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Abstract: Admixture regression methodology exploits the natural experiment of random mating1

between individuals with different ancestral backgrounds to infer the environmental and genetic2

components to trait variation across racial and ethnic groups. This paper provides a statistical3

framework for admixture regression based on the linear polygenic index model and applies it to4

neuropsychological performance data from the Adolescent Brain Cognitive Development (ABCD)5

database. We develop and apply a new test of the differential impact of multi-racial identities on6

trait variation, an orthogonalization procedure for added explanatory variables, and a partially7

linear semiparametric functional form. We find a statistically significant genetic component8

to neuropsychological performance differences across racial identities, and find some possible9

evidence of nonlinearity in the link between admixture and neuropsychological performance10

scores in the ABCD data.11

Keywords: mixed effects model; orthogonalized regressors; partially linear semiparametric re-12

gression; polygenic index13

1. Introduction14

Racial/ethnic group identities such as Black, White, Hispanic, Native American,15

East Asian and South Asian show empirically strong linkages to medical and behavioral16

traits such as obesity (Wang et al. 2007), type 2 diabetes (Cheng et al. 2013), hyperten-17

sion (Lackland 2014), asthma (Choudry et al. 2006), neuropsychological performance18

(Llibre-Guerra et al. 2018), smoking behaviors (Choquet et al. 2021), and sleep disorders19

(Halder et al 2015). An important research question is to what degree any such observed20

trait variation arises from differences in the typical diets, cultural practices and other21

environmental particularities of the racial/ethnic groups, or from similarity in genetic22

pools within each group traceable to shared geographic ancestry. Many diverse national23

populations descend demographically from isolated continental groups within a few24

hundred years. Modern genetic technology can measure with high accuracy the propor-25

tion of an individual’s ancestry associated with these continental groups. Also, in many26

culturally diverse nations, most individuals can reliably self-identify as members of one27

or more racial or ethnic groups. Admixture regression leverages these two data sources,28

self-identified race or ethnicity (SIRE) and genetically-measured admixture proportions,29

to decompose trait variation correspondingly. Admixture regression has been widely30

applied to medical and behavioral traits including asthma (Salari et al. 2005), body31

mass index (Klimentidis et al. 2009), type 2 diabetes (Cheng et al. 2013), blood pressure32

(Klimentidis et al. 2012), neuropsychological performance (Lasker et al. 2019), and sleep33

depth (Halder et al. 2015). It has particular value in the case of complex behavioral34

traits where reliably identifying genetic loci associated with trait variation is beyond35

the current reach of science. Admixture mapping is a more technically challenging36

methodology, often used in conjuction with admixture regression, which uses ancestral37
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population trait differences to attempt to identify genetic loci associated with a trait.38

This paper focusses exclusively on admixture regression.39

This paper first develops a simple statistical framework for admixture regression40

of behavioral traits by linking it to the linear polygenic index model from behavioral41

genetics; this framework clarifies the key assumptions that are implicit in this simple and42

powerful statistical technique. The paper then extends the admixture regression method-43

ology in several ways. We provide a new test statistic for identifying whether a given44

multi-racial identity differs in its trait impact from the average impact of its component45

single-SIRE categories. We examine the role of additional explanatory variables in the46

admixture regression and their interpretation with and without orthogonalization with47

respect to the core explanatory variables. We generalize the linear admixture regression48

specification to a partially linear semiparametric form.49

We apply our methodology to neuropsychological performance data from the50

Adolescent Brain Cognitive Development database. Neuropsychological performance is51

one of the most complex traits to which admixture regression analysis has been applied.52

Our findings corroborate existing evidence that genetic variation plays a statistically53

significant role in explaining neuropsychological performance differences across racial54

identities (Lasker et al. 2019). Using our new test statistic, we find that some multi-55

racial categories have identifiably distinct impact relative to their component categories.56

We find that orthogonalization of additional variables can substantially change the57

interpretation of the core coefficients in the admixture regression. Our analysis also58

indicates (although not conclusively) that a partially linear semiparametric specification59

potentially adds empirical value.60

2. A statistical framework for admixture regression tests of trait variation61

2.1. Variable definitions62

We assume that the database consists of n individuals indexed by i = 1, . . . , n who63

have each self-identified their racial or ethnic group membership(s), recorded a score64

on a behavioral trait, si, and provided a personal DNA sample. The k racial or ethnic65

group self-identification choices are captured by a matrix of zero-one dummy variables66

SIREij, i = 1, . . . , n; j = 1, . . . , k. We assume that every individual has self-identified as67

belonging to at least one and possibly more of the k groups.68

We assume that a set of m geographic ancestries covered in the study have been69

chosen, such as African, European, Amerindian, South Asian, and East Asian, indexed70

by h = 1, . . . , m. The genotyped DNA samples are carefully decomposed into admixture71

proportions of geographic ancestry, as discussed in Section 4 below. For each individual72

the ancestry proportions across the chosen geographic ancestries sum to one. This gives73

a matrix of ancestry proportions Aih, i = 1, . . . , n; h = 1, . . . , m with 0 ≤ Aih ≤ 1 for all74

i, h and
m
∑

h=1
Aih = 1 for each i.75

In most applications of admixture regression, individuals’ racial or ethnic group76

identities will have statistical relationships with individuals’ genetically identified ge-77

ographic ancestries and also with the observed trait si. The objective of admixture78

regression is to decompose trait variation into linear components due to genetic ances-79

tries and linear components due to racial/ethnic group related effects.80

2.2. Ancestry proportions as a statistical proxy for ancestry-linked genetic trait variation81

Admixture regression is an indirect method of analyzing group-related trait varia-82

tion. In this subsection we provide a foundation for admixture regression by considering83

a more direct, but empirically much more challenging, alternative approach based on84

a linear polygenic index model. We show that the admixture regression model can be85

viewed as a statistically feasible simplification of this linear polygenic index model, in86

which proportional ancestries serve as statistical proxies for ancestry-related genetic87

differences.88
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The human genetic code contains a very large number of genetic variants (the allelles89

on the genome which vary between individuals) called single nucleotide polymorphisms90

or SNPs. Consider hypothetically a complete list of all genetic variants with any impact91

on variation in the observed trait. Assign a value of 0, 1 or 2 to each SNP for individual i92

depending upon the number of minor allelles for that SNP. Let SNPiz i = 1, . . . , n; denote93

the number of minor allelles on the zth SNP of the ith individual in the sample.94

