuncbag et 
al. 2016; Kedaigle and Fraenkel 2018) combines ATAC-seq and RNA-seq with the goal of 
identifying transcription factors which are likely to control differential gene expression, though 
methods that combine gene expression and chromatin accessibility may be subject to the same 
biological and experimental confounders faced by methods which rank transcription factors 
using differential gene expression.  

Overall, we find that methods that use chromatin accessibility have superior 
reprogramming factor discovery performance when compared with gene expression methods. 
We identify optimal accessible region selection strategies for sequence-based methods and using 
these optimal strategies, we find that AME has the most robust performance for transcription 
factor recovery, but DeepAccess is the best performer when ranking the significance 
transcription factors within reprogramming protocols. We also find that histone mark and EP300 
annotation do not significantly improve transcription factor recovery which suggests accessibility 
alone is sufficient to identify reprogramming factors for new target cell types.  

 

Results 
 
Chosen factor discovery methods use gene expression or chromatin 
accessibility 
The nine reprogramming factor discovery methods we evaluated used gene expression (EBSeq, 
CellNet), chromatin accessibility (DREME, AME, Homer, KMAC, diffTF, DeepAccess), or a 
combination of the two (GarNet) to identify transcription factors as reprogramming candidates 
based on their popularity and spanning a diverse set of methodological approaches for 
reprograming factor discovery. We evaluated the methods on their ability to identify 
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transcription factors that reprogram cells from a starting cell type (stem cells or fibroblasts), to 
eight possible target cell types (induced pluripotent stem cells, skeletal muscle cells, 
cardiomyocytes, definitive endoderm cells, hepatocyte cells, pancreatic beta cells, dopaminergic 
midbrain neurons, or spinal motor neurons) (Figure 1A).  We started with RNA-seq and ATAC-
seq data from primary cells with the exception of definitive endoderm where the endoderm cells 
were differentiated with small molecules (Cernilogar et al. 2019), and the basis of our evaluation 
was the reproduction of known reprogramming factors for each target cell type (Figure 1B). Both 
RNA-seq and ATAC-seq was collected from the same lab for each cell type with the exception 
of (Table S1) stem cells where our ATAC-seq and RNA-seq were from different sources. We 
uniformly processed the RNA-seq and ATAC-seq data (Methods).  

We used EBSeq and CellNet as our methods for discovering reprogramming factors from 
gene expression data.   EBSeq (Leng et al. 2013) ranks transcription factor differential 
expression between a starting and target cell type (Figure 1C).  CellNet (Cahan et al. 2014; 
Morris et al. 2014; Radley et al. 2017) ranks candidate factors based on their importance in a cell 
type specific regulatory network derived from perturbation-based gene expression datasets. We 
attempted to train a new CellNet model using our data from the replicated RNA-seq samples 
from our eight target cell types, but found the experimental data did not represent sufficiently 
informative perturbations to build cell type specific regulatory networks. Thus, we evaluated 
CellNet for 5 cell types (stem cell, hepatocyte, cardiomyocyte, skeletal muscle) with preexisting 
regulatory networks. Consequently, CellNet did not fit our criteria for methods which can be 
used to predict reprogramming transcription factors from new, perhaps difficult to collect, cell 
types.   
 We examined if the combination of differential gene expression and chromatin 
accessibility could improve reprogramming factor prediction with GarNet (Tuncbag et al. 2016; 
Kedaigle and Fraenkel 2018). Using a list of transcription factor putative binding sites, which 
can be derived from motif scanning or ChIP-seq, GarNet assigns binding sites that are present in 
accessible regions to their closest gene within a constrained distance. It then uses transcription 
factor scores per genomic site (such as ChIP binding signal or the strength of a motif match) to 
train a regression model to predict differential gene expression. The weights associated with a 
particular motif then indicate its potential importance in driving differential gene expression. 
 Finally, we explored methods for transcription factor motif discovery from chromatin 
accessibility data. We selected methods that are both widely adopted and varied in approach. 
From the MEME suite, DREME (Bailey 2011) performs de novo motif discovery by first 
identifying seed sequences as the top 100 significantly enriched words relative to background 
sequences, then performs a beam search based on the seed sequences to generalize words to 
PWMs. AME (Machanick and Bailey 2011) performs discriminative motif enrichment from an 
existing database of motifs represented by PWMs. HOMER (Heinz et al. 2010) first identifies 
the most globally enriched oligos (similar to DREME) then transforms them into PWMs which 
get further optimized with a sensitive local optimization algorithm. KMAC (Guo et al. 2018) also 
performs de novo motif discovery, but uses a k-mer representation of DNA binding motifs that 
was shown to better represent actual DNA binding sites by including features such as flanking 
nucleotides. For the de novo motif discovery methods (DREME, HOMER and KMAC), their 
output is the form of a list of position weight matrices representing enriched DNA binding 
motifs. To link this to transcription factor activity, we used Tomtom to determine whether each 
PWM significantly matched one or more known transcription factor motifs (Methods). As motif 
discovery methods rely on input choices that can affect their performance, we extensively tested 
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(1) the number of accessible regions input, (2) if differential regions were from the starting cell 
type or the top most accessible regions, and (3) the choice of background sequences.  

