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Abstract

The gut microbiota features important genetic diversity, and the specific spatial features of the gut
may shape evolution within this environment. We investigate the fixation probability of neutral bacterial
mutants within a minimal model of the gut that includes hydrodynamic flow and resulting gradients of food
and bacterial concentrations. We find that this fixation probability is substantially increased compared
to an equivalent well-mixed system, in the regime where the profiles of food and bacterial concentration
are strongly spatially-dependent. Fixation probability then becomes independent of total population size.
We show that our results can be rationalized by introducing an active population, which consists of those
bacteria that are actively consuming food and dividing. The active population size yields an effective
population size for neutral mutant fixation probability in the gut.

Introduction

In the human body, bacteria are approximately as numerous as human cells, and about 99% of these bacteria
are located in the digestive tract [1]. The gut microbiota is very diverse, and collectively harbors more genes
than there are human genes [2]. One source of this genetic diversity is evolution occurring within the gut, which
is the natural environment of these bacteria. Such evolution can have important public health implications,
as the gut can constitute a reservoir of antibiotic resistance, both in humans and in farm animals [3]. How
does the environment in the gut affect the evolution of bacteria? A crucial feature of the gut is the flow of
its contents along its main axis, and the associated gradients of concentration of food and bacteria. Going
downstream along this axis, food is first ingested, then simple nutrients are absorbed by the body, next more
complex molecules are broken down by bacteria, and eventually what remains of the food exits the system,
together with many bacteria, which make up from a quarter to half of fecal mass [4]. These features yield a
very particular spatial structure that can impact the evolution of bacteria.

Evolutionary models that investigate population spatial structure generally consider discrete patches of pop-
ulation with migrations between them, and the same environment in each of them [5–13]. Complex spatial
structures are investigated through models on graphs where each individual [14–17] or each patch of popula-
tion [18–21] occupies a node of the graph. Population structure can impact the rapidity of adaption [22–28]
because local competition can allow the maintenance of larger genetic diversity. In simple population struc-
tures where migration is symmetric between patches [5, 6], the fixation probability of a mutant is unaffected
by population structure [7, 8], unless extinctions of patches occur [11]. However, more complex population
structures with asymmetric migrations can impact the fixation probabilities of beneficial and deleterious mu-
tants [13, 14, 21]. In the case of the gut, the flow can be viewed as yielding asymmetric migrations, but the
system is continuous. In large-scale turbulent systems, hydrodynamic flow has been shown to strongly impact
fixation probabilities and fixation times [29–31]. In addition, environmental gradients, e.g. of antibiotic concen-
tration, can strongly impact evolution [32–35]. How do population structure, hydrodynamic flow and gradients
shape the evolution of bacteria in the gut microbiota?

Here, we propose a minimal model of evolution of bacteria in the gut. Because most bacteria in the human
digestive tract are located in the bulk of the colon lumen [1, 36], we focus on this compartment. Since most
bacteria in the digestive tract have no self-motility [37, 38], we consider that they are carried passively with the
digesta. The motion of the digesta is complex, but it was shown in Refs. [39, 40] that it can be approximated as
a one-dimensional flow with net velocity and effective diffusion representing mixing. Within this model of the
gut that includes hydrodynamic flow and resulting gradients of food and bacterial concentrations, we ask how
the fixation probability of a neutral mutant compares with that in an equivalent well-mixed chemostat. We find
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that the structure of the gut can increase this fixation probability, specifically in the regime where the profiles of
food and bacterial concentration are strongly spatially-dependent. In this regime, fixation probability becomes
independent of total population size, in stark contrast with a well-mixed population, where fixation probability
is inversely proportional to total population size [41, 42]. We show that this behavior can be understood by
introducing the notion of active population, which corresponds to the fraction of the bacterial population that
is actively consuming food and dividing.

Model and methods

Because the majority of bacteria in the human digestive tract are in the colon [36], we focus on this compartment.
Within the colon, there are marked differences between bacteria associated to mucus and bacteria in the digesta,
i.e. in the bulk of the colon lumen [36]. The latter constitute the majority of bacteria in the colon. Indeed, the
surface area of the large intestine, including its folds, is about 2 square meters [43], while the mucus layer is
about 100− 300 µm thick [44], and typically comprises a few 108 bacteria per milliliter in healthy samples [45],
which leads to an order of magnitude of 1011 bacteria associated to mucus. This number is small compared to
the total colon content, which is around 1014 bacteria [1]. Since mucus-associated bacteria constitute a small
minority in the colon, and since their spatial structure and migration patterns are not well characterized, we
focus on the bacteria present in the bulk of the colon lumen, and do not model the mucus layer. Henceforth,
we refer to the colon lumen by “gut” for simplicity.

The dynamics of wild-type and mutant bacteria and food in the gut is described through three concentration
fields, of food F , wild-type bacteria B and mutant bacteria M , based on the description of the coupled dynamics
of food and bacteria (without mutants) developed in Ref. [39]. The gut is represented by a tube of length L
and cross-section with surface area S (Figure 1A). In addition to this cylindrical symmetry, we neglect radial
variations, and are left with a one dimensional model along the x axis, specifically a segment of length L. We
assume a constant inflow of nutrients at the entrance of this gut segment and no inflow of bacteria. At the
exit of the gut, we assume that there is a free outflow of both nutrients and bacteria. The dynamics is affected
by the constant flow velocity v, by the mixing due to different mechanisms e.g. peristaltic movement, which
is modelled by effective diffusion with diffusion coefficient D, and by the harvesting of the food by bacteria,
which is described by a Hill-type function with Monod constant k, and is coupled to their growth which has
maximal rate r. This leads to the following coupled partial differential equations:

∂F

∂t
= D

∂2F

∂x2
− v ∂F

∂x
− r

α

(B +M)F

k + F
, (1a)

∂B

∂t
= D

∂2B

∂x2
− v ∂B

∂x
+ r

BF

k + F
, (1b)

∂M

∂t
= D

∂2M

∂x2
− v ∂M

∂x
+ r

MF

k + F
, (1c)

with boundary conditions

−D∂[F ;B;M ]

∂x
(x = 0) + v[F ;B;M ](x = 0) = [vFin; 0; 0] , (2a)

−D∂[F ;B;M ]

∂x
(x = L) = [0; 0; 0], (2b)

where [F ;B;M ] denotes a vector. Here vFin is the food inflow at the entrance of the gut segment, while α denotes
the yield of the conversion from food to bacteria. Note that there is zero inflow of bacteria, in agreement with
observations that bacterial concentration in the smaller intestine is orders of magnitude smaller [36, 39, 40]. The
boundary conditions at x = L cancel the diffusive flux, corresponding to free outflow toward the downstream
part of the colon.

In our study of the fate of mutants appearing in the gut, initial conditions are

F (t = 0, x) = F ∗(x), (3a)

B(t = 0, x) = B∗(x), (3b)

M(t = 0, x) =

{
M0, |x− xM| ≤ ∆x/2,

0, |x− xM| > ∆x/2,
(3c)

where F ∗ and B∗ represent the steady state of system 1 without mutant bacteria, while xM ∈ (0, L) is the
position in the gut where the mutant appears, while ∆x is a short length, taken equal to the spatial discrete
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step in our numerical resolutions, and M0 � B(xM) is the initial local concentration of mutant at this location.
In practice, M0 is set through NM = M0S∆x, where S is the surface area of the section of the gut, so that the
total number NM of mutants introduced in the system is always the same, and our results do not depend on
∆x as long as it is small compared to the length scale over which concentrations vary.

The partial differential equations in Eqs. 1 with boundary conditions in Eqs. 2 and initial conditions in Eqs. 3
were solved numerically (Supplementary material Section S1, and code publicly available [46]).