The biochemical process linking human genetic variation to behavioral trait vari-95

ation is unimaginably complex, and scientific understanding of the full biochemical96

process is very limited. Genome-wide association studies (GWAS) have made slow but97

steady progress in statistically modeling these linkages, although precise biochemical98

linkages are beyond the contemporary scientific frontier for most behavioral traits. A99

standard, admittedly highly simplified, model of the gene variation - trait variation100

nexus is the linear polygenic index model, in which the genetic component of a trait is a101

simple linear function of a relevant subset of the individual’s genetic variants. The linear102

polygenic index model has been applied to a wide range of medical and behavioral103

traits including body mass index (Yengo et al. 2018), neuroticism (Nagel et al. 2018),104

depression susceptibility (Wray et al. 2018), suicidal ideation (Mullins et al. 2014),105

schizophrenia (Mistry et al. 2018), educational attainment (Lee et al. 2018), neuropsycho-106

logical test performance (Savage et al. 2018), and risk-taking (Clifton et al. 2018). The107

linear admixture regression model can be derived elegantly by invoking this standard108

linear polygenic index model, and hence we impose it, in order to provide a statistical109

underpinning for our admixture regression model.110

Let pi denote the genetic potential of individual i regarding the observable trait si.
We assume that pi is a linear function of a large number of genetic variants SNPiz with
associated linear coefficients βz and constant term c1:

pi = c1 + ∑
z

βzSNPiz; i = 1, . . . , n. (1)

The key difference in the admixture regression methodology compared to GWAS is111

that there is no attempt to estimate the linear polygenic index (1). Rather, admixture112

regression uses the natural experiment of subpopulation mixing to infer differences in the113

conditional expected value of (1) arising from differences in the frequency distribution of114

genetic variants across ancestries. The assumed linearity of the polygenic index model115

(1), together with an assumption of random mating across ancestral populations, allows116

us to derive a linear regression model using admixture as a statistical proxy variable for117

the conditional expected value of pi.118

The frequency distributions of many SNPs depend notably upon geographic an-
cestries. Consider a hypothetical individual with single-origin ancestry h, that is, an
individual with Ah = 1. Note that this also implies that Ah′ = 0 for all h′ 6= h since the
ancestral proportions are non-negative and sum to one. Consider the expected value
of p conditional on an individual having this single-origin ancestry. The expectation of
∑
z

βzSNPz using a single-origin frequency distribution for each SNPz defines the average

genetic trait potential of a single-origin ancestry:

E[p|Ah = 1] = c1 + ∑
z

βzE[SNPz|Ah = 1], h = 1, . . . , m. (2)

In admixture regression there is no attempt to measure (2) directly, but instead differences119

between (2) across h = 1, ..., m will be inferred indirectly using regression methods.120

A key assumption of the admixture regression model is that admixture arises
from recent random mating between the previously geographically-isolated ancestral
groups. Assuming recent random mating between ancestral lines, it follows from the
fundamental processes of sexual reproduction that the expected value of any SNP
for an admixed individual is the convex combination of the single-origin expected
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values, with linear coefficients equal to the individual’s admixture proportions. (The
relationship between the multivariate distributions of the SNPs is more complicated, but
the multivariate distributions do not impact the expected trait given the linear polygenic
index assumption.) We use a subscript · to denote the vector created from the ith row
of a matrix. We assume that mating across geographic ancestries is recent and random,
and therefore in particular that the univariate frequency distribution of each SNP for
any individual is the convex combination of the single-origin frequency distributions:

E[SNPiz|Ai·] =
m

∑
h=1

AihE[SNPz|Ah = 1] (3)

The linearity of genetic potential in the SNPs (1) and the random mixing assump-
tion (3) imply that expected genetic potential of an admixed individual is a convex
combination of the individual’s admixture proportions. Taking the expectation of (1)
using (2) and (3) the conditional expected value of genetic potential for an individual
with admixture proportions Ai· is the convex combination of the unobserved values
E[p|Ah = 1] with observed linear coefficients Aih:

E[pi|Ai·] =
m

∑
h=1

AihE[p|Ah = 1]. (4)

Equation (4) is a fundamental identification condition for the admixture regression121

methodology. As we discuss below, it allows differences between the single-origin122

expected values of genetic potential, E[p|Ah = 1], h = 1, ..., m, to be inferred by regression123

methods.124

2.3. Adjusting for ancestry-related environmental influences on the trait125

Define the environmental component of the trait, ei, as the observed trait minus
genetic potential:

si = pi + ei, (5)

where ei is defined as all trait variation not captured by pi. Equation (5) is only defini-
tional; later we will impose various conditions on ei to enable statistical identification
of the model. Define p̃i as the genetic component of the trait for each i which is not
explained by ancestry proportions:

p̃i = pi − E[pi|Ai·],

by simple substitution into (5) this gives:

si = c1 +
m

∑
h=1

AihE[p|Ah = 1] + p̃i + ei. (6)

Recall that
k
∑

h=1
Ahi = 1, for all i, so that one term in (6) is redundant for the purposes of

creating a regression model. Substitute Ai1 = 1−
k
∑

h=2
Aih into (6) to get:

si = c2 +
m

∑
h=2

bAh Aih + p̃i + ei, (7)

where bAh = E[p|Ah = 1]− E[p|A1 = 1]; h = 2, . . . , m, and c2 = c1 + E[p|A1 = 1].126

Equation (7) is not well-specified as a regression model since the error term p̃i + ei127

will not be mean zero conditional on Ai·, due to racial and ethnic group-related effects in128

ei. In order to transform (7) into a regression model it is necessary to add explanatory129

terms to the regression model to remove the expected value of ei conditional on Ai·. This130
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is accomplished by assuming that the differences in ei conditional on Ai· are dependent131

on the group self-identification choices, but otherwise not dependent upon admixture132

proportions.133

For expositional simplicity, in this subsection we assume that every individual134

included in the sample has self-identified as belonging to exactly one from the pre-135

specified set of k racial or ethnic groups, so that
k
∑

j=1
SIREij = 1 for all i. In this case,136

the n× k matrix of racial/ethnic group explanatory variables used in the admixture137

regression, denoted G, is simply set equal to the SIRE matrix: Gij = SIREij for i =138

1, . . . , n; j = 1, . . . , k. Multi-racial individuals (those who have self-identified as belonging139

to two or more groups) will be introduced into the analysis in the next subsection.140

We assume that after adjusting for the influence of the group identifiers Gij, the
remaining error term in (7) is independent of the ancestry proportions:

ei = c3 +
k

∑
j=2

bGjGij + ẽi, (8)

where bGh captures the environmental component associated with membership in group
h relative to the reference group h = 1, and ẽi is assumed to be independent of Ai·,
Gi· and p̃i, and c3 is a constant term. Combining (7) and (8) produces the key linear
admixture regression specification:

si = c4 +
k

∑
j=2

bGjGij +
m

∑
h=2

bAh Aih + εi. (9)

where εi = ẽi + p̃i and c4 is a constant term. Note that εi has zero mean and variance σ2
ẽ +141