In addition to traditional motif discovery methods, we applied two complex methods for 
evaluating motif enrichment, diffTF and DeepAccess. We define complex methods to be those 
that incorporate read count information or model more complex regulatory grammars. Both 
complex methods also require access to high-performance computing. diffTF (Berest et al. 2019) 
uses the accessibility sequencing read counts within putative transcription factor binding sites 
(either from motif instances or ChIP-seq) to estimate the fold change in accessibility between 
two conditions for a given transcription factor. We also tested a deep learning estimate of 
transcription factor activity using DeepAccess, an ensemble of convolutional neural networks 
trained to predict chromatin accessibility across multiple cell types (Hammelman and Gifford 
2021; Hammelman et al. 2020). In previous work, we found that DeepAccess was successful in 
identifying DNA sequences driving differential accessibility between stem cells and definitive 
endoderm, as measured by a high-throughput reporter assay for chromatin accessibility 
(Hammelman et al. 2020). In order to rank transcription factors with DeepAccess, we utilize the 
Differential Expected Pattern Effect (Hammelman and Gifford 2021) to estimate transcription 
factor impact on chromatin accessibility using computational DNA sequence perturbation, where 
we simulate in silico an experiment where the DNA binding motif for a given transcription factor 
is inserted at a previously closed genomic locus. To rank transcription factors as reprogramming 
candidates, we estimate the Differential Expected Pattern Effect of these transcription factor 
motifs between the starting and target cell types. 
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Figure 1. Identifying transcription factors that reprogram starting cells to target cell types. A) Two common 
starting cell types, fibroblasts (skin cells) and pluripotent stem cells can be reprogrammed to 8 cell types through 
over-expression of reprogramming transcription factors. B) Transcription factors that have been previously 
implicated in reprogramming protocols. C) Methods for identifying reprogramming transcription factors from gene 
expression (RNA-seq) or chromatin accessibility (ATAC-seq). Output of these methods is either a ranked list of 
transcription factors or a rank representation of DNA binding domain of a transcription factor by a PWM. Most 
methods can be readily applied to new data, except CellNet which requires many samples from the same cell type to 
build cell type-specific regulatory networks. All methods that use chromatin accessibility data take in accessible 
regions, typically generated from a peak calling algorithm such as MACS2 as input. In contrast to more traditional 
approaches for identifying transcription factors, diffTF and DeepAccess both model more complex regulation by 
taking into account read counts, and DeepAccess can also predict accessibility of DNA sequences unseen in the 
genome for other downstream analyses such as cross-species prediction. 

6
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A consensus database of mouse transcription factor motifs simplified 
evaluation 
We used a custom clustered database of 107 mouse transcription factor motifs to simplify 
downstream analysis with transcription factor families that share highly similar motifs. Using the 
HOCOMOCOv11 database (Kulakovskiy et al. 2018) of 356 mouse transcription factor motifs, 
we computed the pairwise similarity between motifs using Tomtom (Gupta et al. 2007). We then 
applied Pearson’s correlation and affinity propagation clustering to obtain motif clusters. Affinity 
propagation clustering is a message passing algorithm that assigns a representative data point to 
each cluster, which can be weighted to select for ideal characteristics (Frey and Dueck 2007). In 
this case, the similarity metric was based on the information content of the motif. This resulted in 
107 transcription factor motifs representing major families of transcription factors (Figure S1).  
 