Results

Spatial dependence of the steady-state bacterial concentration

Our aim is to study the fate of neutral mutants appearing in the gut, starting from initial conditions where the
concentrations of food and wild-type bacteria are at steady state (see Eqs. 3). Therefore, we start by describing
the steady-state profiles of food and wild-type bacteria in the mutant-free gut.

Steady-state solutions of the spatial model described by Eqs. 1 can strongly depend on the spatial coordinate x
for some values of flow velocity v, and effective diffusion constant D, as exemplified by Figure 1B. Such strong
spatial dependence is relevant in the ascending colon [40], which is our focus here. We quantify the spatial
dependence of the concentration profiles through the difference between food concentration at the entrance and
at the exit of the gut, normalized by the incoming food concentration Fin, namely [F (0)− F (L)]/Fin. A heat
map of this quantity is depicted in the (v,D)−parameter space in Figure 1C. We observe diverse levels of spatial
dependence, ranging from strongly spatial profiles to quasi-flat ones, where the system is almost well-mixed
and resembles a chemostat, or where bacteria are washed out by the flow [39, 40] (see Figure S1 for examples of
concentration profiles across these regimes). There are two washout limits. First, for large diffusion coefficients,
if the flow timescale is smaller than the replication timescale, bacteria exit the system before reproducing.
Second, for small diffusion coefficients, on the timescale of one replication, if the characteristic length of flow is
larger than that of diffusion, bacteria are washed out (see Supplementary material Section S3 and Figure S2).

To compare our spatial system to a well-mixed one, we consider a chemostat [47] with the same total number
of bacterial reproductions NR per unit time as in the spatial system, which is

NR = S

∫ L

0

B(x)ρ(x)dx, (4)

where S is the surface area of the gut section, while ρ(x) is the reproduction rate of bacteria, which can be
expressed using food concentration as in Eqs. 1:

ρ(x) = r
F (x)

k + F (x)
. (5)

This reproduction rate strongly depends on the spatial coordinate in the spatial regime of the concentration
profiles, see Figure 1B. Once the total number of reproductions is matched, it is possible to impose an additional
matching condition, and we consider three possibilities for it in the Supplementary material (see Section S4).
These matching conditions allow to set the parameters characterizing the chemostat matching the spatial
system, namely its dilution rate, food inflow and volume. In all cases, we observe that matching chemostats
feature extreme values for some of these parameters (see Figure S3), which arises from the very small outflow
of food in the spatial system (see Supplementary material Section S4). These results emphasize that the large
intestine is a highly efficient system for converting unabsorbed nutrients into bacteria.
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Figure 1: Model of the gut and associated spatial gradients. A: Schematic representation of the gut model
investigated. We consider a cylinder with length L and neglect concentration variations in the radial direction, thus
simplifying the system to one dimension along the x axis. Transport is modeled as flow with constant velocity v and
effective diffusion coefficient D. At the upstream boundary x = 0 we consider constant food inflow, and no bacteria
inflow, while at the downstream boundary x = L we consider zero diffusive outflow. B: Concentration F of food, amount
B of bacteria, and reproduction rate ρ of bacteria versus the coordinate x along the gut. Curves are numerical solutions of
Eq. 1 for D = 0.2 cm2/h, v = 0.5 cm/h, k = 0.1 mM, r = 0.42 h−1, vFin = 1 mM cm/h, α = 6.13× 108 bacteria/(mL mM)
and no mutant bacteria. The section area, S, is taken to be 1 cm2 in the entire paper, and the length L is 6 cm, as in the
mini-gut of Ref. [39], in the main text, but is varied in the Supplementary material (see Section S9). The parameters are
chosen such that they fall in range of parameters compared to the experiments in [39] and that the concentration profile
is dependent of the spatial coordinate. The depicted concentrations represent the state of the system after numerically
integrating partial differential Eqs. 1 for time t =500 h which is sufficient to reach the steady state. C: Heat map of the
level of spatial dependence of the concentration profiles, quantified by [F (0)− F (L)]/Fin, versus v and D. High values
of [F (0) − F (L)]/Fin (red) mean strong gradients in the gut. Magenta and green lines represent washout limits, resp.
D = v2(k/Fin + 1)/(4r) and v = rL/(k/Fin + 1). Below the magenta line and on the right side of the green line, there
are no bacteria in the gut at steady state, while in the purple region on the top left hand side, the system is well-mixed,
leading to an almost uniform but non-zero concentration of bacteria in the gut. Parameter values (except v and D) are
the same as in panel B. The values of v and D used in panel B are indicated by a circular cyan marker. Arrows and
symbols on the right hand-side of the heat map indicate the diffusion coefficient values employed in Figure 4 with the
same symbols.

Dynamics and fate of neutral mutants appearing in the gut

Let us now consider neutral mutants that spontaneously appear in the gut at steady state. Mutants may appear
at any position along the gut, which can feature strong spatial heterogeneities (see Figure 1). How does the
initial position of these mutants affect their dynamics and their steady-state concentration?

The initial local concentration of mutants is assumed to be much smaller than that of the wild type at the
position xM where the mutants appear (see Eqs. 3), as we aim to describe the fate of a single mutant or a
few mutants, but in the framework of the continuous description of the gut. The early dynamics of mutant
concentration is governed by the fluid dynamics in the gut. Indeed, the position x with the highest mutant
concentration at a given time t initially follows the x = xM + vt line, while the time t for which the mutant
concentration is maximal for a given position x initially follows the t = (x−xM)2/(2D) curves (see Supplemen-
tary material, Figure S4). This is consistent with the infinite space solution of the diffusion equation obtained
from Eqs. 1 when ignoring reproduction. Hence, transport by drift and diffusion allows the early spread of the
mutants in the gut. Afterwards, coupling with the reproduction term and the boundary conditions yields more
complex dynamics.

Because neutral mutant concentration satisfies the same partial differential equation as wild-type bacteria con-
centration (see Eqs. 1), the steady-state concentrations of mutant and wild type bacteria satisfy M(x)/B(x) =
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C, where C depends on the initial conditions but not on x. In other words, the steady-state concentration
profile of neutral mutants versus position x along the gut is the same as for wild-type bacteria, but with an
overall rescaling. The magnitude of this rescaling (i.e. the value of C) depends on the initial mutant quantity,
and on the position xM where mutant bacteria appear. The latter dependence on xM is strong in the regime
where spatial dependence is strong in the mutant-free system (see Figure 1C), as shown in Figure 2A and
Figures S5 and S6 in the Supplementary material. If the number of mutants that appear is held constant, then
mutants make up a much larger steady-state fraction of bacteria if they appeared close to the entrance of the
gut than if they appeared close to its exit, because they have more opportunity to spread and divide in the gut.

A B

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

0.0

0.8

1.6

2.5

3.3

Mutant introduction position xM (cm)

M
u

ta
n

t
to

w
ild

ty
p

e
ra

ti
o

M
/B

(×
1

0
-
2
0
)

R
e

p
ro

d
u

c
ti
o

n
s

p
e

r
u

n
it

v
o

lu
m

e
a

n
d

u
n

it
ti
m

e
R

(×
1

0
8
/m

L
/h
)

0 1 2 3 4 5 6

0

1

2

3

4

5

Mutant introduction position xM (cm)

R
M
/B

(×
1

0
-
1
2

b
a

c
te

ri
a
/m

L
/h
)

Figure 2: Fate of neutral mutants appearing at various locations in the gut. A: Steady-state ratio M/B
of mutant to wild-type bacteria concentrations, and number of reproduction events R per unit volume and unit time
versus position xM of the mutant introduction. The ratio M/B yields the fixation probability of a mutant that appears
at a given position xM in the system. As mutants generally appear upon division, the appearance of new mutants is
proportional to R, which thus also matters for the overall likelihood that a mutant appears and fixes. Mutants are
introduced at numerical integration time t = 500 h, when steady state is reached. B: Product of the ratio M/B and
the number R of reproductions per unit volume and unit time versus xM. This quantity yields the fixation probability
of a mutant that appears proportionally to reproduction rate. Parameter values are the same as in Figure 1B, and F
and B are initially at steady state as in Figure 1B, while mutants are introduced locally by using the initial condition
in Eqs. 3, with a total number NM = 3.33× 10−11 of mutants introduced in the system.