σ2
p̃ and is independent of Ai· and Gi·. Equation (9) is a well-specified linear regression142

model.143

In many applications, the analyst also has information on the sampling substructure144

of the data, such as its division into site-specific subsamples. In this case, a linear mixed145

effects model can be used for estimating (9) rather than ordinary least squares. This146

involves partially decomposing the residual term εi in (9) into linear random effects147

components linked to data collection site identifiers and/or other subsample identifiers,148

see Heeringa and Berglund (2020).149

2.4. Adding multi-racial individuals to the regression150

Recall that SIRE is the n × k matrix of race/ethnicity self-identifications. A key151

assumption of the admixture regression technique is that the environmental influences152

associated with racial/ethnic group membership are captured by these group member-153

ship self-identification choices. Many individuals self-identify as belonging to two or154

more racial or ethnic groups and the group variables used in the regression must be155

adapted to this reality. In the context of our statistical framework, there are essentially156

three approaches: evenly splitting the individual’s affiliation across their chosen groups,157

creating a new group for one or more particular multi-racial combinations, or deleting158

particular multi-racial observations where neither of the other two approaches seem159

appropriate.160

We now allow that some individuals choose more than one category, so that
k
∑

j=1
SIREij > 1 for some i. The simplest regression specification in this case is to as-
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sume that the group environment faced by a multi-racial individual is the average of the
component group environments:

Gij = SIREij/

(
k

∑
j∗=1

SIREij∗

)
for all i = 1, . . . , n; j = 1, . . . , k. (10)

161

Although (10) is a reasonable specification, it is restrictive. It is possible to replace162

(10) with a more general specification at some loss of parsimony. Suppose that we are163

concerned about imposing the restrictive condition (10) for some common multi-racial164

choice (such as, for example, Black-White biracial in a US dataset). Let V1 denote a165

k−vector with ones for the included race/ethnicity groups in this particular multi-racial166

combination and zeros elsewhere. We can supplement (10) by adding a k + 1st group167

and using a different rule for this subset of multi-racials:168

Gij = 0 for j = 1, . . . , k if SIREi· = V1

Gi,k+1 = 1 if SIREi· = V1 (11)

Gi,k+1 = 0 if SIREi· 6= V1,

where SIREi· = V1 denotes vector equality between these two k−vectors. There are now169

k + 1 groups: the originally specified SIRE groups and a new group for the selected170

multiracial combination. G becomes a n× (k+ 1) matrix, and the regression (9) described171

in the previous subsection applies exactly as before but with one extra dimension to172

G. Any small number of defined multi-racial groups can be appended in this way. The173

only change to the regression methodology is that G becomes a n× k∗ matrix (with an174

associated increase in the set of estimated parameters ) where k∗ − k is the number of175

multiracial combinations added as new categories.176

It is not feasible to use rule (11) for all race/ethnicity choice combinations due to177

lack of parsimony; there are 2k − k potential multi-racial combinations and each one178

added requires an additional parameter in the regression. It can only be used for the179

common multi-racial choices where there is sufficient data of that combination in the180

sample. For all others, it is necessary to stick with the restrictive assumption (10) or drop181

the observations from the sample. This will be illustrated in the empirical application in182

Section 5.183

Once a regression model is estimated using (11), it is possible to test the accuracy
of restrictive assumption (10) for that multi-racial group. The restrictive assumption
implicit in (10) requires that the average of the coefficients of the components equals the
added-group coefficient in the unrestricted model:

1
#j∗∑j∗

bGj∗ = bG,k+1, (12)

where #j∗ denotes the number of components in the multiracial category (typically either184

two or three) and the sum runs over these element only. This is a linear restriction on the185

vector of coefficients, or multiple linear restrictions for k∗ − k greater than one, which186

can be tested with a t-test (for each group coefficient singly) or a Wald test for all them,187

as detailed below.188

Let b̂ denote the (m + k∗ − 1)−vector of all the coefficients in the admixture regres-
sion (9):

b̂ = [ĉ4, b̂G, b̂A],

and let Ĉovb̂ denote the estimated (m + k∗ − 1)× (m + k∗ − 1)−covariance matrix of189

these estimates.190

First consider the case k∗ − k = 1. Let R denote the (m + k∗ − 1)−vector expressing
restriction (12) imposed on b. For example, if the group combination consists of individ-
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uals who choose all three of the first, second, and third SIRE categories (recalling that
the first SIRE category is not included in the regression) the restriction vector is:

R = [0,−1
3

,−1
3

, 0, .., 0, 1, 0, ..., 0]

where the 1 is element k∗ in the vector. Any other restriction of type (12) is easily stated in
this way. In the case of one group, this gives rise to a standard t-test of the one coefficient
restriction, and in particular:

b̂′R
(R′Ĉovb̂R)

∼ t(n−m− k∗ + 1). (13)

For the case k∗ − k > 1 it is possible to test each multi-racial group equality individ-
ually as above using (13) or perform a joint Wald test on all of them. Let R denote the
(m + k∗ − 1)× (k∗ − k)−matrix of all the linear restrictions, giving the standard Wald
test:

b̂′R(R′(Ĉovb̂)
−1R)−1R′ b̂ a∼ χ2(k∗ − k) (14)

where a∼ denotes the approximate distribution for large n. In the case of estimation by191

linear mixed effects modeling, both test statistics (13) and (14) are large−n asymptotic192

distributions rather than exact finite-sample distributions, but they remain valid tests.193

3. Extensions of the linear admixture regression model194

3.1. Additional explanatory variables with and without orthogonalization195

It is straightforward to include additional explanatory variables in the admixture
regression model. Let xi1, xi2, ..., xil denote a set of explanatory variables that help to
linearly explain the trait along with the ancestry proportions and group identities. We
modify specification (9) to include these:

si = c5 +
k

∑
j=2

bGjGij +
m

∑
h=2

bAh Aih +
l

∑
d=1

bxdxid + εi (15)

and keep all the other assumptions as before. The estimation theory for (15) is essentially196

identical to that of (9) as discussed above.197

In some cases, the admixture regression model with additional explanatory vari-198

ables (15) can be made more useful and informative by orthogonal rotation of one or199

more of the explanatory variables, in order to aggregate the full effects of proportional200

ancestries and group identities into their associated coefficients. To understand why such201

an orthogonal rotation might be useful, consider the hypothetical case of an admixture202

regression model of Body Mass Index (BMI) in which waist measurement is one of the203

explanatory variables. Waist measurement has such strong explanatory power for BMI204

that its presence in an admixture regression model like (15) will diminish the direct205

explanatory power of proportional ancestries and group identities; their total impact206

will be partly hidden within the waist measurement variable. This can be remedied207

by orthogonalizing the waist measurement variable with respect to the proportional208

ancestry and group identity variables before estimating the admixture regression, as209

explained next.210

Suppose that variable x1 in (15) has strong explanatory power for s and substantial
correlation with proportional ancestry and/or group identity variables, and therefore the
analyst wishes to orthogonalize it with respect to Gij and Aih, j = 2, . . . , k; h = 2, . . . , m.
In a first step, the analyst can perform a simple least square regression decomposition of
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x1 into the component linearly explained by these variables, and the residual, orthogonal
component xo

1:

x1 = ĉ6 +
k

∑
j=2

b̂GjGij +
m

∑
h=2

b̂Ah Aih + xo
1 (16)