Optimization of accessible region selection for the AME, HOMER, DREME, 
and KMAC methods 
In order to identify transcription factors motifs that are enriched in accessible genomic regions of 
target cell types, motif discovery algorithms typically compare the prevalence of motifs in sets of 
positive (target) vs. negative (background) sequences. In order to identify the most effective 
parameters for motif discovery, we examined three attributes of input regions: 1) for positive 
sequences, we used either the most significant accessible regions ranked by MACS2 in the target 
cell type or the most significant accessible regions that are accessible in the target cell type and 
not accessible in the starting cell type of stem cells or fibroblasts, 2) for negative background 
sequences we used randomly shuffled positive sequences, enhancers shared across multiple cell 
types, or GC-content-matched randomly sampled genome sequences, and 3) the number of 
significant accessible regions to use as input (Figure 2A). For our enhancer background 
sequences, we used Mouse ENCODE project candidate enhancer annotations from 18 tissues, 
where enhancers were defined by both the presence of H3K4me1 and absence of H3K4me3 
(Shen et al. 2012). To be included in our background sequences, the enhancer had to be present 
in 15 out of 18 tissues resulting in a total of 2,609 general enhancers. For GC percentage content-
matched genome-sampled sequences, we used HOMER to generate sequences then ran AME, 
DREME, or KMAC using these sequences as background. Over all methods and input attributes, 
we ran a total of 150 experiments for transcription factor recall over our eight target cell types. 
Based on the area under the transcription factor recall curve within the top 10 ranked motifs 
averaged over the eight target cell types, we selected optimal strategies for each motif discovery 
method (Figure 2B; Table S2-3).  
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Figure 2. Selection of genomic regions impacts traditional DNA sequence-based methods for identification of 
transcription factors from chromatin accessibility. A) The 3 axes for selection of genomic regions are choice of 
top regions or regions that are target cell type-specific relative to starting cell type, choice of background sequences 
for discriminative motif discovery, and number of regions. For choice of background sequence, we chose to 
compare universal enhancer sequences to the method default, which for a majority of methods is di-nucleotide 
shuffled controls, except for HOMER which samples nucleotide-content matching sequences from the genome. B) 
For each traditional method, the best set of genomic regions are chosen based on transcription factor recovery of all 
8 cell types within in the top 10 ranked transcription factor motifs. For all methods, the best performing region 
selection used differential regions relative to some starting cell type and not top regions. The best performer for each 
method also used at least 5,000 or 5% of sequences. C) Overall reprogramming factor recovery for all region 
selections separated by choice of differentially accessible or top regions shows that using differential regions 
improve transcription factor recovery for all methods. D) Choice of default over enhancer background sequences 
improves recovery for DREME and HOMER methods but has little impact for AME and KMAC. E) Number of 
regions has impact on recovery for AME, with more regions leading to more recovery, while other method 
performance appears to be less impacted by number of regions.  
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 We found that all methods were improved by the use of regions that were accessible in 
the target cell type and not in stem cells or fibroblasts, with stem cells as a preferred starting cell 
type for 3 out of 4 methods (Figure 2C; Table S3). We then investigated the performance given 
the choice of background sequences for discriminative motif discovery. GC%-matched genome-
sampled background sequences improved performance for AME, DREME, and HOMER over 
shuffled or multi-tissue enhancer sequences. Due to the memory required for oligo-based motif 
discovery, we were unable to consistently run KMAC using the 40,000 – 50,000 genome-
matched background sequences generated by HOMER. One notable difference was that 
enhancer-based background sequences performed well for AME but not for DREME or 
HOMER. One possible reason is the first seed oligo selection step that is common to both 
DREME and HOMER that may be affected when the number of background sequences is 
significantly different from the input sequences. In contrast to other input attributes, the number 
of input sequences had little effect on performance for most methods, except using the top 1% of 
sequences appeared to be too few to robustly recover transcription factors (Figure 2E). Overall, it 
seemed that using 5,000-10,000 input sequences yielded robust success across all methods, as 
taking the top 5-10% of regions typically also fell in this range (Figure 2B).  