In our deterministic continuous description, bacterial species or strains coexist forever (except in the washout
case where they are all wiped away), reflected by the fact that M/B is nonzero at steady state. However,
the fate of individual mutants is in fact affected by demographic fluctuations known as genetic drift [42], so
that in a finite system, mutants eventually either take over the population or disappear. Here, on a short time
scale, mutants either reach deterministic steady state in coexistence with the wild-type, or they get extinct
stochastically. If they reach steady state, then, on a longer time scale, proportional to population size [42],
one of the two types takes over. What is the probability that a mutant lineage that has reached steady state
then fixes in the population? In a well-mixed system, the fixation probability of a neutral mutant is given by
the ratio of the number of mutants to the total number of individuals [42]. In our gut model, the steady-state
ratio M/B is independent of x in the deterministic limit (note that throughout we have M � B so that here
M/(M + B) ≈ M/B, and we only discuss M/B). Moreover, in Eqs. 1, the only non-linearity in the evolution
of B and M comes from the dependence of F on B and M . Here, since we introduce a very small amount of
mutants, M0 � B, when B is at stationary state, and since the overall bacterial population is very large, F
remains almost constant through the evolution of M , which entails that the equations for B and M are then
approximately linear. Because in the linear case, the equations on averages across replicates of a stochastic
system coincide with those of the deterministic large-size limit [48], the fixation probability of neutral mutants in
the stochastic case is given by the deterministic steady-state ratio M/(M +B) ≈M/B. Given the dependence
of this ratio on the initial position xM of the mutants (see Figure 2A and discussion above), mutants appearing
close to the entrance of the gut are much more likely to fix than those appearing close to its exit, in the regime
with strong spatial dependence (see Figure 1C).

Where in the gut do the mutants that fix originate? To address this question, we need to account for the
apparition of mutants as well as for their fixation. Assume that mutations occur upon division, which is the
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case for replication errors. Then, mutants appear at a position xM proportionally to the local number

R(xM) = B(xM)ρ(xM) (6)

of reproduction events per unit volume and unit time (where the reproduction rate ρ is given by Eq. 5). This
number is small close to the exit of the gut because food is exhausted, but it is also small close to its entrance
because bacteria are scarce, and it features a maximum at an intermediate location (see Figure 2A). What
ultimately sets the location where mutants that fix tend to originate is the product of M/B and R, whose
dependence on the mutant initial position xM is depicted in Figure 2B. It features a strong spatial dependence,
with a maximum at an intermediate position in the gut. In the Supplementary material section S7, we study R
and RM/B for various parameter values, and show that this maximum of RM/B at an intermediate position
in the gut is obtained robustly in the regime with strong spatial dependence (see Figure S7).

Spatial structure in the gut increase the fixation probability of neutral mutants

What is the overall probability F that neutral mutants fix in the gut, averaged over their possible positions of
origin? It can be expressed as the integral over all possible initial mutant locations xM of the fixation probability
given xM, multiplied by the probability that the mutant originates at this location xM:

F =

∫ L

0
R(xM)M(xM)

B(xM) dxM∫ L

0
R(xM)dxM

. (7)

How is the overall fixation probability F of a neutral mutant affected by the spatial dependence of food and
bacterial concentrations in the gut? To address this question, Figure 3 depicts F versus total population size

NT = S
∫ L

0
B(x)dx for different velocities v and diffusion coefficients D. In order to include concentration

profiles with different degrees of spatial dependence, quantified by [F (0) − F (L)]/Fin (see Figure 1C), several
values of D were chosen, and for each of them, a range of velocities v was chosen using Figure 1C so that it
includes flat profiles for small velocities, spatial profiles for intermediate velocities, and again flat profiles close
to the washout limit. Throughout, the food inflow v Fin at the entrance of the gut was held constant to allow
comparison. In a well-mixed system, we would have F = NM/NT, where NM denotes the initial number of
mutants in the system and NT the total number of bacteria in the system [42]. We find an excellent agreement
with this expectation in the case of flat concentration profiles. This is evident for small NT values, which
correspond to the largest velocities considered and thus to the washout limit, when the concentration profiles
are the flattest (see Figure 3). Conversely, in the strongly spatial regime (red symbols in Figure 3), the fixation
probability deviates from the well mixed system expectation, becoming substantially larger than it, and almost
independent of the total population. For large NT, which corresponds to small velocities, and hence flat profiles
again, the fixation probability slowly converges back to the well-mixed system expectation (see Figure 3).
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Figure 3: Fate of a neutral mutant versus population size in the gut. Fixation probability F of mutants
appearing proportionally to reproduction rate is shown versus total population size NT, for different diffusion coefficients
D (see corresponding markers on the right hand-side of the heat map in Fig. 1C). Markers are colored by the level of
spatial dependence of the concentration profiles, quantified by [F (0) − F (L)]/Fin as in Fig. 1C. For strong spatial
dependence (red), a plateau is observed, evidencing a large difference with the well-mixed expectation F = NM/NT.
For each value of D, v is varied while keeping v Fin constant, and fixation probability is calculated from Eq. 7 and
total population by integrating the sum of the mutant and the wild type in the total space (volume). Parameter
values: D ∈ [0.02, 20.0] cm2/h, v ∈ [0.001, 2.4] cm/h, k = 0.1 mM, r = 0.42 h−1, v Fin = 1 mM cm/h, and α =
6.13× 108 bacteria/(mL mM) and initial conditions as in Figure 2.

The fixation probability of neutral mutants results from an active population

Why is the fixation probability of neutral mutants larger in the gut in the presence of strong spatial dependence
than in a well-mixed population with the same size? An important difference is that not all bacteria are actively
reproducing in the gut, while they all have the same replication rate in a well-mixed population. More precisely,
in the regime with strong spatial dependence, most replications occur in the region such that the local number
of reproduction events R(x) per unit volume and unit time (see Eqs. 6 and 5) is substantial, i.e. visually,
under the local replication rate curve, which coincides with the zone where bacterial concentration increases
(see Figure 4A). Quantitatively, we define the “active population”, i.e. the region with active reproduction, by
comparing the replication rate to its maximum possible value, see Figure 4A and the Supplementary material
Section S8 for details.