Since all the explanatory variables are deterministic (that is, conditionally fixed variables211

rather than random variables in the regression model), this orthogonalization step is212

interpreted as a matrix transformation of fixed vectors and does not alter any statistical213

assumptions of the main regression model. It merely serves to linearly rotate the deter-214

ministic explanatory variables used in the actual, second-stage, admixture regression.215

Replacing x1 with xo
1 in (15) changes the interpretation of the coefficients b̂Gj and b̂Ah,216

j = 2, . . . , k; h = 2, . . . , m since they now include the Gij and Aih related explanatory217

power from x1. An illustrative example will be provided in Section 5 below.218

3.2. A semiparametric extension of the admixture regression model219

The linear dependence of the trait on admixture proportions in our regression model
is in part an artifact of the assumption of a linear polygenic index (1). It is possible to
weaken this linearity assumption using nonparametric regression methods. We replace
the restrictive assumption of a linear polygenic index (1) with a very general description
of genetic potential as a function of the full vector of genetic variants:

pi = p(SNPi·)

and instead of linearity as in (1) only require smoothness conditions on the conditional220

expectation of p(·) as a function of the ancestral proportions vector, as delineated below.221

As in earlier subsections, we consider pi as a stochastic function of the ancestral
proportions vector Ai·, but now without imposing the strict linearity (4) arising from the
linear polygenic index assumption:

f (Ai·) = E[p(SNPi·)|Ai·].

Define the unexplained component of pi as before:

p̃i = pi − f (Ai·)

and we assume that p̃i ∼ N(0, σ2
p̃) and independent of Ai· and Gi·. We impose the same

assumptions on ei as in Section 2, giving:

si =
k

∑
j=2

bGjGij + f (Ai·) + εi, (17)

where εi = p̃i + ẽi is assumed to be normally distributed with mean zero and variance222

σ2
p̃ + σ2

ẽ and independent of Ai· and Gi·. This equation (17) is a partially linear nonpara-223

metric regression model, see, e.g. Li and Racine (2007). This model can be consistently224

estimated using the three-step procedure of Robinson (1988). We will impose Condition225

7.1 from Li and Racine (2007) in order to justify this procedure within our framework226

(see the Technical Appendix for details).227

For the case m > 2 the general specification (17) suffers from the curse of dimen-
sionality and is unlikely to be estimable on moderate-sized datasets. A more restrictive
specification is needed to give the model sufficient parsimony for estimation. One rea-
sonable specification choice is to restrict the nonlinearity in the impact of ancestries on

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.05.14.444173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444173
http://creativecommons.org/licenses/by-nc-nd/4.0/


Version September 16, 2021 submitted to Behav. Sci. 9 of 15

the trait to a single ancestral category, which we assume is ancestry category 2, giving
rise to the specification:

si =
k

∑
j=2

bGjGij + f2(Ai2) +
m

∑
h=3

bAh Aih + εi, (18)

and we will now rely on this more restrictive specification throughout the remainder of228

this subsection.229

We assume that the unconditional density Pr(A2) is continuous and strictly positive
everywhere on the [0, 1] interval. Let P̂r(Ai2) denote the nonparametrically estimated
unconditional density of Ai2 :

P̂r(Ai2) =
1
n

n

∑
i′=1

k(Ai′2 − Ai2), (19)

where k(•) is a kernel weighting function. In our empirical application in Section 5 we230

use the Gaussian kernel weighting function.231

In the first step of the Robinson procedure, the conditional means of the dependent
variable and linear-component explanatory variables are estimated nonparametrically
as functions of the nonparametric-component explanatory variable, Ai2:

f̂0(Ai2) ≈ E[si|Ai2]

f̂Gj(Ai2) ≈ E[Gij|Ai2]; j = 2, . . . , k

and
f̂Ah(Ai2) ≈ E[Aih|Ai2]; h = 3, m

that is:

f̂0(Ai2) =
1
n

n

∑
i′=1

si′k(Ai′2 − Ai2)/P̂r(Ai2),

f̂Gj(Ai2) =
1
n

n

∑
i′=1

Gi′ jk(Ai′2 − Ai2)/P̂r(Ai2), j = 2, . . . , k.

and

f̂Ah(Ai2) =
1
n

n

∑
i′=1

Gi′ jk(Ai′2 − Ai2)/P̂r(Ai2), h = 3, . . . , m.

In the second step, the linear parameters of the model (17) are estimated by ordi-
nary least squares, replacing the dependent variable and linear-component explanatory
variables with the deviations from their conditional mean functions:

(b̂G, b̂A) = (X′X)−1X′y

where
yi = si − f̂0(Ai2)

Xij = Gij − f̂Gj(Ai2); j = 2, . . . , k,

Xih = Aih − f̂Ah(Ai2); h = 3, m.

Note that (b̂G, b̂A) is a (k + m− 3)−vector and X is a n× (k + m− 3)−matrix where the232

index first runs from 2 to k over j and then from 3 to m over h.233
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In the third step, the nonparametric component of the model is estimated by sub-
tracting the predicted linear component from both sides of (17) and then applying
standard nonparametric regression:

y∗i = si − (
k

∑
j=2

b̂GjGij +
m

∑
h=3

b̂Ah Aih); i = 1, . . . , n

and then:

f̂ (Ai2) =
1
ci

n

∑
i′=1

k(Ai′2 − Ai2)y∗i′ ,

where ci =
n
∑

i′=1
k(Ai′2 − Ai2).234

The partially linear nonparametric approach to admixture regression is more empir-235

ically challenging than the linear specification. Proper implementation of the technique236

involves a tradeoff between parsimony, the generality of the specification used, and the237

distributional features of the available data. An example of (18) will be estimated in238

Section 5 below.239

4. Materials and Methods240

The Adolescent Brain and Cognitive Development (ABCD) study is the largest241

long-term study of brain development and child health in the United States, testing242

11,000 children ages 9-10 at 21 testing sites; see Karcher and Barch (2021) for an overview.243

Our sample consists of age and gender-adjusted scores and genotyped DNA samples of244

the 9972 children in the ABCD study who met our sample selection criteria, along with245

questionaire responses of their parent(s)/guardian(s).246

The dependent variable in our model is the composite neuropsychological perfor-247

mance score based on the NIH Toolbox (NIHTBX) neurocognitive battery provided in the248

ABCD database; this consists of tasks measuring attention, episodic memory, language249

abilities, executive function, processing speed, and working memory. Age-corrected250

composite scores, based on the seven tasks, were provided by ABCD. We regressed out251

sex from these age-corrected composite scores. The residuals were then standardized252

and serve as the dependent variable in our empirical analysis in Section 5 below.253

Our core explanatory variables are seven SIRE variables, White, Black, Hispanic,254

Native American, East Asian, South Asian, and Other (and including multiple SIRE255

choices from among these) and five genetic ancestry proportions of European, African,256

Amerindian, East Asian and South Asian background obtained from the genotyped257

DNA samples. Children whose parent(s)/guardian(s) identified the child as belonging258

to Pacific Islander racial groups were excluded from our analyses owing to a lack of259

corresponding ancestry category in our chosen five categories. The ABCD Version 3260

database provides 516,598 genotyped SNP variants for each individual’s DNA sample.261

