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ABSTRACT 

Researchers often estimate joint loading using musculoskeletal models to solve the 

inverse dynamics problem. This approach is powerful because it can be done non-invasively, 

however, it relies on assumptions and physical measurements that are prone to measurement 

error. The purpose of this study was to determine the impact of these errors – specifically, 

segment mass and shear ground reaction force - have on analyzing joint loads during activities 

of daily living. We preformed traditional marker-based motion capture analysis on 8 healthy 

adults while they completed a battery of exercises on 6 degree of freedom force plates. We then 

scaled the mass of each segment as well as the shear component of the ground reaction force 

in 5% increments between 0 and 200% and iteratively performed inverse dynamics calculations, 

resulting in 1,681 mass-shear combinations per activity. We compared the peak joint moments 

of the ankle, knee, and hip at each mass-shear combination to the 100% mass and 100% shear 

combination to determine the percent error. We found that the ankle was most resistant to 

changes in both mass and shear and the knee was resistant to changes in mass while the hip 

was sensitive to changes in both mass and shear. These results can help guide researchers 

who are pursuing lower-cost or more convenient data collection setups. 

INTRODUCTION 

 Estimating joint loading during human movement is a cornerstone of biomechanics 

research. Traditionally, joint loads are estimated using musculoskeletal models to solve the 

inverse dynamics problem. Relying on Newton’s second law of motion, we sum the external 

forces acting on a body segment and set that equal to the body segment dynamics (Winter, 

2009). This approach is powerful because it allows researchers to estimate the reaction loads at 

each joint that are impossible to physically measure without invasive surgeries (Bergmann et al., 

2014, 2001). However, this approach relies on assumptions and physical measurements that 

are difficult to quantify and prone to measurement error.  

 Quantifying the mass of each body segment is a necessary step in solving the inverse 

dynamics problem. Pioneering work by Zatsiorsky and Seluyanov (1983) – which was later 

advanced by De Leva (1996) – developed mathematical equations to characterize the inertial 

properties of each body segment. Efforts continue to develop new methods to improve model 

assumptions and reduce measurement errors (El Habachi et al., 2015; Muller et al., 2017; Rao 

et al., 2006; Reinbolt et al., 2007). Advanced imaging is leveraged to develop subject specific 

musculoskeletal models (Davidson et al., 2008; Sheets et al., 2010), and techniques like the 
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residual reduction algorithm reconcile dynamic inconsistencies between mass properties and 

experimental measurements (Delp et al., 2007; Langenderfer et al., 2008). However, these 

methods that improve inverse dynamics fidelity come with increased burdens that make wide 

scale measurements in prospective studies and fieldwork impractical due to added expense and 

complexity. 

While accurately quantifying mass properties receives a great deal of attention in both 

the literature and classroom, the impact of the accuracy of these properties on analyzing joint 

loads during different activities of daily living is less clear. Therefore, the purpose of this study 

was to evaluate how the accuracy of joint load estimates derived from inverse dynamic 

calculations are impacted by errors in segment mass properties. To further explore the impact of 

experimental measurements on joint load estimates, we also tested the sensitivity to shear 

ground reaction force errors. We collected ‘gold-standard’ motion capture data on a group of 

healthy young adults across a variety of activities using a marker-based motion capture system 

and embedded 6 degree of freedom force plates and performed inverse dynamics to establish a 

‘ground truth’ range for joint load estimates. We then systematically introduced error by 

manipulating the mass properties of the musculoskeletal model and the magnitude of the shear 

component of the externally applied loads. From this, we compared the peak joint load 

estimates from each error condition with the ‘ground truth’ across the joints in the lower 

extremities. We hypothesized that changing the mass properties and shear ground reaction 

forces would differentially impact estimated joint loading, with the smallest effects on the ankle 

and the greatest effects on the hip. 

METHODS 

Study Design 

 We recruited 8 healthy adults (6 males, 2 females; 30 ± 4 years; BMI, 24.1 ± 3.2 kg / m2) 

who provided written informed consent that approved by the University of Pennsylvania IRB. All 

procedures were performed in accordance with the relevant guidelines and regulations. We 

excluded participants if they had a history of lower extremity injury.  