 
Addition of histone mark and EP300 information does not impact 
performance of sequence-based methods 
One question important for prioritizing experiments for stem cell biologists is whether the 
addition of histone mark or EP300 data which further implicates genomics regions as cell type-
specific cis-regulatory elements would improve performance for transcription factor recovery.  
Such histone marks have helped to improve enhancer recall in previous work (Fu et al. 2018). 
Since matched histone mark data was not available for all cell types, we focused on the liver 
where we could use ATAC-seq, H3K27ac, H3K4me3, EP300, and H3K4me1. The area under 
the recall curve (Figure 3A) and the area under the recall curve for transcription factors that rank 
less than 10 (Figure 3B) did not appear drastically different when ATAC-seq regions were 
required to overlap with EP300 or H3K27ac. Performance slightly decreased when using 
H3K4me1 or H3K4me3 data. The decrease in performance using H3K4me3 data is unsurprising 
given its known role in marking active promoters which may exclude enhancer regions that 
contain important transcription factor binding sites (Wamstad et al. 2014). We also examined the 
overlap of ATAC-seq with the three epigenomic signals marking active enhancers, EP300, 
H3K27ac, and H3K4me3 and found when selecting input sequences based on these criteria, the 
performance was similar to ATAC-seq and EP300 or ATAC-seq alone (Figure 3A-B). Using 
best performing choice of genomic-matched, shuffled, or enhancer background sequences, 
number of regions, and choice of stem cell or fibroblast to eliminate regions that were not cell 
type-specific, we found that H3K27ac, H3K4me1, or EP300 information did not significantly 
change the identification of reprogramming factors which is consistent with previous work 
suggesting that accessibility and H3K27ac have similar levels of accuracy in predicting 
enhancers validated by transgenic mouse assays (Fu et al. 2018). However, similar to the trend 
over all iterations of region selection the use of H3K4me3 resulted in marked decrease in 
recovery of transcription factors (Figure 3C). We also examined the particular transcription 
factors found with each histone mark and found no bias in transcription factors recovered by a 
particular epigenomic signal that was consistent across methods (Figure 3D).    
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Figure 3. Use of histone mark and EP300 annotation does not significantly impact transcription factor 
recovery. A) Area under the recall curve for 4 methods (KMAC, AME, HOMER, and DREME) on hepatocyte 
transcription factor recovery shows an overall robust performance for all histone marks, except a slight dip in 
performance for H3K4me3 and overlap of EP300, H3K27ac, and H3K4me1. B) Area under the recall curve at rank 
less than 10 for 4 methods (KMAC, AME, HOMER, and DREME) on hepatocyte transcription factor recovery. C) 
Recall curves for the method with best area under the recall curve for rank less than 10 shows similar performance 
for ATAC, EP300, H3K27ac with lowered performance for H3K4me1, H3K4me3, and the overlap of all enhancer 
histone marks. D) Rank of each reprogramming transcription factor for each method and each genomic signal shows 
similar transcription factors recovered with similar rankings for all methods.  
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Chromatin accessibility methods are highly effective for transcription factor 
recovery and significance ranking 
We then evaluated all RNA-seq and ATAC-seq methods on their ability to identify known 
reprogramming factors. Overall, we find that chromatin accessibility methods outperform gene 
expression-based methods in terms of factor recall (Figure 4A). In particular, HOMER, AME, 
DeepAccess, and diffTF all robustly identify known reprogramming factors within the top 10 
motifs. These trends hold across our 8 target cell types (Figure 4B). Looking at the performance 
as area under the recall curves for each cell type showed that AME, diffTF, and DeepAccess are 
more robustly able to identify a large number of reprogramming factors, likely because these 
methods place a prior on the discovery of motifs by using a transcription factor database (Figure 
4C). When the recall curve is restricted to the top 10 ranked motifs, it shows that HOMER has 
impressive performance as a de novo motif discovery method in identifying reprogramming 
factors within its top enriched motifs (Figure 4D; Table S3). For 5 out of the 9 algorithms tested, 
using stem cells as the starting cell state resulted in a better recall of transcription factors over 
fibroblast though these performance differences were overall subtle (Figure S3; Fraction 
recovered at rank less than 10 – DREME: 0.42 (fibroblast), 0.44 (stem cell); AME: 0.55 
(fibroblast), 0.68 (stem cell); KMAC: 0.21 (fibroblast), 0.24 (stem cell); HOMER 0.45 
(fibroblast), 0.32 (stem cell); DeepAccess: 0.38 (fibroblast), 0.32 (stem cell); diffTF:  0.59 
(fibroblast), 0.56 (stem cell); EBSeq 0.26 (fibroblast), 0.35 (stem cell); GarNet: 0.17 (fibroblast), 
0.2 (stem cell)).  

Against our expectations, GarNet’s incorporation of gene expression with chromatin 
accessibility appeared to degrade rather than improve transcription factor recovery. There are 
several possible explanations for this observation that are not mutually exclusive: 1) by 
conditioning on proximity to genes, we eliminate distal accessible regions which have important 
regulatory function in reprogramming or accessible regions that may be cell type-specific but 
regulate genes that are not differential between starting and target cells, 2) transcription factor 
binding sites cannot be assumed to regulate their closest genes, or 3) transcription factor motif 
match score is not a good quantifier of impact of the transcription factor on gene expression. In 
order to test whether conditioning on proximity to genes had an impact on GarNet’s 
performance, we tested GarNet’s ability to identify transcription factors using 2kb, 10kb, or 
100kb distance thresholds as limits to transcription factor:gene relationships. We found that the 
choice of distance threshold had little impact on GarNet’s performance (Figure S2).  