After quality control, filtering, and pruning we were left with 99,642 SNP variants to262

determine the five ancestry proportions, employing the Admixture 1.3 software package263

(Alexander et al. 2015). We use the Pritchard et al. (2000) population structure algorithm,264

as implemented in R routine Structure, to estimate the ancestry proportions of each265

individual in the sample.266

The ABCD database includes site identifiers for the data collection sites (in most267

cases, elementary schools) and family household identifiers (identifying multiple indi-268

viduals in the sample from the same family household, usually twins). As recommended269

by Heeringa and Berglund (2020) for regression analysis using the ABCD database, we270

include random effects in our regression models to account for any site-specific and271

family-specific error correlation. We use the linear regression mixed effects estimate272

routine lmer from the R programming language library, see Bates et al. (2015). The one273

exception is regression Model 3 (see below) in which we estimate a semiparametric274

partially linear model. In that case, we use the the npplr routine in the R programming275
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language subroutine library NP written and maintained by Hayfield and Racine (2020),276

and do not correct for site-specific and family-specific error correlation.277

See the Supplemental Materials for more detailed description of the ABCD database,278

our sample selection procedure, and the construction of the variables that we use.279

5. Results280

In this section, we apply our admixture regression techniques to neuropsychological281

performance using the ABCD database. Table 1 shows means and standard deviations282

of the regression dependent variable on data subsets sorted by SIRE choice. On the283

full sample, by construction, the dependent variable has a mean of zero and standard284

deviation of one. There is considerable dispersion in the subsample means sorted by285

SIRE; for example, the means differ by 1.02 standard deviations (using the full-sample286

standard deviation for simplicity) between two of the largest SIRE categories shown,287

White-only SIRE and Black-only SIRE. The considerable variation in means for SIRE-288

based subsamples provides an initial justification for performing admixture regression289

analysis. This is a table of descriptive statistics; the standard errors shown are not290

appropriate for formal hypothesis testing since there is no adjustment for potential291

site-linked and family-linked correlations, particularly relevant in the case of the smaller292

subsample categories.293

* TABLE 1 HERE *294

Table 2 displays empirical results from three specifications of the admixture regres-295

sion methodology. Recall that one SIRE variable and one ancestry proportion variable296

must be left out as an identification condition of the admixture regression: we leave out297

the White SIRE variable and the European ancestry proportion variable. Model 1 uses298

a linear regression specification and singleton SIRE categories for the group-identity299

variables G; individuals who choose multiple SIRE categories have G exposures equally300

divided between the chosen SIRE categories as in (10). Three of the four ancestral pro-301

portion variables and one of the six group-identity variables have statistically significant302

coefficients. Model 2 adds a selected set of multiple-SIRE composite categories to the303

G specification. We include the seven two-category choices with the largest number304

of observations in our sample. Individuals with one of these two-category choices has305

unit exposure to the associated explanatory variable, and no exposure to the weighted306

single-SIRE variables (see equation 11 above). The same three of four ancestral pro-307

portion variables as in Model 1 are significant in Model 2, with similar coefficients to308

Model 1. None of the single-SIRE group identity variables is significant. Three of the309

seven selected two-SIRE group identity variables have significantly different coefficients310

from that implied by equal weightings of the component single-category coefficients.311

One of these (Hispanic-Other) has a statistically significant coefficient; the other two312

are not significantly different from zero, but are significantly different from the value313

implied by the composite single-category coefficients. Random effects are included in314

all models except Model 3 to capture any common variation associated with the 22315

individual data collection sites in the ABCD study or associated with those families316

having multiple individuals in the sample. We use the lmer maximum likelihood mixed317

effects model estimation routine from the R language library, see Bates et al. (2015),318

for all models except Model 3. See Nakagawa and Schielzeth (2013) for the definition319

and interpretation of conditional and marginal R2 in a linear mixed effects model. The320

marginal R2 (which does not include the explanatory power associated with site-specific321

and family-specific random effects) is approximately 0.16 in both model specifications.322

The African, Amerindian, and East Asian proportional ancestry variables have strong323

and significant explanatory power in Models 1 and 2. For single-SIRE individuals, the324

SIRE-based group identity variables are mostly indistinguishable from zero, but some of325

the multiple-SIRE group variables are significantly different from zero.326

* TABLE 2 HERE *327
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Model 3 implements a partially linear nonparametric specification. This specifi-328

cation requires that the highlighted ancestry proportion (whose impact is estimated329

nonparametically) has observations throughout the [0,1] range. For each of the five330

ancestry categories, Table 3 gives the number of sample observations of proportional331

ancestry in decile bins of percent ancestry, for each of the five genetic ancestry categories.332

We use African proportional ancestry as the highlighted variable since it fulfils the333

requirement for observations throughout the [0, 1] interval and therefore partially linear334

nonparametric estimation is feasible. Figure 1 shows the probability density of African335

ancestry for the full sample population; Figure 2 shows the density restricted to those336

individuals having measured African ancestry greater than 0.5%, this provides greater337

detail in the graph by excluding observations with near-zero ancestry. Interestingly, this338

density has three local peaks, at approximately 5%, 40% and 80% African ancestry.339

* TABLE 3 HERE *340

* FIGURE 1 HERE *341

* FIGURE 2 HERE *342

Partially linear semiparametric Model 3 (18) is estimated using the npplr routine in343

the R programming language subroutine library NP written and maintained by Hayfield344

and Racine (2020). We use the simple average SIRE specification of G as in Model 1.345

We use the Guassian kernel throughout, and all bandwidths are chosen by iterated346

least-squares cross-validation. The linear coefficient estimates in Model 3 do not differ347

notably from those in Model 1. Figure 3 displays the nonparametric estimate of the348

impact of African ancestry on the performance variable along with the corresponding349

linear impact estimate from Model 1, that is, f̂ (A2) − f̂ (0) and A2b̂2 for A2 ∈ [0, 1].350

There is some graphical evidence for an uptick in the nonlinear gradient for ancestry351

proportions above 90%. We now briefly examine this further.352

* FIGURE 3 HERE *353

Model 3 does not capture the efficiency gain and test statistic bias reduction from
the mixed effects modeling used in the estimation of the other models. Figure 3 of Model
3 is estimated in the second stage of a two-stage semiparametric estimation process and
this weakens its empirical reliability. To examine more carefully the graphical pattern
observed in Figure 3, but with single-stage estimation and the advantage of mixed effects
modeling, we estimate a piecewise linear specification for Ai2 ≥ 0.9. This was chosen in
order to mimick the observed nonlinear uptick seen in Figure 3 within a linear regression
functional form. Recall that African ancestry proportion is ancestry variable 2, giving
the formulation:

si = c +
7

∑
j=2

bGjGij +
5

∑
h=2

bAh Aih + bkink Ai2D[Ai2 ≥ 0.9] + εi, (20)

where D[•] is a zero-one dummy variable and bkink is the added coefficient. The results354

are shown as Models 4 and 5 in Table 4. In Model 4 we use the simple average SIRE355

specification of G as in Model 1; Model 5 adds the same seven two-SIRE combination356

groups as in Model 2. The coefficient bkink is significantly positive in one of the two357

models; the significance of this finding must be treated with caution since the particular358

kink specification (20) is based on examination of Figure 3 using the same data.359