Participants wore standardized lab clothing (running shorts and tank top) and running 

shoes (Air Pegasus, Nike, Beaverton, OR), and we secured retro-reflective markers (9.5 mm, 

B&L Engineering, Santa Ana, CA) to the pelvis and lower extremities using skin-safe tape that 

we have described in a previous report (Slater et al., 2018). Briefly, we placed markers over 

anatomic landmarks of the pelvis: anterior and posterior superior iliac spines; legs: medial and 
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lateral knee condyles and ankle malleoli; and feet: calcaneus, first and fifth metatarsal heads, 

and the great toe that were placed on the shoes. We also placed additional tracking markers on 

the pelvis and lower extremities: two markers on the sacrum, one marker on the thigh, and two 

markers on the shank. Once they were clothed and outfitted with the appropriate markers, we 

acquired a static trial with the participants standing in the anatomic position (Seth et al., 2018). 

Data Collection 

 Participants completed a battery of exercises that are clinically relevant for treating 

Achilles tendon injuries, as described in a previous paper from our group (Baxter et al., 2021). 

From this battery, we selected a subset of exercises that would provide a wide range of lower 

extremity loading for our later analysis. These exercises were single leg heel raises, forward 

single leg hopping, single leg drop jumps, squats, lunges, as well as walking and running at self-

selected speeds. Participants completed 5 repetitions of the jumps, hops, squats, and lunges 

and 10 repetitions of the heel raises as well as enough walking and running trials to collect 10 

foot-strikes each. To prevent fatigue, we provided participants 2-5 minute rest periods between 

each exercise. 

 While participants completed each exercise, we acquired marker trajectories using a 12-

camera motion capture system (Eagle Series, Motion Analysis Corporation, Rohnert Park, CA) 

sampling at 100 Hz and ground reaction forces using 3-embedded force plates (BP600900, 

AMTI, Watertown, MA) sampling at 1,000 Hz. We later post-processed the motion capture data 

to prepare it for Inverse Dynamic analysis by confirming marker labeling, filling small gaps using 

cubic spline interpolation, and filtering marker trajectories using a low-pass Butterworth filter 

with a 6 Hz cutoff. We corrected for errors in the ground reaction forces using an established 

force plate calibration procedure (Collins et al., 2009).  

Data Analysis 

 We used a constrained kinematic model to calculate lower extremity kinematics and 

kinetics (Seth et al., 2018). First, we scaled a generic musculoskeletal model (gait2392) using 

each participant’s bodyweight and markers placed over anatomic landmarks. Next, we moved 

the scaled model into the anatomic position by fitting the experimental data collected during the 

static trial using best practices (Hicks et al., 2015). The markers placed on the anterior superior 

iliac spines, condyles and malleoli, calcaneus, 1st and 5th metatarsal heads, and toe markers 

were all given equal weighting. Similarly, the hip, knee, ankle, and toe joints were all weighted 

towards neutral sagittal alignments, which we visually confirmed during the static trial. We then 
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confirmed the scaled models by superimposing the experimental marker positions over the 

model.  

To test the effects of segment mass and shear ground reaction force errors, we 

iteratively performed inverse dynamics across a wide range of conditions. We first performed 

inverse kinematics and inverse dynamics to generate what we considered the ‘ground truth’ 

sagittal joint moments of the right leg at the hip, knee, and ankle during each activity. We then 

iteratively modified the segment mass properties and shear ground reaction forces to test the 

effects on inverse dynamics. We decided to scale the segment masses and shear ground 

reaction forces by 0 to 200% in 5% increments to establish the implications of a range of 

experimental conditions. For example, scaling each segment mass by 0% effectively eliminates 

the dynamics and represents a static solution. Scaling the shear ground reaction forces by 0% 

tests the potential fidelity of using low-cost force plates that only measure the vertical ground 

reaction force. We further tested the interaction between segment mass properties and shear 

ground reaction forces on joint load estimates by running inverse dynamics using each mass-

shear combination. In total, we performed 1,681 mass-shear combinations for each movement 

trial. We calculated the percent error in peak joint moments between the ‘ground truth’ condition 

and each of the mass-shear combinations as our primary outcome measure. Using these 

percent errors, we generated heat maps to visualize the interaction between segment mass and 

shear ground reaction forces on joint moments. 