When examining transcription factor rank within each cell type, it appeared that certain 
motifs were more robustly found across many methods, though only a few motifs were found by 
the best performer for all methods (Figure 4E). diffTF and DeepAccess were the only two 
methods that highly ranked the Oct4/Sox2 heterodimer motif, which is notable as a well-known 
transcription factor pair in both reprogramming (Yamamizu et al. 2013; Takahashi and 
Yamanaka 2006) and in manipulating nucleosomes to increase chromatin accessibility (Soufi et 
al. 2015). The disagreement in ranking between different methods led us to question whether 
methods were able to predict the relative significance of known reprogramming factors. From the 
literature, we found evidence of reprogramming factor significance for liver, pan-neuronal, and 
motor neuron by impact of over-expression of factors on reprogramming efficiency (Yamamizu 
et al. 2013; Simeonov and Uppal 2014) and evidence of significance in cardiomyocyte from 
tuned expression vector of Gata4, Tbx5, and Mef2c (Bai et al. 2015) as well as evidence of the 
significance of Gata4 in cardiomyocyte reprogramming from leave-one-out experiments (Jin et 
al. 2018). We then computed the correlation between true rank and observed rank for each 
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method. Overall, we found that DeepAccess had the strongest correlation between true and 
observed rank (Figure 4F), with diffTF and AME ranking second and third.  

 

Figure 4. Complex chromatin methods are top performers for transcription factor recovery and significance 
ranking. A) Evaluation of 9 methods (2 entirely RNA-seq-based, 1 RNA-seq and ATAC-seq, 4 traditional ATAC-
seq, 2 complex ATAC-seq) shows superior performance of AME, DeepAccess, and diffTF in transcription factor 
recovery. B) Evaluation of methods for each cell type shows superior methods generally perform well across all cell 
types. C) Area under recall curve for each method in each cell type shows AME, diffTF, and DeepAccess are able to 
robustly cover transcription factors. D) Area under recall curve at rank less than 10 for top performer for each 
method in each cell type shows HOMER is able to highly rank important transcription factors. E) Rank of 
reprogramming transcription factors for each method and each cell type. F) Transcription factors ordered by 
significance based on literature shows DeepAccess, diffTF, and AME are more likely to correctly rank the 
significance of transcription factor candidates.   
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Discussion 
Efficient and accurate transcription factor candidate prioritization for cellular reprogramming is 
an important unsolved problem. We evaluated eight complementary methods for this task on 
their ability to rediscover existing reprogramming protocols. These methods fell into three broad 
categories: gene expression-based, traditional epigenomic-based, and complex epigenomic-
based.  

Among the expression-based methods, CellNet represents a class of methods that use 
perturbation experiments to build a cell type-specific gene regulatory network. From these 
networks, hub genes are identified as potential targetable candidates for reprogramming. 
However, we found that while CellNet outperformed EBSeq for methods that use differential 
gene expression (Figure 4A), it was impossible to apply CellNet to new gene expression data 
with only few unperturbed replicates of the experiment. Another method that builds a regulatory 
network is GarNet, which links genes to proximal transcription factor binding sites within 
accessible genomic regions to build a transcription factor:gene regulatory network. GarNet then 
uses sparse linear regression to rank transcription factor candidates. While GarNet is a 
compelling approach as it combines gene expression information and accessibility information, 
we found that it did not outperform other chromatin accessibility methods (Figure 4A) which 
suggests that GarNet’s assumptions may not be optimal. For example, GarNet assumes that 
transcription factors within enhancers regulate their closest genes, and that factor binding 
strength is represented by PWM match score. Future research could apply GarNet using known 
enhancer:gene interactions from 3D interactome data and transcription factor binding strength 
from ChIP-seq to determine whether modifications to these assumptions can improve its 
performance.  

We then compared all nine methods on their ability to recover transcription factors from 
eight cell types with successful differentiation protocols (Figure 1A). Overall, we found that 
AME, DeepAccess, and diffTF were able to outperform expression-based methods (Figure 4A- 
C).  We found that AME was the top performer in reprogramming factor recovery when looking 
at all ranked motifs for each method (Figure 4A,C). However, when looking at only the top 10 
ranked motifs, we found that HOMER was also very effective (Figure 4D). Methods such as 
AME, DeepAccess, GarNet, and diffTF rely on pre-existing motif databases that may be missing 
certain transcription factors entirely and cannot discover novel motifs such as a motif resulting 
from the binding of a heterodimer of two transcription factors. We also noticed a high variance 
for all methods in transcription factor recovery within the top 10 motifs (Figure 4D), which may 
be related to data quality but is difficult to disentangle from possible biological confounders like 
the developmental timepoint of the collected data or the complexity of the regulation of 
differentiation for different cell types.   