* TABLE 4 HERE *360

Table 5 adds two new variables, US born child and Social-Economic Status (SES),361

to the admixture regression model. US born child equals one if the child was born in362

the USA and zero if born elsewhere. SES is a factor-analytic composite of underlying363

variables from the ABCD database including neighborhood SES, subjective SES as de-364

termined from a set of questionaire answers by the parent(s)/guardian(s) of the child365

on parental/guardian marital status, completed level of parental/guardian education,366

reported neighborhood safety, and parental/guardian employment. See the Supple-367

mental Materials for more detailed discussion. Models 6 and 7 are identical to Models368
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4 and 5 (respectively) from Table 3, except for the addition of these two variables. As369

discussed in Section 3 above, including additional explanatory variables complicates the370

interpretation of an admixture regression model in terms of the implied decomposition371

of trait variation into linear components linked to group identities and components372

linked to genetic ancestries. The SES variable covaries strongly with both genetic and373

environmental components of neuropsychological performance scores. To retain the374

standard interpretability of the admixture regression it is important to orthogonalize SES375

with respect to the group identity and ancestry variables before running the regression.376

For completeness, Models 6 and 7 are shown with and without the orthogonalization of377

SES (versions a and b of each model). If the purpose of the estimation is to identify the378

total impact of SES on the trait, the regression with raw SES is more appropriate (version379

a). For admixture analysis intended to capture the total effects of group identity and380

genetic ancestry on the trait, orthogonalized SES is more appropriate (version b).381

Adding SES to the admixture regression model increases the marginal R2 from382

approximately 0.16 to 0.22. If SES is used in its raw form, the coefficients associated with383

proportional ancestries tend to decrease in magnitude, but the coefficients on African,384

Amerindian, and East Asian proportional ancestry remain strong and significant. There385

is no clear and reliable impact on the SIRE-based group-identity coefficients from using386

SES, in either its raw or orthogonalized form.387

* TABLE 5 HERE *388

6. Discussion and Limitations389

Many behavioral traits covary strongly with racial/ethnic self-identities, but it is390

often ambigous whether this covariance reflects environmental causes associated with391

racial/ethnic identity groups or reflects underlying genetic similarity among group392

members arising from shared geographic ancestry. Admixture regression relies on the393

natural experiment of recent genetic admixture of previously geographically-isolated394

ancestral groups to measure the explanatory power arising from racial/ethnic group395

identities and that arising from ancestry-based similarities of genetic background. The396

admixture regression methodology, in various formulations, has been applied to a397

wide range of medical and behavioral traits including asthma, obesity, type 2 diabetes,398

hypertension, neuropsychological performance, and sleep depth.399

This paper provides a statistical framework for admixture regression based on400

the linear polygenic index model of behavioral genetics, and develops refinements401

and extensions of the methodology within this framework. We provide a simple new402

test procedure for determining whether multiple-SIRE categories have independent403

explanatory power not captured by the individual component categories. We consider404

additional explanatory variable in the admixture regression and their interpretation with405

and without orthogonalization with respect to core variables. We weaken the linearity406

assumption and develop a partially linear semiparametric regression specification.407

We apply our methodology to neuropsychological performance test data from the408

Adolescent Brain Cognitive Development database. We confirm existing findings that409

genetic variation plays a role in neuropsychological performance differences across410

self-identified races (Lasker et al. 2019). We find mixed evidence regarding the indepen-411

dent explanatory power of multi-racial identities relative to their component single-race412

categories. We find that when social econonomic status (SES) is included as an explana-413

tory variable in the admixture regression, pre-regression orthogonalization of SES has a414

substantial impact on the measured magnitude of the ancestry proportion coefficients.415

We find that the proportional ancestry variable associated with African ancestry shows416

some evidence of nonlinearity in its impact on neuropsychological performance.417

The techniques that we propose for admixture regression studies have broad appli-418

cability, but they do have some limitations. We describe three approaches to accommo-419

dating multiple-identity individuals in admixture regression studies (equal weighting,420

adding new groups, deletion of some observations) but none of the three methods is421
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fool-proof in terms of correctly capturing identity-related environmental influences in a422

parsimonious way. We describe how to orthogonalize additional explanatory variables423

in order to accommodate them in an admixture regression while still capturing the full424

effect of ancestry-related genetic variation in the ancestry proportions coefficients. A425

limitation of this orthogonalization procedure is that it does not fundamentally alter the426

underlying regression being estimated, it merely rotates the estimated coefficients to aid427

in their interpretation. The partially linear admixture regression method that we describe428

has the usual limitations of nonparametric and semi-parametric estimation methods. It429

cannot be applied with complete generality due to the curse of dimensionality, and is430

data-intensive due to the nonparametric estimation component of the procedure.431
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Appendix A438

In this technical appendix we re-state condition 7.1 from (Racine and Li 2007, p.439

224) in the context of our partially linear admixture regression model (18).440

We assume that the (k+m− 1)−vector of observations (si, Gij, Aih) j = 2, . . . , k; h =441

2, . . . , m has an i.i.d. distribution over observations i = 1, . . . , n and that the conditional442

mean functions E[Gij|Ai2] and E[Aih|Ai2] are twice differentiable throughout the interior443

of the domain of A2, the closed unit interval . Let m(•) denote any of these conditional444

mean functions or their first or second derivative functions. As in Racine and Li, we445

impose the following Lipschitz-type smoothness condition on these conditional mean446

functions and their first and second derivatives: |m(A2) − m(A′2)| ≤ H(z)|A2 − A′2|447

where H(•) is some continuous function such that E[H(A2)
2] is finite. The expectation448

of H(A2)
2 is over the probability distribution of A2.449

We continue to assume that εi is mean-zero normally distributed with constant450

variance. Since Gij only takes the values of zero and one and Aih is confined to the unit451

interval, it necessarily follows that both have bounded fourth moments. We assume that452

k(•) is a bounded second-order kernel.453

To formally derive the limiting distribution of the Robinson estimator, it is necessary454

to define a trimming parameter which ensures that the estimates P̂r(Ai2) are bounded455

away from zero. Let t denote a trimming parameter and consider the estimator described456

in the text but where observations such that P̂r(Ai2) < t in (19) are dropped from the457

subsequent estimation steps. Let φ denote the kernel bandwidth for sample size n.458

Assume that the trimming parameter obeys the following two limiting conditions as459

n→ ∞ : nφ2t4 → ∞ and nt−4φ8 → 0.460

Under these conditions we have from (Robinson 1988) that

d lim
√

n[(b̂G·, b̂A·)− (bG, bA)] ∼ N(0, σ2
ε E[X′X]−1).