Can the active population, smaller than the total population, and comprising the reproducing bacteria, quan-
titatively explain the fixation probability observed in the gut in the presence of strong spatial dependence? In
order to assess this, we set out to significantly change active population size, and thus the total number of
reproduction events, by varying the food inflow v Fin at the entrance of the gut, while holding the diffusion
coefficient constant at D =0.02 cm/h. We took several velocity values, but only retained those such that con-
centration profiles were strongly spatially dependent. Figure 4B shows the fixation probability F versus the
size NA of the active population in this spatial regime. Our results agree very well with the relation

F =
NM

NA
, (8)

where NM is the initial number of mutant bacteria. This corresponds to the well-mixed expectation for the
fixation probability of NM mutants in a population of NA bacteria, which confirms that the active population
is the one that matters for the process of mutant fixation. This explains why the fixation probability is higher
in the spatial system than in the well-mixed one.
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Figure 4: Active population explains the behavior of neutral mutant fixation probability in the gut. A:
The active bacterial population (gray shaded area) is defined as the total number of bacteria between the points x = 0
and x = x∗, where x∗ is defined as F (x∗) = k, so that B(x∗) = αFin(1− k/Fin). This corresponds to the region where
bacteria have significant reproduction rates. Parameters are v Fin = 1 mM cm/h, v = 0.181 cm/h, D = 0.02 cm2/h, k =
0.1 mM, r = 0.42 h−1, and α = 0.613× 109 bacteria/(mL mM). B: Fixation probability F of neutral mutants in the
gut in the regime with strong spatial dependence versus active population NA, for different values of food inflow v Fin

(different colors). Each set of markers with a given color contains between 6 and 11 different points (often overlapping).
Diffusion coefficient is the same for all points, D = 0.02 cm2/h, velocities are v ∈ [0.135, 0.171] cm/h, v ∈ [0.14, 0.18]
cm/h, v ∈ [0.15, 0.185] cm/h, v ∈ [0.15, 0.181] cm/h, v ∈ [0.15, 0.186] cm/h, v ∈ [0.155, 0.182] cm/h, v ∈ [0.165, 0.186]
cm/h for v Fin = 0.1 to 100.0 mM cm/h, respectively. Other parameters and initial conditions are as in Figure 3. Only
the data points satisfying [F (0)− F (L)] /Fin > 0.9 are retained, ensuring that we focus on the plateau of the fixation
probability with respect to the total population (see Fig. 3). The black line corresponds to F = NM/NA. Panel A
corresponds to one of the green dots in panel B.

In the Supplementary material, section S9, we demonstrate the generality of the conclusions obtained here by
systematically investigating the three dimensionless parameters that fully describe the stationary state of the
system (see Figure S8). We demonstrate that the range of these parameters considered in the present study
matches the realistic one in the human colon, and we show that Eq. 8 holds in all cases considered, provided
that the food concentration profile is strongly spatial (see Figures S10, S9 and S11).

Discussion

We addressed bacterial evolution in the gut within a minimal model that incorporates flow and gradients of
food and bacterial concentrations along the gut. We focused on the colon lumen, where the vast majority of
our microbiota is located, and we considered neutral mutants appearing in the gut. The dynamics of bacteria
and food was described using a system of partial differential equations based on Refs. [39, 40]. In the long term,
in a finite-size system, mutants either disappear or take over due to stochastic fluctuations, and the stationary
proportion of mutants in our continuous and deterministic description gives their fixation probability. We
demonstrated that, in the regime where the profiles of food and bacterial concentrations are strongly spatial,
with abundant food and few bacteria upstream, and vice-versa downstream, the stationary concentration of
mutants is higher if they start upstream. However, for mutations occurring at replication, the small upstream
concentration of bacteria means that few mutants appear there. Accordingly, we found that successful mutants
are more likely to originate from an intermediate position along the gut. We studied the overall long term
mutant proportion for neutral mutants appearing spontaneously upon division, which also gives their fixation
probability. We found that in the almost well-mixed regime, it is given by the ratio of the initial number
of mutants to the total bacterial population size, consistently with the well-mixed expectation. By contrast,
when the profiles of food and bacterial concentrations are strongly spatial, which is the relevant regime in
the gut [39, 40], this fixation probability becomes substantially larger than the well-mixed expectation. Thus,
the spatial structure of the gut favors the spread of neutral mutants and the evolution of the population
composition. Furthermore, we rationalized this increase of the fixation probability by demonstrating that it
stems from the fact that only a subset of the bacterial population is actively replicating. This active population
is located upstream, where there is enough food to allow substantial replication. It gives an effective population
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size [12, 42] for the fixation of neutral mutants in the complex structured population of the gut.

Studies addressing the impact of spatial population structure on evolution generally consider discrete patches
of population with migrations between them, and the same environment in each of them [5–21]. While complex
population structures with asymmetric migrations can impact the fixation probabilities of beneficial and dele-
terious mutants [13, 14, 21], that of neutral mutants appearing uniformly in the population, e.g. upon division,
is unaffected [14, 21]. Similarly, chaotic hydrodynamic flow has been predicted to impact non-neutral mutant
fixation probabilities, but not neutral ones [49]. In the gut, the flow can be viewed as yielding asymmetric
migrations. Strikingly, we found that the fixation probability of neutral mutants could strongly differ from the
well-mixed case. Aside the fact that the gut is a continuous system, a crucial difference with the above-cited
models of population structure is that, due to directional hydrodynamic flow, the environment varies along the
gut, in particular the food and bacterial concentrations, and thus the bacterial division rate. Environmental
gradients can strongly impact evolution; for instance, gradients of antibiotics can increase the speed at which
antibiotic resistance emerges [32–35]. The coupling of bacterial concentration gradients due to antibiotics with
convective flow also has complex implications on evolution [50]. Hydrodynamic flow itself can strongly im-
pact fixation probabilities and fixation times, as has been shown in the case of compressible flows relevant for
large-scale turbulent systems such as bacterial populations living at the surface of oceans [29–31]. In these
situations, flow reduces the effective population size for fixation probability, and microorganisms born near a
flow source are more likely to fix than those born in a flow sink [31]. Albeit obtained in a different hydrodynamic
regime, these results share similarities with ours, and together, they demonstrate that hydrodynamic flow, and
in particular convective flow, can strongly impact evolution at various scales, from the gut to the ocean.

In addition to hydrodynamic flow and gradients, the gut comprises an upstream zone with few bacteria and
rapid growth. This is reminiscent of expanding fronts in populations that invade a new environment [51,
52], which feature reduced competition and reduced effective population sizes, with important consequences
on evolution [53–55]. In these cases, the dynamics is different depending on whether the Fisher waves [56]
characterizing expansion are driven by the leading edge (pulled) or by the bulk of the wave (pushed) [52] or
intermediate (semi-pushed) [57]. Stochasticity has major impacts in the pulled and semi-pushed cases, due
to the small numbers of bacteria at the edge [57]. Accordingly, the continuous model we employed may not
be adequate for the small numbers of bacteria upstream in the gut. Similarly to models on expanding fronts,
we find that mutants appearing upstream are more likely to fix. However, contrary to population expansion
on solid substrates [51], the gut features directional hydrodynamic flow. Specifically, bacteria take at least 20
minutes to replicate (here we took a typical replication time of 100 minutes), and since they are transported
with the flow, the lineage of an upstream bacteria will be broadly distributed, including where there are many
bacteria, before being large enough to affect F sufficiently to modify the dynamical equations via F/(k + F ).
Thus, the effect of the stochastic front is expected to be small here.

Extending our study from neutral mutants to beneficial and deleterious ones, and studying fixation times and
the rate of evolution in the gut, would be interesting topics for future work. Note that given the very large
numbers of bacteria at play, fixation is expected to be slow, but even before fixation, our results show that
the proportion of mutants is increased by the gut structure compared to a well-mixed system. Furthermore,
while the minimal model used here captures some key characteristics of the gut, with a net flow, an effective
mixing that is on limited length scales, and a stable bacterial population, the reality of the gut is more complex.
In particular, muscle contractions in peristalsis and segmentation [58, 59] mean that the radius of the gut is
variable, and yield a complex mixing dynamics. Besides, several food sources and several bacterial species are
present, yielding complex ecological dynamics. Bacterial populations in the colon lumen can also interact with
those in the mucus and in crypts. In addition, assuming a constant food inflow is a simplification, and in real
life food inflow is variable, depending e.g. on the timing of meals, thus adding time variability to the spatial
gradients we considered here. Despite all these complications, our results, which can be interpreted simply
through the active population, have the potential to be general, and can be tested in more detailed models.
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S1 Numerical methods

S1.1 Discretization of the partial differential equation system

In order to solve the system 1 numerically, we employ an explicit method using a forward difference for the
time derivative at time t and a central difference for the space derivative at position x. Explicitly, the relevant
differential operators are replaced by the following expressions:

∂Y

∂t
→ Y (t, x)− Y (t−∆t, x)