Certain transcription factors were uniformly highly ranked across methods, while 
transcription factors such as Oct4/Sox2 motif were highly ranked only by the complex chromatin 
accessibility methods, diffTF and DeepAccess (Figure 4F). Observation of rank differences 
between methods lead us to ask whether certain methods were better at identifying the most 
significant transcription factor. We found evidence from the literature that supported ranking 
transcription factors within a reprogramming protocol, either through reprogramming efficiency 
of single transcription factor over-expression or through expression level optimization and leave-
one-out experiments (Figure 4F). While metrics for reprogramming efficiency and specific cell 
type can make these comparisons difficult, significance ranking is an important additional metric 
as the transcription factors that are chosen to be included in a reprogramming protocol by ad-hoc 
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methods may bias the results seen from evaluating recovery performance alone. diffTF and 
DeepAccess both were able to correctly rank the significance of transcription factors within 
reprogramming protocols (Figure 4F), indicating that there are advantages in using complex 
methods for identifying transcription factors from chromatin accessibility. Both methods also 
provide additional value beyond transcription factor discovery or enrichment. Predictive deep 
learning models like DeepAccess have been used to predict causal variants (Zhou and 
Troyanskaya 2015; Kelley et al. 2016, 2018), interpret complex genomic grammar (Koo et al. 
2018; Avsec et al. 2020; Kim et al. 2020), and identify evolutionarily orthologous enhancers 
(Kelley 2020; Minnoye et al. 2020). In contrast with all other approaches, DeepAccess 
predictions for transcription factor effect come from designed genomic sequences containing 
transcription factor motifs. Therefore, DeepAccess can used to probe more complex regulatory 
grammar such as transcription factor combinations or spacing. Despite a tradeoff in 
computational expense of training neural networks, DeepAccess may be preferred if the user 
intends to investigate regulatory logic beyond transcription factor activity. In contrast, diffTF 
may desirable for its statistical approach if another goal is to be able to identify whether 
individual binding sites are differentially accessible. 

While we found that expression-based methods were worse performers than accessibility-
based methods for transcription factor recovery, we note that comparing performance between 
chromatin accessibility methods and gene expression methods is imperfect. We require perfect 
transcription factor matches when evaluating CellNet and EBSeq, while we require transcription 
factor family matches for GarNet, HOMER, AME, DREME, KMAC, diffTF, and DeepAccess. 
Ultimately, the best approach is likely to incorporate expression and accessibility data, but rather 
than taking GarNet’s approach to using expression to filter accessible regions and rank 
transcription factors, our results would suggest it is best to first use chromatin accessibility alone 
to select transcription factor families and then use gene expression to select differentially 
expressed transcription factors within each family.  

In evaluating methods, the best methods only reached 50-60% recall of reprogramming 
factors within the top 10 motifs, indicating there is still room for methodological advancements. 
Single cell expression data may provide sufficient information for methods such as CellNet to be 
applied with less experimental burden. Methods like GarNet that use both expression and 
accessibility may require further exploration to determine optimal approaches to combine these 
data. Methods such as diffTF and GarNet that rely on input of transcription factor binding sites 
may suffer from issues in determining an appropriate binding cutoff based on PWM information 
alone, and could be combined with more complex binding prediction models like DeepBind 
(Alipanahi et al. 2015) to improve performance.   

A limitation of our work is that we assumed there were no alternative factors to the ones 
present in the reference reprogramming protocols we utilized. This assumption ignores 
potentially better candidates that are experimentally uncharacterized. We examined whether 
there were any potentially novel reprogramming targets that were consistently ranked by 
HOMER, AME, DeepAccess, and diffTF (Table S4). Among these, we found NFI half-motif 
which was identified by 3 out of the 4 methods as a potential skeletal muscle regulator. Indeed, 
NFIX has been previously implicated in skeletal muscle development (Pistocchi et al. 2013; 
Messina et al. 2010). Hnf1 and Rfx were ranked by all methods within the top 10 motifs for beta 
pancreatic cells, with Hnf1 having a role in early progenitor development of endocrine cells (De 
Vas et al. 2015) and Rfx transcription factors playing an important role in adult pancreatic cell 
functional development (Ait-Lounis et al. 2010; Piccand et al. 2014). Experimental methods to 
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evaluate transcription factors in parallel through transcription factor screens (Liu et al. 2018; 
Yang et al. 2019; Black et al. 2020; Genga et al. 2019; Ng et al. 2020; Nakatake et al. 2020) or 
high-throughput reporter assays for functional transcription factor activity such as chromatin 
accessibility (Hammelman et al. 2020) would allow us to expand our evaluation of methods to 
their ability to propose novel factors. 