To better understand the real-world implications of these simulations we compared four 

mass-shear combinations that represent potential data collection setups: 1) traditional motion 

capture with marker-based kinematics and embedded 6 degree of freedom force plates (100% 

mass, 100% shear force); 2) marker-based kinematics and vertical component force plates 

(100% mass, 0% shear force); 3) marker-less pose estimation kinematics and 6 degree of 

freedom force plates (0% mass, 100% shear force); and 4) marker-less pose estimation 

kinematics and vertical component force plates (0% mass, 0% shear force). By assessing these 

peak joint moment errors at the hip, knee, and ankle across a range of activities of daily living, 

we established guidelines for when body segment masses or ground reaction force data must 

be carefully attained and when simplified data analyses and experimental setups are justified. 

Here we based our recommendations on ‘real-world’ experimental setups that preserved joint 

load fidelity within 10% of the ‘gold-standard’ of 100% mass and 100% shear ground reaction 

force calculations. 
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RESULTS 

 Joint moment errors tended to increase in more proximal joints based on shear ground 

reaction force errors more than segment mass errors (Figure 1). The ankle was the least 

sensitive to errors in both segment mass and shear ground reaction force, experiencing an 

average error in peak plantar flexion moment of 10% across all activities. Walking and lunging 

had the greatest peak plantar flexion moment errors of 18 and 28%, respectively, while running 

and heel raising had small peak plantar flexor moment errors of around 2%. The hip was the 

most sensitive, with an average peak hip extension moment error of 77% across all activities. 

Walking and single leg hopping generated the largest errors in peak hip extension moment of 

117 and 172%, respectively, while drop jumping resulted in the smallest peak hip extension 

moment error of 18%. The knee was less sensitive than the hip but still experienced large errors 

with an average of 56%. Like the hip, walking and single leg hopping resulted in the largest 

errors in peak knee extension moment of 148 and 86%, respectively, while squatting resulted in 

the smallest error of peak knee extension moment of 7%. The knee was more sensitive to errors 

in shear ground reaction forces while the hip was more sensitive to errors in segment mass. On 

average, neither shear ground reaction forces nor mass impacted peak plantar flexion moments 

more than 10%. However, walking and lunging were more sensitive to errors in shear ground 

reaction forces. 

 

Figure 1. Errors in peak joint moment for each mass-shear combination visualized as heat maps for the hip, 

knee, and ankle for each of the analyzed motions. Each pixel of a given heat map represents the percent error of 

peak joint sagittal moment between the mass-shear combination and the ground truth combination (100% mass – 

100% GRFshear). Pale yellow represents 0% error, deep red represents <-30% error, and deep blue represents 

>30% error.  
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 We established experimental setup recommendations specific to activity type and joint of 

scientific interest (Figure 2). We found that accurate segment masses were unnecessary to 

accurately quantify ankle joint moments in all activities. Activities like heel raises and vertical 

hopping were not sensitive to inaccurate shear ground reaction forces (Figure 2). However, 

activities that generated considerable amounts of shear ground reaction forces like walking and 

lunging caused ankle joint loading errors in excess of 28%. Knee joint loading was sensitive to 

shear ground reaction forces but not segment mass. For example, there was less than 10% 

error in 6 out of 7 activities when shear ground reaction forces were accurate compared to only 

2 out of 7 when segment masses were accurate. Hip joint loading was sensitive to even small 

errors in both ground reaction shear and segment mass and there were only 5 out 21 conditions 

where the error was less than 10% (Figures 1 and 2). 

 

 

 

 

 

 

DISCUSSION 

 The purpose of this study was to determine the effects of errors in segment mass and 

ground reaction shear forces on inverse dynamic calculations of peak hip, knee, and ankle 

moments. As we hypothesized, the ankle was least sensitive to these errors while the hip was 

the most sensitive. Accurate ground reaction force measurements appear to be more important 

than accurate measurements of segment mass in most situations for calculating peak joint 

moments through inverse dynamics. These findings agree with our intuition that changing the 

direction of the ground reaction force will have greater impacts on joint loading than changes in 

the dynamic forces. For example, the ankle joint experiences ground reaction forces in excess 

of 1.2 times bodyweight during the stance phase of walking which far exceed the dynamic 

forces of the foot accelerating over the ground. These results provide quantitative support for 

Figure 2. Experimental recommendations to 

achieve desired joint loading fidelity. 