∆t
, (9a)

∂Y

∂x
→ Y (t, x+ ∆x)− Y (t, x−∆x)

2∆x
, (9b)

∂2Y

∂x2
→ Y (t, x+ ∆x)− 2Y (t, x) + Y (t, x−∆x)

(∆x)2
, (9c)

where ∆t and ∆x represent the discrete steps in time and space, respectively. Here Y (t, x) can represent
the concentration of food F , or wild type bacteria B, or mutant bacteria M , at time t and coordinate x.
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Substituting the differential operators in Eqs. 1 using Eqs. 9 yields

F (t+ ∆t, x) = F (t, x) +D
F (t, x+ ∆x)− 2F (t, x) + F (t, x−∆x)

(∆x)2
∆t−

− vF (t, x+ ∆x)− F (t, x−∆x)

2∆x
∆t− r

α
(B(t, x) +M(t, x))

F (t, x)

k + F (t, x)
∆t, (10a)

B(t+ ∆t, x) = B(t, x) +D
B(t, x+ ∆x)− 2B(t, x) +B(t, x−∆x)

(∆x)2
∆t−

− vB(t, x+ ∆x)−B(t, x−∆x)

2∆x
∆t+ rB(t, x)

F (t, x)

k + F (t, x)
∆t, (10b)

M(t+ ∆t, x) = M(t, x) +D
M(t, x+ ∆x)− 2M(t, x) +M(t, x−∆x)

(∆x)2
∆t−

v
M(t, x+ ∆x)−M(t, x−∆x)

2∆x
∆t+ rM(t, x)

F (t, x)

k + F (t, x)
∆t. (10c)

The boundary conditions in x = 0 from Eqs. 2 become

F (t, 0−∆x) = F (t, 0 + ∆x) +
2∆x

D
v [Fin − F (t, 0)] , (11a)

B(t, 0−∆x) = B(t, 0 + ∆x)− 2∆x

D
vB(t, 0), (11b)

M(t, 0−∆x) = M(t, 0 + ∆x)− 2∆x

D
vM(t, 0), (11c)

while the boundary conditions in x = L from Eqs. 2 become

F (t, L+ ∆x) = F (t, L−∆x), (12a)

B(t, L+ ∆x) = B(t, L−∆x), (12b)

M(t, L+ ∆x) = M(t, L−∆x). (12c)

The spatial discrete step ∆x is in general chosen to be 0.01 cm. This value is small enough to ensure convergence
for most model parameters, and to have a good spatial resolution for analysis. Note however that for some
parameters, the term [Fin − F (t, 0)] in Eq. 11a can be very large which can lead to numerical instability. To
compensate, the spatial step, ∆x, needs to be reduced. Once ∆x is chosen, the value of ∆t should satisfy the
stability condition ∆t ≤ (∆x)2/(2D) [60]. Specifically, we take ∆t = 0.8(∆x)2/(2D).

S1.2 Obtaining stationary profiles without and with mutants

Numerically, we determine the unique solution for food concentration that satisfies F (x) < Fin for all x. Thus,
the steady-state profile of food concentration is independent of the initial conditions as long as they are all
positive. In general, for our numerical integration, we choose initial conditions not too far to the steady state,
namely F (0, x) = F0 ∈ (0, Fin), B(0, x) = α[Fin−F (0, x)], and M(0, x)� B(0, x), in order to obtain faster con-
vergence. If there is no mutant bacteria, the steady state of the wild type bacteria concentration is also uniquely
defined through the relation B(x) = α[Fin−F (x)]. However, if there are both wild type and mutant bacteria in
the system, then the steady state solution is uniquely defined only for the total bacterial concentration, while
individual concentrations depend on the initial conditions for wild type and mutant bacteria.

In practice, the stationary state in the absence of mutant bacteria is found using Eqs. 10 coded in the Fortran90
programming language (code available at https://doi.org/10.5281/zenodo.4704653 [46]) with homogeneous
initial conditions

F (0, x) = 0.9Fin, (13a)

B(0, x) = α[Fin − F (0, x)] = 0.1αFin. (13b)

The time used in all numerical integrations is t = 500 h, which is long enough for the system to reach the steady
state for all choices of parameters considered in this paper.

To find the mutant concentration profile that is crucial to our calculation of the fixation probability, we consider
the system without mutants at steady state, and we assume that mutants appear at one local position, xM, in
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the gut segment. We again solve Eqs. 10 for time t = 500 h, but now with the initial conditions

F (0, x) = F ∗(0, x), (14a)

B(0, x) = B∗(0, x), (14b)

M(0, x) =

{
M0, |x− xM| ≤ ∆x/2,

0, |x− xM| > ∆x/2,
(14c)

where F ∗ and B∗ represent steady state concentrations without mutant bacteria, while M0 � B(xM ) is
the initial local mutant concentration. More precisely, denoting by NM the total number of mutant bacteria
introduced in the system, the quantity M0 is the initial concentration in the segment [xM−∆x/2, xM + ∆x/2],
where ∆x is the spatial discrete step of our numerical resolutions. Hence, M0 satisfies NMM0S∆x, where
NM is the total number of mutants introduced in the system. Note that since we are using central difference
discretization, we need to double the M0 value on boundaries of the segment where the mutants are introduced,
in order to have the same NM there as in the rest of the segment. In practice, we choose the value NM =
3.33 × 10−11 bacteria, so that for any choice of parameters used in this paper and for any initial mutant
position xM, the relation M0 � B(xM) is satisfied. Importantly, since the stationary concentration of mutant
bacteria is proportional to M0, all results scale with it, and we are not losing generality by fixing the value of
M0.

S1.3 Conversion between food and bacteria concentrations

The initial unit of food concentration is moles per liter, and that of bacterial concentration is optical density,
OD [39], which can be converted to numbers of bacteria per volume by using the calibration curve in [39].
Specifically, the conversion factor we take is 1OD=3.33× 109 bacteria/mL. Then the parameter α allows to
convert between food and bacteria concentrations.

Importantly, because α is just a scaling factor, a change in this value will modify the bacterial concentration
quantitatively, but the spatial profile and all the other conclusions will remain identical.

S2 Stationary profiles without mutants

S2.1 Ordinary differential equation description

Without mutants, at stationary state, Eq. 1 yields:

0 = D
∂2F

∂x2
− v ∂F

∂x
− r

α

FB

k + F
, (15)

0 = D
∂2B

∂x2
− v ∂B

∂x
+ r

FB

k + F
, (16)

with boundary conditions in Eq. 2.

Introducing f = αF +B, we have at stationary state

C = D
∂f

∂x
− vf , (17)

where C is a constant. The solution reads

f(x) = −C
v

+ C ′evx/D , (18)

where C ′ is a constant. Applying the boundary conditions yields C ′ = 0 and C = −vαFin. Thus,

αF (x) +B(x) = f(x) = αFin , (19)

and this specific linear combination of B and F is independent from x: food effectively gets converted into
bacteria.

Now we can inject this into the equation on F to decouple it from B, yielding:

0 = D
∂2F

∂x2
− v ∂F

∂x
− rF (Fin − F )

k + F
, (20)

which is a second order nonlinear ordinary differential equation.
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S2.2 Dimensionless form

Let us make the variable change s = xv/D, and let us introduce the function φ satisfying φ(s = xv/D) =
F (x)/Fin for all x. We obtain

0 =
∂2φ

∂s2
− ∂φ

∂s
− λφ(1− φ)

κ+ φ
, (21)

which involves the dimensionless numbers

κ =
k

Fin
, (22)

and

λ =
rD

v2
. (23)

The associated boundary conditions are:

φ(s = 0)− ∂φ

∂s
(s = 0) = 1 , (24)

∂φ

∂s
(s = σ) = 0 (25)

where

σ =
Lv

D
(26)

is the third dimensionless number describing the system [39].