Overall, we found that chromatin accessibility-based methods recover the most known 
reprogramming transcription factors. We suggested methods for optimal region selection for 
traditional accessibility-based methods, and suggest that there are some performance benefits to 
using complex accessibility-based methods that perform more statistical or complex sequencing 
modeling of epigenomic data. We hope that our comprehensive evaluation of transcription factor 
reprogramming ranking and recovery will contribute to a basis for motif analysis procedures and 
a standard evaluation metric in the development of novel computational methods.  
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Methods 
 
Data and Code Availability 
The consensus mouse transcription factor motif database, shared mouse enhancer sequences, and 
a list of mouse transcription factors as well as a script for performing motif discovery with AME, 
DREME, HOMER, and KMAC is available at 
https://cgs.csail.mit.edu/ReprogrammingRecovery/. 
 
Publicly available ATAC-seq and RNA-seq samples were downloaded as fastqs from Nucleotide 
Read Archive and processed as described in sections ATAC-seq processing and RNA-seq 
processing below. Uniformly processed gene count and peak files are also available at 
https://cgs.csail.mit.edu/ReprogrammingRecovery/. 
 
ATAC-seq processing 
Reads were trimmed for adaptors and low-quality positions using Trimgalore (Cutadapt v0.6.2). 
Reads were aligned to the mouse genome (mm10) with bwa mem (v0.7.1.7) with default 
parameters. Properly paired mapped reads were filtered, and accessible regions were called using 
MACS2 (v2.2.7.1) with the parameters -f BAMPE -g mm -p 0.01 --shift -36 --extsize 73 --
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nomodel --keep-dup all --call-summits. Accessible regions that overlapped genome blacklist 
regions (encode blacklist regions ENCSR535HHO) were excluded from downstream analysis.  
 
RNA-seq processing 
Reads were trimmed for adaptors and low-quality positions using Trimgalore (Cutadapt v0.6.2). 
Reads were aligned to the mouse genome (mm10) and gene-level counts were quantified using 
RSEM (v1.3.0) rsem-calculate-expression using default parameters and STAR (v2.5.2b) for 
alignment.  
 
DeepAccess Training and Interpretation 
We trained DeepAccess on data from ten cell types: stem cell, fibroblast, hepatocyte, endoderm, 
beta pancreatic cell, alpha pancreatic cell, cardiomyocyte, skeletal muscle, dopaminergic 
midbrain neuron, and spinal motor neuron using binary crossentropy loss (multitask 
classification) with 4,812,987 genomic regions for training: 3,133,509 regions were open in at 
least 1 cell type, and 1,679,478  regions were closed in all cell types (sampled with HOMER to 
match GC content % of accessible regions in genome). Chromosome 18 and chromosome 19 
were held out for validation and training, respectively. To define training regions for 
DeepAccess, we generate 100bp genomic windows across the entire mouse genome. We define a 
region as accessible in a given cell type if more that 50% of the 100bp region overlaps a MACS2 
accessible region from that cell type. We then compute the Differential Expected Pattern Effect 
(Hammelman and Gifford 2021) for all transcription factor motifs within the consensus database 
between the target and starting cell types.   
 
CellNet analysis 
We ran CellNet using the provided mouse network and our fibroblast RNA-seq sample replicates 
as input to obtain a list of ranked genes.  
 
Transcription factor list curation and differential expression with EBSeq 
After RSEM quantification, EBSeq was run with the RSEM wrapper rsem-run-ebseq. Genes 
were filtered to fdr p < 0.05. Analysis was limited to a list of 1,374 transcription factors derived 
from (Lambert et al. 2018), which were sorted by EBSeq estimates of change in expression 
between target and starting cell types. List of mouse transcription factors is available at 
https://cgs.csail.mit.edu/ReprogrammingRecovery/. 
 
GarNet analysis 
PWMScan (v1.1.0) was used to identify transcription factor motif instances in the genome for 
the 107 consensus transcription factors. Since GarNet builds transcription factor:gene networks 
using proximity assignment, we built 3 GarNet networks where transcription factor influence 
was set to a threshold of 2kb, 10kb, or 100kb from transcription start sites. Then, GarNet was run 
for each starting cell type, target cell type pair with an input of differential expression (fold 
change) for genes with fdr < 0.05 for differential gene expression as estimated with EBSeq, and 
target cell type MACS2 accessible regions. Transcription factor rank was determined by the 
value of the slope.   
 