where the matrix X is defined in the main text of the paper above, in step two of the461

Robinson procedure.462
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Table 1 
Neuropsychological Performance Scores Sorted by Self-identified Race or Ethnicity (SIRE) 

Within-Category Means 
and Standard Deviations 

Individuals with Single-SIRE Identities 

All 
Hispanic 

White 
Only 

Black 
Only 

Native 
American 

Only 
East Asian 

Only 

South 
Asian 
Only 

Other 
Only 

Mean 0.25 -0.77 -0.42 0.57 0.45 -.22 -.23 
Standard Deviation 0.92 0.87 0.79 1.02 1.02 1.12 0.96 

Number of Observations 5593 1434 31 107 43 97 1869 

 

Individuals with Selected Multiple-SIRE Identities 

Black-
White 

Hispanic-
White 

Native 
American -

White 
East Asian - 

White 

South 
Asian - 
White 

Hispanic 
- Black 

Hispanic 
- Other 

Mean -0.13 -0.19 0.01 0.58 0.83 -0.34 -0.45 
Standard Deviation 0.95 0.96 0.86 0.98 0.84 0.93 0.92 

Number of Observations 302 1171 131 249 40 84 411 

 
Notes to Table: The table shows means and standard deviations of neuropsychological performance scores for individuals sorted into categories 
by self-identified race and ethnicity (SIRE). The categories used are: individuals who choose only one of the six race categories (White, Black, 
Native American, East Asian, South Asian, and Other), all individuals selecting Hispanic ethnicity along with any of the six race categories, and 
individuals choosing the seven most common two-SIRE choices. By construction the mean and standard deviation of the full sample are zero and 
one; there are 9972 individuals in the full sample.     

 
  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.05.14.444173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444173
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2 
Admixture Regression Results for Neuropsychological Performance 

Linear Specifications with and without Composite Groups and a Partially Linear Semiparametric Specification 
Core Explanatory Variables 

Intercept 
% 
African 

% 
Amerindian 

% East 
Asian 

% 
South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 1 0.3010 -1.0242 -1.3804 0.6439 0.4867 -0.1420 -0.0940 -0.1428 -0.2120 -0.0735 -0.1967
t-statistic 9.0640 -8.3380 -11.3700 3.1850 1.4910 -1.4050 -1.1150 -1.3340 -1.2060 -0.2820 -2.5210
Model 2 0.2949 -1.0298 -1.3358 0.6602 0.5439 -0.1503 0.3390 -0.1856 -0.3523 -0.2679 -0.1796
t-statistic 8.9330 -8.2250 -10.7830 3.2530 1.6590 -1.4620 1.7250 -1.3720 -1.9280 -0.9930 -1.7640
Model 3 N/A Figure 3 -1.1914 0.6924 0.7377 -0.1289 -0.1202 -0.2578 -0.1369 -0.1523 -0.0761
t-statistic -9.9517 3.4772 2.3109 -1.3291 -1.4464 -2.5228 -0.7736 -0.5955 -0.9088

Multiple-SIRE-Composite Explanatory Variables 

Wald Test 
Statistic 

Wald 
Test p-
value 

Black-
White 
SIRE 

Hispanic-
White 
SIRE 

Native 
America -
White SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black
SIRE

Hispanic 
- Other
SIRE

Model 2 
[cont.] 0.0533 -0.0813 -0.0999 0.0043 0.3361 0.0361 -0.1657
t-statistic 0.7110 -1.7890 -1.1850 0.0420 1.8000 0.2940 -2.4000
Test 2 2.2835 -2.5520 -0.0689 0.9357 1.5102 -0.4236 -2.0061 27.0810 0.0003 
Conditional R2 Model 1: 0.550; Model 2: 0.550; Model 3:NA 
Marginal R2 Model 1: 0.157; Model 2:  0.160; Model 3:NA 

Notes to Table: Model 1 uses single-SIRE categories with multiple-SIRE choices allocated evenly across them; Model 2 adds seven multiple-SIRE 
categories. Model 4 uses semiparametric estimation and single-SIRE categories as in Model 1.  Test 2 gives the z-statistic for testing if the 
multiple-SIRE group coefficient equals the average of the component coefficients; the Wald statistic provides a joint test of all the Test 2 
restrictions. 
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Table 3 

Number of Observations in Deciles of Proportional Ancestry for Each Ancestry Category 
European Interval A1i≤10% 10%<A1i≤20% 20%<A1i≤30% 30%<A1i≤40% 40%<A1i≤50% 

Number of Obs. 298 908 425 346 461 
Interval 50%<A1i≤60% 60%<A1i≤70% 70%<A1i≤80% 80%<A1i≤90% 90%<A1i 
Number of Obs. 700 406 462 514 5452 

African Interval A2i≤10% 10%<A2i≤20% 20%<A2i≤30% 30%<A2i≤40% 40%<A2i≤50% 
Number of Obs. 7557 2935 286 125 165 
Interval 50%<A2i≤60% 60%<A2i≤70% 70%<A2i≤80% 80%<A2i≤90% 90%<A2i 
Number of Obs. 88 130 406 787 149 

Amerindian Interval A3i≤10% 10%<A3i≤20% 20%<A3i≤30% 30%<A3i≤40% 40%<A3i≤50% 
Number of Obs. 8364 443 329 301 282 
Interval 50%<A3i≤60% 60%<A3i≤70% 70%<A3i≤80% 80%<A3i≤90% 90%<A3i 
Number of Obs. 156 75 18 0 4 

East Asian Interval A4i≤10% 10%<A4i≤20% 20%<A4i≤30% 30%<A4i≤40% 40%<A4i≤50% 
Number of Obs. 9455 74 84 20 225 
Interval 50%<A4i≤60% 60%<A4i≤70% 70%<A4i≤80% 80%<A4i≤90% 90%<A4i 
Number of Obs. 18 4 8 10 74 

South Asian Interval A5i≤10% 10%<A5i≤20% 20%<A5i≤30% 30%<A5i≤40% 40%<A5i≤50% 
Number of Obs. 9796 55 30 29 17 
Interval 50%<A5i≤60% 60%<A5i≤70% 70%<A5i≤80% 80%<A5i≤90% 90%<A5i 
Number of Obs. 4 11 9 21 0 

 

Notes to Table: For each of the five geographic ancestries, the table shows the number of the total 9972 observations within each of the deciles 
of proportional ancestry.  
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Figure 1 

Estimated Density of African Ancestry for the Full Sample 
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Figure 2 

Estimated Density of African Ancestry for a Restricted Sample (Ancestry > 0.5%) 
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Figure 3 

Linear and Nonlinear Gradients Measuring the Impact of African Ancestry  
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Table 4 

Piecewise Linear Admixture Regression Results with and without Composite Groups 
 Core Explanatory Variables 