S2.3 Some stationary profiles

In practice, the partial differential equations in Eqs. 1 with boundary conditions in Eqs. 2 and initial conditions
in Eqs. 3 were solved numerically as explained above. Examples of profiles obtained are given in Figure S1.
Note that we checked that the long-term results from their direct resolution was consistent to those obtained
by numerically solving the ordinary differential equation 20 giving the stationary state of the system.
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Figure S1: Food concentration profiles. Food concentration F normalized by the food concentration inflow Fin

versus position x along the gut for four different values of the diffusion coefficient (panels A to D) and several values of
velocity (different colors in each panel). Values of diffusion coefficients and velocity are indicated in each panel. Other
parameter values are k = 0.1 mM, r = 0.42 h−1, v Fin = 1 mM cm/h, α = 6.13× 108 bacteria/(mL mM).
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S3 Washout limits

The washout limits are the limits where all bacteria get washed out of the system. Mathematically, they
correspond to a bifurcation point in the parameter space where the trivial steady state solution F (x) = Fin

(and B(x) = 0) becomes stable.

In the chemostat, this limit is easy to determine. There are two steady state solutions, F c = kc/(r − c) and
F ∗ = F c

in. Eigenvalues of the Jacobian associated to Eqs. 35 and 36 for both steady states change their sign at
same point in the parameter space, namely at

c =
r

k/F c
in + 1

≡ cwo. (27)

The bifurcation scenario is such that at cwo the two steady state solutions collide, change stability, and one
(nontrivial) solution disappears, making it a transcritical bifurcation.

In the spatial system, the bifurcation analysis is not analytically easy. Numerically, we can determine a similar
scenario. We find one positive nontrivial solution for v < vwo, where vwo is the bifurcation point which depends
on the rest of the system parameters, and only the trivial solution for v > vwo, implying a change of the stability
at v = vwo when the two steady states collide.

It is nevertheless possible to find analytical estimates for the washout limits in the spatial system, as discussed
in Ref. [39]. Let us first consider the case of large diffusion coefficients, when concentration profiles are flat
regardless of the value of v. We compare the time τflow needed for a bacterium to travel through the system
from the entrance to the exit to the minimal time τrepl taken by a bacterium to replicate in this system (for
F = Fin). If τflow < τrepl, i.e.

L

v
<
κ+ 1

r
, (28)

bacteria get washed out, so that an estimate of the washout velocity is

vwo =
rL

κ+ 1
, (29)

which is in good agreement with the numerical results, as shown by Figure S2, and Figure 1C in the main text.

Next, let us compare the diffusion and flow characteristic lengths at the time of replication, τrepl. Washout
occurs if Ldiff < Lflow, i.e. √

2Dτrepl < vτrepl, (30)√
2
D(κ+ 1)

r
<
v(κ+ 1)

r
, (31)

which gives

vwo =

√
2rD

κ+ 1
. (32)

This second washout limit is in agreement with the numerical results depicted in Figures S2 and 1 up to a
factor 2. Indeed, numerically, we find a good agreement with

vwo =

√
4rD

κ+ 1
. (33)

The results in Figure S2 are consistent with those of Figure 1C where (κ + 1) ≤ 1.25, and demonstrate the
robustness of these results across a wide range of κ values.
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Figure S2: Washout limits in the spatial system as a function of κ+ 1. The two washout limits are obtained
by fixing the diffusion coefficient at 0.1 cm2/h, and varying the velocity for 20 different values of κ + 1. The first
velocity for which F (L) > 1.− 10−10 is recorded as the washout velocity vwo. The process is repeated for three different
values of length L = 6, 12, 24 cm. Other parameters are v Fin = 1 mM cm/h, k = κFin mM, r = 0.42 h−1, α =
6.13× 108 bacteria/(mL mM). The green and magenta lines correspond to the two washout limits described by Eqs. 29
and 33, respectively.
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S4 Correspondence between the spatial system and the chemostat

S4.1 Main matching condition

We wish to match the total number of divisions occurring in the spatial system and in the chemostat. At
stationary state we thus aim to match the amount of food entering and exiting these different systems, as well
as the amount of bacteria exiting them.

� Spatial system: amount of food entering: dNF,in/dt = FinvS; amount of food exiting: dNF,out/dt =
F (L)vS; amount of bacteria exiting: dNB,out/dt = B(L)vS;

� Chemostat: amount of food entering: dNF,in/dt = F c
incV ; amount of food exiting: dNF,out/dt = F ccV ;

amount of bacteria exiting: dNB,out/dt = BccV .

Here V is the volume of the chemostat, c is the dilution rate i.e. the outflow rate per unit volume of the
chemostat. Concentrations in the chemostat are indicated by a superscript c. Meanwhile, v denotes the
velocity in the spatial system, S the section and L the length of the spatial system.

Hence, our matching condition reads:

Fin

F c
in

=
F (L)

F c
=
B(L)

Bc
=
cV

vS
. (34)

S4.2 Constraints from each separate system

In the spatial system, we have F (L) = Finφ(κ, λ, σ) andB(L) = α [Fin − F (L)], i.e. B(L) = αFin [1− φ(κ, λ, σ)],
where φ is the dimensionless function introduced above.

In the chemostat, the following equations are satisfied:

dF c

dt
= − r

α

F cBc

k + F c
+ cF c

in − cF c , (35)

dBc

dt
= r

F cBc

k + F c
− cBc . (36)

At stationary state

0 = − r
α

F cBc

k + F c
+ cF c

in − cF c , (37)

0 = r
F cBc

k + F c
− cBc . (38)

If Bc 6= 0, this yields rF c/(k+F c) = c, which means that the dilution rate c of the chemostat sets the effective
division rate of the bacteria, a fundamental chemostat property. And then (with c 6= 0)

F c =
kc

r − c
, (39)

Bc = α (F c
in − F c) = αF c

in

(
1− k

F c
in

c

r − c

)
. (40)

Hence, our matching condition Eq. 34 reads:

Fin

F c
in

=
Finφ(κ, λ, σ)

kc/(r − c)
=

αFin [1− φ(κ, λ, σ)]

αF c
in [1− k/F c

in c/(r − c)]
=
cV

vS
, (41)

which reduces to two equations relating the spatial system (left hand-side) to the chemostat (right hand-side):

φ(κ, λ, σ) =
k

F c
in

c

r − c
, (42)

vSFin = cV F c
in . (43)

We assume that the parameters of the spatial system are given. Then we need to choose those of the chemostat
in order to have a good matching. The parameters specific to the chemostat are c, F c

in, V . Note that k and r
are assumed to be the same in both systems. In principle Eqs. 42 and 43 allow us to fix 2 out of these 3 free
chemostat parameters.
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S4.3 Additional matching conditions

We may want to impose additional matching conditions between the chemostat and the spatial system:

1. Same total volume: V = SL. This implies cV
vS = cL

v , and Eq. 34 would be modified accordingly.

2. Same volume exiting per unit time: cV = vS. This implies cV
vS = 1, and Eq. 34 would be modified

accordingly.

3. Same outflow rate relative to the total volume: c = vS
LS = v

L . This implies cV
vS = V

LS , and Eq. 34 would
be modified accordingly.

We note that if we impose two of these three conditions simultaneously, then the third one is also satisfied
automatically, but Eqs. 42 and 43 and all three conditions above can be satisfied simultaneously only when
F (L) = vk/(rL− v).

S4.4 Properties of the matching chemostats

In general, we can impose only 3 independent conditions, setting the values of c, F c
in, V . Specifically, we have

to take Eqs. 42 and 43, plus one of the three conditions numbered 1, 2 and 3 above. These three possibilities
are discussed in Table S1 and illustrated in Figure S3.