AME analysis 
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AME was run with default parameters with “--control -–shuffle--” for a dinucleotide shuffled 
(default) background or enhancer background sequences were provided.  
 
DREME analysis 
DREME was run with default parameters. 
 
HOMER analysis 
For default background, HOMER was run using the command findMotifsGenome.pl target.bed 
mm10 target-homer -size given. For enhancer background, HOMER was run using the command 
findMotifs.pl target.fa fasta target-homer -fasta enhancer.fa.  
 
KMAC analysis  
KMAC was run with the parameters --k_win 100 --k_min 4 --k_max 13 --t 1 --k_seqs 10000 --
k_top 10 --gap 4.  
 
diffTF analysis 
PWMScan (v1.1.0) was used to identify transcription factor motif instances in the genome for 
the 107 consensus transcription factors. Then, diffTF was run with pairs of starting cell type, 
target cell type data sets with default parameters. Input was MACS2 accessible peaks and 
ATAC-seq aligned reads for sample replicates.  
 
De novo method transcription factor matching 
To match transcription factor motifs to their best motif match for a known reprogramming 
transcription factor, we ran Tomtom (v5.0.5) with default parameters and set a threshold of a 
motif match with q-value < 0.05. The lowest rank (most enriched) motif that a given 
reprogramming transcription factor is assigned to that transcription factor.  
 
Software 
Software Source Identifier 
DeepAccess (Hammelma

n and 
Gifford 
2021) 

https://cgs.csail.mit.edu/DeepAccessTransfer/ 

Bioconda 
project 

(Grüning et 
al. 2018) 

https://bioconda.github.io/ 
 

Conda 
package 
manager 4.9.0 

Continuum 
Analytics, 
Inc. 
 

https://docs.conda.io/en/latest/ 
 

Bedtools 
2.29.2 

(Quinlan and 
Hall 2010) 

https://bedtools.readthedocs.io/en/latest/ 

trimgalore  https://www.bioinformatics.babraham.ac.uk/projects/trim_galor
e/ 
 

cutadapt 0.6.2 (Martin 
2011) 

https://cutadapt.readthedocs.io/en/stable/ 
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samtools 1.7 (Li et al. 
2009) 

http://www.htslib.org/ 
 

bwa 0.7.17 (Li 2013) http://bio-bwa.sourceforge.net/ 
 

MACS2 
2.2.7.1 

(Zhang et al. 
2008) 

https://github.com/taoliu/MACS 
 

FastQC 
0.11.8 

(Andrews 
2010) 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
 

STAR 2.5.2b (Dobin and 
Gingeras 
2015) 

https://github.com/alexdobin/STAR/releases 
 

RSEM 1.3.0 (Li and 
Dewey 2011) 

https://deweylab.github.io/RSEM/ 
 

R 3.6.1 R Core Team 
 
https://www.R-project.org/ 

 

EBSeq 1.2.0 (Leng et al. 
2013) 

https://deweylab.github.io/RSEM/ 
 

CellNet 0.1.0 (Cahan et al. 
2014; Radley 
et al. 2017) 

https://github.com/pcahan1/CellNet 
 

GarNet 0.5.0 (Tuncbag et 
al. 2016; 
Kedaigle and 
Fraenkel 
2018) 

https://github.com/fraenkel-lab/GarNet 
 

HOMER 
4.9.1 

(Heinz et al. 
2010) 

http://homer.ucsd.edu/homer/ 

MEME suite 
5.0.5 

(Machanick 
and Bailey 
2011; Bailey 
2011) 

http://meme-suite.org/ 
 

KMAC 
(GEM 3.4) 

(Guo et al. 
2018) 

http://groups.csail.mit.edu/cgs/gem/kmac/ 
 

diffTF 1.7.1 (Berest et al. 
2019) 

https://difftf.readthedocs.io/en/latest/ 
 

PWMScan 
1.1.1 

(Ambrosini 
et al. 2018) 

https://ccg.epfl.ch/pwmtools/ 
 

Other   
HOCOMOC
O v11 
database 

(Kulakovski
y et al. 2018) 

https://hocomoco11.autosome.ru/ 
 

GENCODE 
vm24 

(Frankish et 
al. 2019) 

https://www.gencodegenes.org/mouse/releases.html 
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