Scenarios where there was less than 10% 

error compared to ‘ground truth’ calculations   

from inverse dynamics(100% mass and 

100% GRFshear) are demarked with a 

check mark. 0% mass conditions represent 

experimental techniques that quantify body 

‘pose’ and do not quantify segmental 

dynamics. 0% GRFshear represent 

experimental conditions that may utilize low-

cost force plates that only measure the 

vertical reaction force. 
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employing lower cost experimental setups without sacrificing biomechanical fidelity in some 

instances. 

Our results are promising for researchers who are exploring more practical experimental 

setups while preserving high-fidelity analysis (Figure 2). For example, ankle and knee loads can 

be considered quasi-static while the foot is contacting the ground, which opens up new 

opportunities for leveraging pose-estimation techniques to analyze relevant instances of a 

movement rather than relying on high-speed motion capture to fully characterize movement 

dynamics. Experimental setups can be simplified further when analyzing movements that mostly 

change the height of the center of mass. Movements like vertical hopping and heel-raises are 

resistant to shear ground reaction force errors (Figure 1). In these special scenarios, quasi-

static analyses using low-cost vertical-component force plates provide similar levels of fidelity as 

traditional laboratory setups.  

Understanding how measurement errors impact inverse dynamics calculations is critical 

as the field continues to explore research questions that are best studied outside of traditional 

biomechanics laboratory. Estimating joint loading using low-cost motion capture techniques or 

wearable devices has emerged as promising tools to study patients in more natural settings, 

both in the clinic and in the real world (Hullfish et al., 2020; Matijevich et al., 2020; Renner et al., 

2019). These approaches compare favorably to those made using gold-standard techniques 

across a wide range of clinically relevant activities (Drazan et al., 2021; Hullfish and Baxter, 

2020; Martin et al., 2018). Most of these studies have focused on either the knee or the ankle 

and our results seem to support the validity of these paradigms for producing high quality data. 

However, our results should be cautiously applied to each research question. 

Leveraging gold-standard laboratory equipment to maximize measurement fidelity is prudent for 

applications that impact clinical movement analyses used to inform patient care like surgical 

planning (Arnold and Delp, 2005) or assistive devices (Guan et al., 2016). In these scenarios, 

where the measurements inform subject specific treatment or assistive devices, the increased 

costs associated with lab-based techniques are clearly justified. Additionally, research questions 

focused on the hip joint should treat most activities as dynamic and measure ground reaction 

forces using 6 degree of freedom force plates.  

This study had limitations that are important to consider when putting the results in 

context. We assumed that our musculoskeletal models represented accurate segment masses 

for each subject. While we didn’t employ advanced scaling techniques (Killen et al., 2021; 
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Valente et al., 2017), our sensitivity analysis tested extremes that far exceeded any plausible 

differences between the segment masses defined in the musculoskeletal model and subject-

specific segment masses. We focused our analyses on instances when the foot is contacting 

the ground because anytime the foot is off the ground, joint loading errors will be directly 

proportionate to segment mass errors. We also focused on sagittal joint loads to establish the 

efficacy of using existing pose-estimation techniques to quantify joint loading and because 

sagittal movements represent the greatest amount of body accelerations and shear ground 

reaction forces. We also note that knee and hip errors during activities that are predominantly 

plantar flexion movements – in this study, heel raise and hopping – appear large because 

‘ground truth’ peak loads are small. For example, peak knee loading during a heel raise is only 

0.18 Nm/kg compared to 1.99 Nm/kg during the stance phase of running. 

In summary, we performed a sensitivity analysis to test the effects of changing body 

segment masses and shear ground reaction forces on lower extremity joint moment calculations 

across a range of clinically relevant activities. In general, we found that ankle and knee joint 

loads were resistant to changes in mass properties – effectively confirming that quasi-static 

solutions can replace inverse dynamics for many applications. Conversely, hip joint loading is 

sensitive to both segment mass and shear ground reaction forces, highlighting the need for 

high-fidelity measurements. We used these analyses to develop guidance for utilizing less 

costly – in terms of financial and logistical – experimental setups based on the joint and activity 

of research interest. We hope that this guidance benefits the biomechanics community as we 

continue to develop innovative new techniques to quantify joint loading outside of traditional 

biomechanics laboratories. 
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