Matching condition c F c
in V

1. Same total vol-
ume

cV

vS
=
cL

v

F (L)v

2Lk

(√
4Lrk

F (L)v
+ 1− 1

)
Finv

2Lr

(
1 +

√
4Lrk

F (L)v
+ 1

)
L S

2. Same volume
exiting per unit
time

cV

vS
= 1

F (L)r

k + F (L)
Fin

v S(F (L) + k)

F (L)r

3. Same outflow
rate relative to the
total volume

cV

vS
=

V

SL

v

L

Finkv

F (L)(Lr − v)

F (L) L S(Lr − v)

kv

Table S1: Chemostat parameters c, F c
in, V as a function of the parameters of the spatial system for three different

matching conditions.
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Figure S3: Chemostat parameters. Parameters of the chemostat matching the spatial system in the conditions of
Figure 3. Each row in the figure (top to bottom) represents matching condition 1 to 3, while each column in the figure
represents a given parameter: dilution rate c (left), food inflow F c

in (middle), and volume V (right). Due to the very
small values of food concentration exiting the gut, parameters of the chemostat system can have very large or very small
values. This is particularly true for smaller diffusion constants and/or small velocities.
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Finally, table S2 gives the expression of various useful quantities for the spatial system and for the chemostat.

Spatial system Chemostat

Reproduction rate ρ(x) = r
F (x)

k + F (x)
ρc = r

F c

k + F c

Reproductions per
unit volume and
unit time

R(x) = B(x)ρ(x) Rc = Bcρc

= rα
F (x) [Fin − F (x)]

k + F (x)
= rα

F c (F c
in − F c)

k + F c

Total reproduction
rate

NR = rα S

∫ L

0

F (x) [Fin − F (x)]

k + F (x)
dx N c

R = rαV
F c (F c

in − F c)

k + F c

= αvS [Fin − F (L)] = αcV (F c
in − F c)

Total population NT = αS

∫ L

0

[Fin − F (x)] dx N c
T = αV (F c

in − F ∗)

Active population NA = αS

∫ x∗

0

[Fin − F (x)] dx, x∗ : F (x∗) = k N c
A = N c

T

Fixation probabil-
ity

F =

∫ L

0
R(xM)M(xM)

B(xM) dxM∫ L

0
R(xM)dxM

Fc =
NM

N c
T

Washout limit vwo =


rL

k/Fin+1√
4rD

k/Fin+1

c =
r

k/F c
in + 1

Table S2: Comparison of the main derived quantities in the spatial system and the chemostat.

23

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2021. ; https://doi.org/10.1101/2021.05.14.444143doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444143
http://creativecommons.org/licenses/by/4.0/


S5 Early dynamics of mutant bacteria concentration

Mutant M (×10
-11

bacteria /mL)

>3.330 1 2 3

Figure S4: Early dynamics of mutant concentration. Spatio-temporal evolution of mutant concentration for
xM = 0, 1, 2, 3, 4, 5, 6 cm in the first hour after mutant introduction. Black points correspond to the maximum mutant
concentration at time t, white points correspond to the maximum mutant concentration at position x, black line is
xM + vt, and white curve is xM ±

√
2Dt. The parameter values are D = 0.4 cm2/h, v = 0.5 cm/h, k = 0.1 mM, r =

0.42 h−1, v Fin = 1 mM cm/h, α = 6.13× 108 bacteria/(mL mM) and M0 = 3.33× 10−9bacteria/mL.
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S6 Stationary state of mutant bacteria concentration versus the
initial position xM of mutants
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Figure S5: Stationary distribution of mutant bacteria in the gut. Concentration of mutant bacteria as a
function of position x, and initial mutant position xM, for D =0.02 cm2/h, and for three different values of flow velocity
v, corresponding to the flat concentration profile in the well mixed regime (A), spatial concentration profile (B), and
close to the washout limit (C). In all three cases, we observe that the final concentration of the mutant bacteria is
smaller if the initial position xM is further along the gut. This figure corresponds to three points of the top curve in
Fig. 3.
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Figure S6: Stationary ratio of mutant to wild type bacteria concentrations. The ratio M/B is shown in all
three cases corresponding to Fig. S5. Consistently with our analytical predictions discussed in the main text, the M/B
ratio is constant along the gut. In addition, we observe that it monotonically decreases as a function of initial mutant
position xM, and the decrease is the most pronounced in the case of the spatial profile (panel B) where the ratio at the
beginning and at the end of the gut are several orders of magnitude apart.
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S7 Location where most mutants that fix originate

While the position of the maximum of the ratio M/B of mutant to wild type bacteria concentrations is always
at the entrance of the gut (see main text and Figure 2), the position of the maximum of the number R
of reproduction events per unit volume and unit time depends on parameter values. We find that for flat
concentration profiles, it is located either close to the entrance of the gut (for small velocities yielding an
almost well-mixed system) or at the exit of the gut (close to the washout limit). Conversely, for spatial
concentration profiles, its location is intermediate (see Figure S7A). Because of this, in the regime with strong
spatial dependence, we find that the position of the maximum of the product RM/B of these two quantities
ranges between 0 and L/2 (see Figure S7B and C). The position of the latter maximum corresponds to the
location where most mutants that fix tend to originate.
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Figure S7: Maximum of R and RM/B. A: Number R of reproduction events per unit volume and unit time as
a function of position along the gut for three different types of concentration profiles, almost well-mixed (light blue),
spatial (red), and close to the washout limit (purple). B: Maximum of the product RM/B of the reproduction events
per unit volume and unit time and of the ratio of mutant and wild type bacteria as a function of space for the same
three concentration profiles as in A (same colors). C: Maximum value of R M/B as a function of its position for the
data set in Figure 3 of the main text.

S8 Calculation of the active population size

The active population corresponds to the bacteria in the zone where reproduction rate is significant. Concretely,
it is defined as

NA = S

∫ x∗

0

B(x)dx , (44)

where x∗ corresponds to the point in the gut segment where the food concentration equals the Monod constant k,
i.e. F (x∗) = k, implying that the reproduction rate ρ(x∗) is equal to half of the maximal possible reproduction
rate, which is obtained if F (x)� k. Thus,

B(x∗) = α[Fin − F (x∗)] = α[Fin − k] = αFin(1− κ) . (45)

In the active population thus defined, the reproduction rate of bacteria is at least equal to half of its maximal
possible value.
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S9 Impact of the dimensionless parameters

S9.1 Holding the dimensionless parameters fixed

To illustrate the relevance of the dimensionless parameters introduced in section S2.2 to describe the stationary
profiles, we vary system parameters so that we hold the dimensionless ones fixed. The reference for fixing them
is Figure 2:

κ =
k

Fin
=

0.1

2.0
= 0.050, (46)

λ =
rD

v2
=

0.42× 0.2

0.52
= 0.34, (47)

σ =
Lv

D
=

6× 0.5

0.2
= 15. (48)

We first vary the gut length L in order to ease the discretization of the space. Once the L is chosen, the
dimensionless parameters are fixed by adjusting v, and then Fin, to keep the product v Fin constant. Other
parameters are kept fixed. Figure S8A shows the corresponding concentration profiles. They all have the
same shape, as evidenced by rescaling the food concentration by Fin and the spatial coordinate by L (see
inset of the Figure S8A). Figure S8B shows that the fixation probability for these profiles scales with active
population, F = NM/NA, consistently with our expectations, since the concentration profiles are strongly
spatially dependent.
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Figure S8: A Food concentration profiles for different system sizes and keeping nondimensional parameters, λ, κ, σ,
fixed. The profiles can be rescaled by dividing food concentration by Fin and space by L (see inset of A) showing all the
profiles are identical up to the scaling factors. B Fixation probability for the profiles in panel A. The parameters are
D = 0.2 cm2/h, v = 3./L cm/h, Fin = 1./v mM, k = 0.05/v mM, r = 1.68 · v2 h−1, α = 6.13× 108 bacteria/(mL mM),
NM = 3.33× 10−11 bacteria and the L values are listed in the panel B.