 Intercept 
% 
African 

% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 4 0.3017 -1.0791 -1.3897 0.6365 0.4776 -0.1132 -0.0819 -0.1351 -0.2049 -0.0668 -0.1882 
t-statistic 9.1120 -8.5290 -11.4390 3.1480 1.4630 -1.1060 -0.9690 -1.2610 -1.1650 -0.2560 -2.4080 
Model 5 0.2956 -1.0949 -1.3437 0.6501 0.5316 -0.1163 0.3501 -0.1712 -0.3418 -0.2584 -0.1650 
t-statistic 8.9890 -8.4750 -10.8440 3.2030 1.6220 -1.1160 1.7810 -1.2650 -1.8700 -0.9580 -1.6170 

 

Piecewise 
Linear 
Variable Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 
Black-
White 
SIRE  

Hispanic-
White SIRE 

Native 
America -
White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic - 
Other 
SIRE 

Wald 
Test Wald Test p-value 

Model 4 
[cont.] 0.1598 
t-statistic 1.8050 
Model 5 
[cont.] 0.1809 0.0782 -0.0749 -0.0997 0.0085 0.3401 0.0700 -0.1566 
t-statistic 2.0370 1.0300 -1.6450 -1.1820 0.0830 1.8220 0.5650 -2.2650 
Test 2  2.4182 -2.5439 -0.1354 0.9303 1.5081 -0.3414 -2.0366 27.9764 0.0002 
Conditional R2 Model 4: 0.550; Model 5: 0.549 
Marginal R2 Model 4: 0.157; Model 5: 0.160 

 
 

Notes to Table:  Model 4 uses single-SIRE categories with multiple-SIRE choices allocated evenly across the categories; Model 5 adds seven 
multiple-SIRE categories. Both models include a kinked-linear explanatory variable for African ancestry above 90%. Test 2 gives the z-statistic for 
testing if the multiple-SIRE group coefficient equals the average of the component coefficients; the Wald statistic provides a joint test of all the 
Test 2 restrictions. 
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Table 5 
Linear Admixture Regression Results Including Social-Economic Status (SES) and US Born Variables 

Table 5a: Using Raw SES 
 Core Explanatory Variables 

 Intercept % African 
% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 6a 0.0799 -0.6299 -0.8208 0.6222 0.4300 -0.0959 -0.0313 -0.0340 -0.2179 -0.1140 -0.0763 
t-statistic 1.2930 -5.0730 -6.8700 3.1690 1.3550 -0.9660 -0.3830 -0.3270 -1.2760 -0.4510 -1.0020 
Model 7a 0.0846 -0.6503 -0.7828 0.6306 0.4709 -0.0978 0.3782 -0.05166 -0.3176 -0.2841 -0.0443 
t-statistic 1.3710 -5.1320 -6.4300 3.1990 1.4780 -0.9670 1.9840 -0.3930 -1.7890 -1.0860 -0.4460 

 

Piecewise 
Linear 
Variable Socio-Economic Variables Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 

Socio-
Economic 
Status US Born 

Black-
White 
SIRE  

Hispanic-
White 
SIRE 

Native 
America 
-White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic 
- Other 
SIRE Wald 

test and 
p-value 

Model 6a 
[cont.] 0.0209 0.2800 0.1005 
t-statistic 0.2420 23.7280 1.7650 
Model 7a 
[cont.] 0.0447 0.2796 0.0897 0.1186 -0.0427 -0.0584 -0.0318 0.2839 0.0645 -0.0764 

t-statistic 0.5170 23.7100 1.5730 1.6110 -0.9700 -0.7150 -0.3200 1.5700 0.5370 -1.1380 26.7141 
0.0004 Test 2 3.0659 -2.4324 -0.3236 0.6783 1.4097 -0.5685 -2.0497 
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Table 5b: Using Orthogonalized SES 
 Core Explanatory Variables 

 Intercept % African 
% 
Amerindian 

% East 
Asian 

% South 
Asian 

Black 
SIRE 

Hispanic 
SIRE 

Native 
American 
SIRE 

East 
Asian 
SIRE 

South 
Asian 
SIRE 

Other 
SIRE 

Model 6b 0.1987 -1.1179 -1.3590 0.7182 0.6229 -0.1191 -0.0851 -0.2412 -0.2140 -0.1180 -0.1740 
t-statistic 3.2310 -9.1130 -11.5960 3.6570 1.9630 -1.1990 -1.0430 -2.3260 -1.2530 -0.4670 -2.2900 
Model 7b 0.2037 -1.1327 -1.3132 0.7316 0.6759 -0.1236 0.3584 -0.2698 -0.3505 -0.3147 -0.1593 
t-statistic 3.3170 -9.0400 -10.9810 3.7120 2.1220 -1.2230 1.8800 -2.0530 -1.9730 -1.2030 -1.6040 

 

Piecewise 
Linear 
Variable Socio-Economic Variables Multiple-SIRE-Composite Explanatory Variables  

 D[A2≥0.9]A2 

Socio-
Economic 
Status US Born 

Black-
White 
SIRE  

Hispanic-
White 
SIRE 

Native 
America 
-White 
SIRE 

East 
Asian - 
White 
SIRE 

South 
Asian - 
White 
SIRE 

Hispanic 
- Black 
SIRE 

Hispanic 
- Other 
SIRE Wald 

test and 
p-value 

Model 6b 
[cont.] 0.2055 0.2800 0.1005 
t-statistic 2.3920 23.7280 1.7650 
Model 7b 
[cont.] 0.2267 0.2796 0.0897 0.0735 -0.0796 -0.1618 -0.0036 0.3184 0.0807 -0.1492 
t-statistic 2.6310 23.7100 1.5730 0.9990 -1.8180 -1.9790 -0.0360 1.7610 0.6710 -2.2240 30.5889 

0.0001 Test 2 2.4780 -2.7217 -0.2665 0.9170 1.5735 -0.2750 -2.0961 
Conditional R2 Models 6a,b: 0.546; Models 7a,b: 0.546 
Marginal R2 Models 6a,b: 0.218; Models 7a,b: 0.220 

 

Notes to Table:  Models 6a,b use single-SIRE categories with multiple-SIRE choices allocated evenly among them; Models 7a,b add seven 
multiple-SIRE categories. All models include a kinked-linear explanatory variable for African ancestry above 90%, a dummy variable for a child 
born in the US, and a composite variable measuring social-economic status. In Models 6a and 7a the social-economic status variable is in raw 
form whereas in Models 6b and 7b it is orthogonalized with respect to the other explanatory variables (except US born). Test 2 gives the z-
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statistic for testing if the multiple-SIRE group coefficient equals the average of the component coefficients; the Wald statistic provides a joint 
test of all the Test 2 restrictions. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.05.14.444173doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444173
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	A statistical framework for admixture regression tests of trait variation
	Variable definitions
	Ancestry proportions as a statistical proxy for ancestry-linked genetic trait variation
	Adjusting for ancestry-related environmental influences on the trait
	Adding multi-racial individuals to the regression

	Extensions of the linear admixture regression model
	Additional explanatory variables with and without orthogonalization
	A semiparametric extension of the admixture regression model

	Materials and Methods
	Results
	Discussion and Limitations
	
	References