S9.2 Range of the dimensionless parameters

In this section, we discuss the range of values of the dimensionless parameters κ, λ and σ, which are the only
parameters of the model that may change the behavior of the system and affect our conclusions (recall that α
is just a scaling factor that does not affect spatial profiles and conclusions, see section S1.3). We first discuss
the range of values that these dimensionless parameters take in our study and in Refs. [39, 40], and then we
address the realistic range of values that they can take in the human gut, and compare them together.

The parameter values employed in this paper correspond to the mini gut described in [39], where it has been
proven that the mathematical model describes well the experimental setup. In [40], the same model was used
to describe microbiota growth and composition in the human colon, and parameter values were thus altered to
match the properties of the human gut, which is several times bigger than the mini gut. However, this change
of parameter values did not significantly modify the values of the dimensionless parameters. As illustrated in
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Figure S8, holding the dimensionless parameters fixed fully preserves the properties of the system, including
the spatial profiles of concentrations, and our conclusions on the active population remain true. Table S3
summarizes the range of dimensionless parameter values considered in Figure 3 of this paper, and compares
them to those of Refs. [39, 40].

Dimensionless
parameter

Figure 3 Figure 3;
F (0)−F (L)

Fin
> 0.9

Ref. [39] Ref. [40]

κ =
k

Fin
10−4 − 0.21 0.014− 0.083 0.05 2.5× 10−4

λ =
rD

v2
0.19− 8.4× 106 0.24− 0.42 0.036− 9.3 0.29

σ =
Lv

D
3× 10−4 − 57 7.59− 56 1.5− 25 9.6

Table S3: Dimensionless parameter values used in Figure 3 of this paper and in Refs. [39] and [40].

Let us now discuss the realistic range of values of the dimensionless parameters κ, λ and σ in the human gut.
Let us start by considering κ = k/Fin, and for this, let us first estimate Fin. Bacteria in the large intestine
consume a mix of different nutrients that have not (or not completely) been absorbed in the small intestine. A
large component of them are fibers, and a human typically ingests 25 to 100 g a day of fibers [4]. The colon
input also includes a smaller or similar quantity of unabsorbed sugars and starch [61]. Given that the inflow of
digesta in the colon is about 2 liters per day [62], the order of magnitude of the incoming food concentration
Fin in the colon is in the range of 15 to 100 g/L. The Monod constant k depends on many factors, including
the substrate and the bacterial strain. Even for glucose, it can range from 0.03 to 5 mg/L depending on how
well adapted the bacteria are to growing on glucose [63], and it is typically higher for other substrates (20 to
300 mg/L for acetate [64]; 5 to 900 mg/L for different substrates [65]). Realistic values for κ = k/Fin are thus
in a wide range, but in all cases, they are much smaller than 1, at least as small as 0.1. In the next section
where dimensionless parameter values are systematically varied, Figure S9 demonstrates that such values of κ
give very similar outcomes, and all results collapse in the limit κ→ 0.

The two other dimensionless parameters, λ and σ, both involve the effective diffusion coefficient D, which
models mixing and is thus hard to measure directly. However, it is empirically well demonstrated that there
is a strong gradient of bacterial concentration along the colon [66, 67], and that most nutrients that could be
used by bacteria are consumed by the end of the gut [61]. This requires that λ = rD/v2 be larger than 1/4
(washout limit, see section S3), and less than a few units (since above, diffusion is strong enough for the system
to be almost well mixed). This can be seen on Figure 1C. Accordingly, Table S3 demonstrates that despite the
wide range of parameters used in our study, the range of λ is very narrow in the regime that yields strongly
spatial profiles (specifically, λ is between 0.24 and 0.42 when [F (0)−F (L)]/Fin > 0.9). This is in line with the
estimate from [40].

Let us finally turn to σ. We notice that σ = Lv/D = Lr/(vλ). Avoiding washout requires L/v > (κ+1)/r & 1/r
(see section S3), where the last inequality is rather tight because κ � 1. Since in addition 1/λ is of the order
of 2 to 4 in the very spatial regime, σ = Lr/(vλ) then has to be greater than a few units. Another way to
estimate σ is to employ Lr/v = τdig/τrep where τrep = 1/r is the typical replication time, and τdig = L/v is the
typical time spent in the system. While the total transit time ranges from one to several days [68], the time
spent by the digesta in the ascending colon, which is the upstream part of the colon where the strong gradients
of food and bacterial concentrations are located [40], is substantially shorter, of the order of 4 hours [69], and
thus τdig ≈ 4 h. Let us now estimate τrep. Feces weigh about 130 g/day and contain 25–50% of bacteria in
mass [4]. The typical mass of a bacteria being 1 pg, this means that about 3–6×1013 bacteria per day are lost
in feces, to be compared with about 4 × 1013 bacteria in the colon [1], leading to about one renewal per day,
which means that τrep ≤ 24 h. However, as it is likely that bacteria actively replicate only in the upper part
of the colon, while r represents the maximal reproduction rate in the gut, the actual value of τrep is expected
to be substantially smaller than this upper bond. A lower bound for τrep is given by the minimal doubling
time of fast replicating bacteria such as Escherichia coli in good conditions, which can be as low as 20 minutes
[70]. To summarize, σ = τdig/(λτrep), with 1/λ of the order of 2–4 and τdig/τrep & 1, and τdig/τrep ≈ 10 when
considering the ascending colon and the maximal replication rate. This matches well the range of values of σ
considered in the present work (see Table S3).
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S9.3 Varying each dimensionless parameter

Finally, we systematically investigate the impact of each dimensionless parameter by varying one of them while
holding the other two fixed. We keep parameters v, D and Fin fixed throughout, and vary k, r, and L one at
a time in order to change κ, λ, and σ, respectively. Results in Figures S10, S9 and S11 show that the fixation
probability is well described by F = NM/NA except in cases where the food concentration profile is less spatial
because food is substantially depleted even at the entrance of the gut, which occurs for the four largest values
of r in Figure S10.
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Figure S9: Varying κ. A Food profiles for different values of κ and fixed λ = 0.336 and σ = 15. B Fixation
probability as a function of total population NT and active population NA (in the inset). Different colors correspond
to different values of κ (k) and different symbols are used for overlapping data points. Parameters are v = 0.5 cm/h,
D = 0.2 cm2/h, L = 6.0 cm, r = 0.42 h−1, α = 6.13× 108 bacteria/(mL mM), and NM = 3.33× 10−11 bacteria. k values
are listed in the panel B.
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Figure S10: Varying λ. A Food profiles for different values of λ and fixed κ = 0.05 and σ = 15. B Fixation probability
as a function of total population NT and active population NA (in the inset). Different colors correspond to different vales
of λ (r). Parameters are v = 0.5 cm/h, D = 0.2 cm2/h, k = 0.1 mM, k = 0.1 mM, α = 6.13× 108 bacteria/(mL mM),
and NM = 3.33× 10−11 bacteria. r values are listed in the panel B.
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Figure S11: Varying σ. A Food profiles for different values of σ and fixed λ = 0.336 and κ = 0.05. The inset
shows rescaled food profiles, for easier comparison of the spatial dependence. B Fixation probability as a function of
total population NT and active population NA (in the inset). Different colors correspond to different values of σ (L)
and different symbols are used for overlapping data points. Parameters are v = 0.5 cm/h, D = 0.2 cm2/h, L = 6.0 cm,
r = 0.42 h−1, α = 6.13× 108 bacteria/(mL mM), and NM = 3.33× 10−11 bacteria. k values are listed in the panel B.
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